Experimental animal studies can provide crucial evidence for the evaluation and refinement of the controversial area of many areas of surgery. Recently, during the surge in interest in laparoscopic surgery, in particular for colorectal cancer, 72 animal studies have been published between 1995 and 2001. However, the question remains as to which of these data can be suitably extrapolated to the human population. Forty-five of 47 studies, which use cell suspensions, relied on percutaneous intraperitoneal injection of cancer cells to induce peritoneal carcinomatosis. One study described a laparotomy-based model with injection of tumor cells into the cecal lumen while a different study presented the cancer cells via enema. In this study, sigmoid resection was performed before colorectal solid tumor growth.

Key words: laparoscopic surgery, colorectal cancer

INTRODUCTION

Overall 25 manuscripts have described solid tumor models, 21 of which used extra-colonic tumors to draw conclusions on laparoscopic surgery for intra-colonic colorectal carcinoma. The remaining 4 studies did at least utilize colorectal sites including anastomosis, cecum and rectum. Three of these 4 studies, however, did not include resection or included performance of resection prior to development of solid tumor. One of these studies utilized subserosal cecal injection for induction of the tumor, whereas the latter used cancer cell enema. Transmural injection to create submucosal blister with contralateral rectotomy was performed in one study as the method of tumor tissue implantation, while yet another model described resection of the solid cecal tumor derived from human cells growing in nude mice.

Currently available experimental models of laparoscopic surgery for colorectal cancer are unlikely to be valid. They have included models with tumors remote from the primary disease, which they are expected to reflect in the host. Specifically, extra-colonic sites, absence of colorectal solid tumor at the time of resection, and nude mice, all fail to meet the criteria of extrapolation to the human model. Other studies have involved significant modifications of primary colorectal carcinoma by using peritoneal carcinomatosis induced by intraperitoneal cell injection or cell implantation on colonic serosa by laparotomy. There is a dire need for a solid tumor model that does not involve initial laparotomy or laparoscopy for tumor induction. The model should comprise a single intramural tumor derived from the same species, which can grow in immunocompetent animals. The tumor should grow in the colon at a site that is amenable to conventional or laparoscopic resection with minimal morbidity and mortality. An example might be resection of the long cecum in the rat, which would avoid the need for an anastomosis making cecum the preferred site for induction by total colonoscopy. Such a model would allow a valid comparison of cecal cancer resection by laparotomy and laparoscopy. It may also reduce animal subject mortality, thereby decreasing the number of animals necessary to be used in research projects. It might make studies more ethically and fiscally responsible and allow the model to be reproducible for other investigators.

REFERENCES

4. Hull CC, Stellato TA, Ament AA, Gordon N, Gallo-
way P (1990) Endoscopic and radiographic evaluation of
the murine colon. Cancer 66: 2528-2532
5. Pauwels M, Lauwers P, Hendriks J, Hubens A,
Eyskens E, Hubens G (1999) The effect of CO2 pneumo-
eritoneum on the growth of a solid colon carcinoma in
M, Dutrillaux B, Poupon MF (2001) Single alteration of
p53 or E-cadherin genes can alter the surgical resection
benefit in an experimental model of colon cancer. Dis Co-
lon Rectum 44: 1106-1112
7. Tomita H, Marcello PW, Milsom JW, Gramlich TL,
Fazio VW (2001) CO2 pneumoperitoneum does not en-
hance tumor growth and metastasis: study of a rat cecal
wall inoculation model. Dis Colon Rectum 44: 1297-1301