The influence of type 2 diabetes mellitus on the frequency and complexity of ventricular arrhythmias and heart rate variability in patients after myocardial infarction

Uticaj šećerne bolesti tipa 2 na učestalost i kompleksnost ventrikularnih aritmija i varijabilnost frekvencije srčanog rada kod bolesnika nakon infarkta miokarda

Viktor Stoićkov*†, Marina Deljanin Ilić*†, Dijana Stojanović‡, Stevan Ilić*†, Sandra Šarić‡, Dejan Petrović‡, Tomislav Kostić‡, Jovana Cvetković*†, Sanja Stojanović*†, Mladen Golubović*†

*Institute for Treatment and Rehabilitation “Niška Banja”, Niška Banja, Serbia; †Department of Internal Medicine, ‡Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia; §Clinic for Cardiovascular Diseases, ||Center for Anesthesiology and Intensive care, Clinical Center Niš, Niš, Serbia

Abstract

Background/Aim. After myocardial infarction arrhythmic cardiac deaths are significantly more frequent compared to non-arrhythmic ones. The aim of the study was to investigate the influence of type 2 diabetes mellitus (T2DM) on the frequency and complexity of ventricular arrhythmias after myocardial infarction. Methods. The study included 293 patients, mean age 59.5 ± 9.21 years, who were at least six months after acute myocardial infarction with the sinus rhythm, without atrioventricular blocks and branch blocks. In the clinical group 95 (32.42%) patients were without diabetes. All of the patients were subjected to the following procedures: standard ECG according to which, the four parameters of time domain of heart rate variability (HRV): standard deviation of all normal RR intervals during 24 hours (SDNN), the square root of the mean of the sum of the squares of differences between adjacent normal (RMS-SD), and percentage of consecutive RR intervals which differed for more than 50 ms during 24 hours (NN > 50 ms). Results. In patients after myocardial infarction, patients with T2DM had significantly higher percentage of frequent and complex ventricular arrhythmias compared to the patients without diabetes (p < 0.001). The patients with T2DM had significantly higher percentage of residual ischemia (p < 0.001), and arterial hypertension (p < 0.001), compared to patients without diabetes. The patients with T2DM had significantly lower values of HRV parameters: SDNN (p < 0.001); SDANN (p < 0.001); RMS-SD (p < 0.001), and NN > 50 ms (p < 0.001), and significantly higher values of QTdc (p < 0.001) compared to the patients without diabetes. Conclusion. The study showed that type 2 diabetes mellitus has significant influence on ventricular arrhythmias, HRV parameters and QT dispersion in patients after myocardial infarction.

Key words: diabetes mellitus type 2; arrhythmias, cardiac; myocardial infarction.

Apstrakt

Uvod/Cilj. Nakon infarkta miokarda srčana smrt je, usled razvoja kompleksnih ventrikularnih aritmija, značajno češća od nearitmijske. Cilj studije bio je da se ispiše uticaj dijabetesa melitusa tipa 2 (T2DM) na učestalost i kompleksnost ventrikularnih aritmija nakon infarkta miokarda. Metode. Studija je obuhvatala 293 bolesnika, prosečne starosti 59,5 ± 9,21 godina, u periodu od najmanje šest meseci nakon akutnog infarkta miokarda. Svi su bili u sinusnom ritmu bez atrioventrikularnih blokova i blokova grana. Sa T2DM bilo je 95 (32,42%) bolesnika, dok je 198 (67,57%) bolesnika bilo bez dijabetesa. Ispitanicima je iz standardnog EKG izračunavan korigovana QT disperzija (QTdc), raden test fizičkim opterećenjem, ekokardiografski pregled i 24-časovno holter-praćenje, iz koga su analizirana četiri parametra vremenske analize varijabilnosti frekvencije srčanog rada (HRV): standarna devijacija svih normalnih RR intervala registrovanih u toku 24 sata (SDNN), standarna devijacija prosečnih vrednosti svih petominutnih RR intervala u toku 24 sata (SDANN), kvadratni koren prosečne vrednosti kvadriranih difference ajacent normal (RMS-SD), i percentage of consecutive RR intervals which differed for more than 50 ms during 24 hours (NN > 50 ms). Results. U pacijentima nakon infarkta miokarda, pacijenti s T2DM su imali znatno veći čestim i složenim ventrikularnim aritmijama u odnosu na pacijente bez dijabetesa (p < 0.001). Pacijenti s T2DM su imali znatno veći čestim i složenim ventrikularnim aritmijama u odnosu na pacijente bez dijabetesa (p < 0.001), i arterialnu hipertenziju (p < 0.001), u jednakom dnu pacijente bez dijabetesa. Pacijenti s T2DM su imali znatno nižih vrednosti HRV parametara: SDNN (p < 0.001); SDANN (p < 0.001); RMS-SD (p < 0.001), i NN > 50 ms (p < 0.001), i znatno viših vrednosti QTdc (p < 0.001) u odnosu na pacijente bez dijabetesa. Conclusion. Istraživanje je pokazalo da dijabetes mellitus tipa 2 ima znatno uticaj na ventrikularne aritmije, parametre HRV i QT disperziju u pacijentima nakon infarkta miokarda.

