
Ključne reči: Trovanje hranom; Osmolarna koncentracija; Dehidratacija; Plazma;

Uvod

Osmolalnost predstavlja osmotsku koncentraciju rastvora izraženu u osmolima rastvorene supstancije u jedinicini zapreminje vode, odnosno to je broj čestica rastvorene supstancije u jedinicini zapreminje vode. S obzirom na to da telesne tečnosti predstavljaju veoma razblažene rastvore, za merenje njihove osmolalnosti koristi se hiljadati dekosa, a to je miliosmol na kilogram vode (mOsm/kg H₂O) [1].

Ukupni osmolalitet plazme čine sve osmotki akutne supstancije u kojima se najveći značaj imaju natrijum, glikozid i urea, dok ostale čine osmolalitet od svega 5-8 mOsm/kg vode. Ukupni osmolalitet plazme (Uk.Psrm) iznosi 275-295 mOsm/kg H₂O. Međutim, s kliničkog gledišta, poseban značaj ima efektivni osmolalitet plazme (Ef.Psrm) koji uglavnom određuje natrijumova so (4/5 ukupnog osmolaliteta plazme održava Na i Cl) [2]. U suštini, efektivni osmolalitet plazme određuje pravac kretnja vode između ekstracelularnog i intracelularnog prostora [2]. Efektivni osmolalitet plazme normalno iznosi 265-285 mOsm/kg H₂O.

U regulaciji osmolaliteta plazme najveći značaj imaju osmoreceptori u supraoptičnim jeredima hipotalama. Povećanje osmolalnosti ekstracelularne tečnosti ili smanjenje cirkulirućeg volumena, preko osmoreceptora dovodi do pojačanog osećaja žedi i povećane sekrecije antidiuretskog hormona (ADH), što u krajnjoj instanci dovodi do retencije vode [3]. Smanjenje osmolaliteta plazme izaziva suprotne efekte.

U toku akutnih crevnih infekcija zbog posleđične dehidratacije organizma (gubitak vode i/ili elektrolita) mogu nastati promene osmolalnosti plazme. U zavisnosti od toga da li je primaran deficit vode ili elektrolita, ili se radi o proporcionalnom gubitku vode i elektrolita, dehidratacija se deli na: hipertonjsku (hiperosmotsku), izotoniju (izosmotsku) i hipotoniju (hipoosmotsku) [4-7].

Hipertonjska dehidratacija nastaje usled deficit vode čiji uzrok može biti: smanjeno unosnje vode, dijabetes insipidus (neurogeni i nefrogeni), dijabets melitus, pojačani gubitak vode preko pluća (groznica) ili preko kože (profuzno znojenje) itd. Patofiziološke posledice u toku ovog tipa dehidratacije prikazane su na Sliki 1.

Slika 1. Hipertonjska dehidratacija

Fig. 1. Hypertonic dehydration

Legend: E.E, E.E.E - elektroliti

Legend: E.E., E.E.E. - elektrolitice

Usled nedostatka vode smanjuje se volumen ekstracelularne tečnosti, a povećava njena osmolalnost. Zbog razlike u osmotkim pritiscima voda difunduje iz intracelularnog u ekstracelularni prostor tako da nastaje ćelijska dehidratacija (Slika 1B). Konačni rezultat je smanjenje volumena i ECT i ICT, kao i povećanje osmolalnosti u ova dva majoriteta prostora životne sredine organizma (Slika 1C). Klinički simptomi i znaci hipertonjske
dehidratacije su pre svega posledica čelijske dehidratacije [8,9]. Javlja se izrazit osećaj žedi, povisena telesna temperatura, a zbog dehidratacije čelija centralnog nervnog sistema mogu da se javi kognitivni poremećaji, konfuzija i poremećaj svesti do kome. Pad krvnog pritiska kod ovog oblika dehidratacije je redak (nema izrazitog smanjenja volumena ECT).

Hipotonijska dehidratacija nastaje usled deficit elektrolita (NaCl). Najčešći uzroci ovog tipa dehidratacije su neslanja ishrana (bolesnici sa hiperstenzijom i srečanom insuficijencijom), povećani gubitak NaCl preko bubrega (Addisonova bolest), kao i ekstrarenalni gubici Na (povraćanje, dijareja, nazogastrična sušenja, opekotine...). Patofiziološke posledice u toku hipotonijske dehidratacije prikazane su na Slici 2.

Zbog nedostatka NaCl u ekstracelularnoj tečnosti smanjuje se i njena osmolalnost (Slika 2B) što dovodi do preslaška vode iz ekstracelularnog u intracelularni prostor. Krajnje patofiziološke posledice su smanjenje volumena ECT i čelijske hiperhidracije (Slika 2C). Simptomi hipotonijske dehidratacije su: slabost, adinamija, gubitak apetita, povraćanje, žed nije izrazita. Jezik je vlažan, a temperatura normalna ili snižena. Zbog izrazitog smanjenja volumena ECT prisutna je hipotenzija, a zbog moždanog edema moguće su promene raspoloženja, razdražljivost, konfuzija, a u najtežim slučajevima epileptiformni grčevi i poremećaj svesti do kome [8,10].

Izotonijska dehidratacija nastaje usled proporcionalnog gubitka vode i elektrolita iz организmas. Ovaj oblik dehidratacije najčešće nastaje usled gubitka sekreta gastrointestinalnog trakta (creve infekcije), zatim usled krveniranja, gubitka plazme (opekotine) itd. Inicijalno tečnost se gubi iz intravaskularnog prostora, a zatim nadoknađuje iz intersticijuma. S obzirom da kod ovog oblika dehidratacije imamo ravnomerni gubitak vode i elektrolita nema većih promena u osmolalnosti ECT, pa samim tim ni neto difuzije vode u/iz intracelularnog pro-

stora (Slika 3) [9]. Zbog toga, u konačnom sledu događaja dolazi do smanjenja volumena ΓCT, uz nepromenjen volumen ICT (Slika 3B).

Slika 3. Izotonijska dehidratacija
Fig. 3. Isotonic dehydration
Legenda: E E, E E E - elektroliti
Legend: E E, E E E - electrolytes

Kliničke manifestacije ovog tipa dehidratacije su posledica hipovolemije: adinamija, tahikardija, filiforman puls, hipotenzija i oligurija [8]. Smanjena je hidriranost kože (smanjen turgor) i sluznica (svuova sluznica). Temperatura je normalna ili snižena, nema izrazite žedi. Mogući su mentalni poremećaji (konfuzija, nemir, dezorientacija).

Cilj rada bio je da se kod bolesnika sa alimentarnom intoksi kacijom, praćenjem odgovarajućih parametara osmolalnog statusa, utvrdi eventualni osmolalni disbalans. S obzirom da su svi analizirani bolesnici, na osnovu kliničko-laboratorijskog nalaza, bili izrazito dehidratedani, krajnji cilj je bio da se praćenjem osmolalnih poremećaja utvrdi najčešći oblik dehidratacije kod ovih bolesnika.

Materijal i metode

Istraživanjem je obuhvaćeno 30 bolesnika sa alimentarnom intoksi kacijom koji su lečeni u Infektivnoj klinici Kliničkog centra u Kragujevcu u periodu od 2003. do 2005. godine. Svi bolesnici su hospitalizovani prvog dana bolesti zbog učestalog povraćanja i posledične dehidratacije organizma. Sve vreme bolesti bili su afebrilni, uz odsustvo izraženog dijarealnog sindroma. U fizikalnom nalazu su domirali znaci intoksi kacije i dehidratacije organizma. Djagonoza almentarne intoksi kacije postavljava na je na osnovu karakteristične kliničke slike bolesti u kratkom inkubacijom i pozitivne epidemiološke ankete (podaci o konzumiranju određene hrane, veći broj obojih...).

Niko od bolesnika nije imao neko pregzistirajuću bolest koja bi mogla da remeti osmolalno stanje organizma (diabetes i druge endokrinološke bolesti, hronična bubrežna insuficijencija...), niti je uzimao lekove koji dovode do osmolalnog disbalansa (diuretici).

Osmolalnost plazme kod bolesnika određena je osmometrijom iz sniženja tačke mržnjenja, a efe-
Slika 4. Promena Uk.Posm kod boleznika za vreme in posle crevni poremečaja

Fig. 4. Change in total plasma osmolality during and after intestinal symptoms

Da bi se pratile promene vrednosti ovih parametra, one su svim bolesnicima određivane in nakon terapijske korekcije nastalog gastrointestinalnog poremečaja (nakan saniranja simptoma akutne crevne infekcije).

Za tumačenje dobijenih rezultata koriščena je statistička metoda testiranja jednakosti srednjih vrednosti dva osnovna skupa.

Rezultati

Na osnovu statističke analize vrednosti Uk.Posm za 30 boleznika, utrdjeno je da ne postoji statistički značajna razlika izmedu srednjih vrednosti Uk.Posm boleznika za vreme nastalog akutnog crevni poremečaja in nakon korekcije toč poremečaja (t=0.264< t_{0.05} =1.96). Drugim rečima, kod boleznika sa prisutnim crevnim poremečajem Uk.Posm nije bila statistički značajno veča u odnosu na vrednost Uk.Posm nakon korekcije postoječeg crevne poremečaja (Slika 4).