Ključne riječi: dijabetes mellitus tipa 2; aritmije, srčane; infarkt miokarda.
rarely used to determine the number of couples, triplets, bigeminies, the number of ventricular premature complexes (VPCs) during 24 hours, the number of couples, triplets, bigeminies, the number of VPCs, and the number of non-sustained and sustained ventricular tachycardia (VT). Further evaluation of ventricular arrhythmias was performed according to Lown and Wolf’s classification. Ambulatory monitoring results were used for software HRV analysis. The following four parameters of HRV analysis were analyzed: standard deviation of all normal RR intervals during 24 hours (SDNN); standard deviation of the averages of normal RR intervals in all five-minute segments during 24 hours (SDANN); the square root of the mean of the sum of the squares of differences between adjacent normal RR intervals during 24 hours (RMS-SD); percentage of consecutive RR intervals which differed for more than 50 ms during 24 hours (NN > 50 ms) and QT dispersion (QTdc).

The 24-hour ambulatory ECG monitoring was performed with the system Del Mar Avionics model 5268-505 MPA/R-ACQ: 2.15; Irvine, California, USA. The system included analysis of classic monitoring and determining heart rate variability (HRV). Analysis included the total number of ventricular premature complexes (VPCs) during 24 hours, the number of couples, triplets, bigeminies, the number of multiform VPCs, and the number of non-sustained and sustained ventricular tachycardia (VT). Further evaluation of ventricular arrhythmias was performed according to Lown and Wolf’s classification. Ambulatory monitoring results were used for software HRV analysis. The following four parameters of HRV analysis were analyzed: standard deviation of all normal RR intervals during 24 hours (SDNN); standard deviation of the averages of normal RR intervals in all five-minute segments during 24 hours (SDANN); the square root of the mean of the sum of the squares of differences between adjacent normal RR intervals during 24 hours (RMS-SD); percentage of consecutive RR intervals which differed for more than 50 ms during 24 hours (NN > 50 ms).

Characteristics of the study and the control group were expressed as mean ± SD (continuous variables), with the
numbers and percentages in brackets (categorical variables). We compared clinical and biochemical data of patients and control group using Student’s t-test for normally distributed data (expressed as mean ± SD). All analyses were performed with SPSS statistical analysis software, version 10.0 (SPSS, Chicago, IL, United States) at the level of significance set at \(p < 0.05 \).

Results

Clinical and biochemical data of the clinical group are presented in Table 1. Significant differences were found between the patients with T2DM and without T2DM in all the evaluated parameters: glycemia \((p = 0.001) \), total cholesterol \((p = 0.001) \), HDL cholesterol \((p = 0.02) \), LDL cholesterol \((p = 0.001) \), and triglycerides \((p = 0.001) \), all presented in Table 1. The gender of patients with T2DM after myocardial infarction did not significantly influence the frequency and complexity of ventricular arrhythmias. The patients with T2DM, 83 (87.4\%) of them, had significantly higher rate of residual ischemia compared to the patients without diabetes, 112 (56.6\%), \((p = 0.001) \).

Among the patients after myocardial infarction, the ones with T2DM had significantly higher rate of frequent and complex ventricular arrhythmias, classified by Lown and Wolf, compared to patients without diabetes mellitus: Lown 0 \((p = 0.001) \), Lown I \((p = 0.001) \), Lown II \((p = 0.025) \), Lown III \((p = 0.001) \), Lown IVa \((p = 0.005) \), and Lown IVb \((p = 0.001) \), all data presented in Table 2. Analyzing data on ventricular arrhythmias classified as Lown IVb, in the patients with T2DM there were 5 (5.3\%) patients with triplets of ventricular extrasystoles, and 3 (3.2\%) had non sustained ventricular tachycardia, while in the patients without T2DM there were 3 (1.5\%) patients with triplets of ventricular extrasystoles, and one patient (0.5\%) had non sustained ventricular tachycardia. Comparing the basic electrocardiographic parameters between these groups of patients we found differences in all evaluated parameters: SDNN (ms) \((p = 0.001) \), SDANN (ms) \((p = 0.001) \), RMS-SD (ms) \((p = 0.001) \), NN > 50 (ms) \((p = 0.001) \), RR (ms) \((p = 0.001) \), and QTdc (ms) \((p = 0.001) \), all data presented in Table 3.