Do potpuno istih zaključkama došlo se i na osnovu statističke analize vrednosti Ef.Posm istih boleznika za vreme in nakon korekcije akutnog crevne poremečaja (t=0.457< t_{0.05} =1.96) (Slika 5).

Diskusija

Dosadašnja istraživanja ukazuju da u toku akutnih crevnih infekcija, zbog gubitka velike količine intestinalnih sokova najčešće nastaje izotonijski tip dehidratacije organizma [4,7,11]. U pitanju je, dakle, poremečaj metabolizma vode in elektrolita koji karakteriše smanjenje zapremine ekstracelularne

Slika 5. Promena Ef.Posm kod boleznika za vreme in posle crevni poremečaja

Fig. 5. Change in effective plasma osmolality during and after intestinal symptoms
tečnosti, pri čemu, koncentracija pojedinih elektrolita in osmolalnost telesnih tečnosti ostaju nepromenjeni [12].

Statistički rezultati u ovoj studiji, takođe ukazuju, da vrednosti ukupne in efektivne osmolalnosti plazme nisu bile značajno veće kod boleznika s prisutnim crevnim poremečajem v odnosu na njihove vrednosti posle korekcije (izlečenja) crevne infekcije. Takvi rezultati sugerišu da u toku alimentarnih intoksi kacije nastaje izotonjski (izosmotski) tip dehidratacije organizma. Drugim rečima, tokom alimentarnih intoksi kacije nastaje paritetni gubitak vode in elektrolita tako da nema večih promena v osmolalnosti ECT, pa samim tim ni neto difuzije vode u/iz intracelularnog prostora [9]. Zbog toga, u konačnom sledu događa dolazi do smanjenja volumena ECT, uz nepromenjen volumen ICT.

U prilog izotonjske dehidratacije govori in činjenica da je većina boleznika imala znake hipovolemije (adininija, tahikardija, filiforman pulz, hipo tenzija), uz smanjenu hidriranost kože (smanjen turgor) in sluznica (suvoča sluznica).

Domenatan simptom kod analiziranih bolesnikov bi a je povraćanje, pri čemu se pored tečnosti gube in mnogi elektroliti (ioni vodonika, hlora, kalijuma in natrijuma). Zbog toga kod ovih bolesnikov, pored dehidratacije nastaje još jedan metabolički poremečaj, a to je hipohloremijska, hipokaliemijska metabolička alkaloza.

Na osnovu svega iznetog može se zaključiti da u toku alimentarnih intoksi kacije nastaje poremečaj metabolizma vode in elektrolita sa izosmotskim stanjem uz propratno metaboličku alkalozu.

Ova činjenica je značajna s terapijskog stano višta, s obzirom da se ovaj patofiziološki splet međusobno povezanih poremečaja volumena, elektrolita in acido-bazne ravnoteže može korigovati davanjem fiziolohskog rastvora (0,9% NaCl) uz nadoknadu kalijuma.
Literatura

Summary

Introduction
Changes in plasma osmolality may occur during acute intestinal infections due to dehydration (loss of water and/or electrolytes). Depending on whether the water and electrolyte deficit is primary, or a proportional loss of water and electrolytes, dehydration can be classified into three categories: hypertonic, hypotonic, and isotonic.

Material and methods
Thirty (30) patients with food poisoning were included in this research. All patients were hospitalized because of frequent vomiting, with resultant dehydration. A diagnosis of food poisoning was made based on the clinical picture, short incubation period and positive epidemiological history. Plasma osmolality was measured by a freezing point depression with an osmometer, while effective plasma osmolality was determined by using the following formula: EPO (eff. plasma osmolality) = 2 × serum sodium concentration + serum glucose level. Apart from plasma osmolality, other parameters were also measured in patients' sera: sodium, chloride, potassium, urea, glucose and hematocrit. In order to follow-up the changes in these parameters, they were also measured after treatment of the gastrointestinal disorder. Statistical analysis was performed using the equality of mean values for 2 basic groups.

Results
The statistical results showed that the values of total and effective plasma osmolality (TPO and EPO) among patients with gastrointestinal disorders were not significantly higher than values after the alimentary infection.

Discussion
Such results suggest that food poisoning is associated with disorders of water and electrolyte metabolism, that is isotonic type of dehydration.

Key words: Food Poisoning; Osmolar Concentration; Dehydration; Plasma