Discussion

The results of our study show that among the patients six months after myocardial infarction, those with T2DM had significantly higher rate of frequent and complex arrhythmias, compared to the patients without diabetes. It is documented that beside metabolic disorders and scar tissue originating from myocardial infarction, the patients with T2DM have fibrous changes in the interstitium included in the pathogenesis of the diabetic cardiomyopathy, as well as the damages of small blood vessels 10. Those fibrous changes of the myocardium create anatomical substrate for the occurrence of macro- and micro-reentry ventricular tachycardia 11. Furthermore, patients without DM, have scar tissue origina-

Table 1

Comparison of biochemical and clinical parameters of the patients after myocardial infarction with and without type 2 diabetes mellitus (T2DM)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patients with T2DM</th>
<th>Patients without T2DM</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (%) of patient</td>
<td>95 (32.42)</td>
<td>198 (67.57)</td>
<td>-</td>
</tr>
<tr>
<td>Age (years), (\overline{x}) ± SD</td>
<td>60.1 ± 8.2</td>
<td>59.5 ± 8.9</td>
<td>-</td>
</tr>
<tr>
<td>Glycemia (mmol/L), (\overline{x}) ± SD</td>
<td>10.9 ± 3.9</td>
<td>5.5 ± 0.7</td>
<td>0.001</td>
</tr>
<tr>
<td>Cholesterol (mmol/L), (\overline{x}) ± SD</td>
<td>6.8 ± 1.2</td>
<td>6.0 ± 1.3</td>
<td>0.001</td>
</tr>
<tr>
<td>Triglycerides (mmol/L), (\overline{x}) ± SD</td>
<td>2.6 ± 1.9</td>
<td>1.9 ± 0.9</td>
<td>0.001</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/L), (\overline{x}) ± SD</td>
<td>0.9 ± 0.2</td>
<td>1.1 ± 0.8</td>
<td>0.02</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/L), (\overline{x}) ± SD</td>
<td>4.3 ± 0.4</td>
<td>4.1 ± 0.7</td>
<td>0.005</td>
</tr>
<tr>
<td>Hypertension (mm/Hg), n (%)</td>
<td>56 (58.94)</td>
<td>86 (43.43)</td>
<td>0.001</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td>50 (52.63)</td>
<td>53 (26.76)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Results compared with Student’s-t test; LDL – low density lipoprotein; HDL – high density lipoprotein.

Table 2

Comparison of ventricular arrhythmias, classified by Lown and Wolf in the patients after myocardial infarction with and without type 2 diabetes mellitus (T2DM)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patients with T2DM</th>
<th>Patients without T2DM</th>
<th>(t)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients, n (%)</td>
<td>95 (32.42)</td>
<td>198 (67.57)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Age (years), (\overline{x}) ± SD</td>
<td>60.1 ± 8.2</td>
<td>59.5 ± 8.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lown 0, n (%)</td>
<td>9 (9.5)</td>
<td>43 (21.7)</td>
<td>4.46</td>
<td>0.001</td>
</tr>
<tr>
<td>Lown I, n (%)</td>
<td>21 (22.1)</td>
<td>109 (55.1)</td>
<td>4.46</td>
<td>0.001</td>
</tr>
<tr>
<td>Lown II, n (%)</td>
<td>15 (15.8)</td>
<td>11 (5.6)</td>
<td>2.90</td>
<td>0.025</td>
</tr>
<tr>
<td>Lown III, n (%)</td>
<td>28 (29.5)</td>
<td>25 (12.6)</td>
<td>4.92</td>
<td>0.001</td>
</tr>
<tr>
<td>Lown IVa, n (%)</td>
<td>11 (11.6)</td>
<td>4 (2.0)</td>
<td>3.33</td>
<td>0.005</td>
</tr>
<tr>
<td>Lown IVb, n (%)</td>
<td>8 (8.4)</td>
<td>4 (2.0)</td>
<td>2.12</td>
<td>0.05</td>
</tr>
<tr>
<td>Lown V, n (%)</td>
<td>3 (3.2)</td>
<td>2 (1.0)</td>
<td>0.53</td>
<td>NS</td>
</tr>
</tbody>
</table>

Results compared with Student’s-t test; NS – non significant.
Increased QTD values also appear due to fibrous changes and myocardial ischemia. Increased QTD value reflects regional difference in repolarization of the myocardium and is a predictor for cardiac mortality. Among our patients early after myocardial infarction, those with T2DM had significantly higher percentage of frequent and complex ventricular arrhythmias and significantly higher QTD values, compared to patients without T2DM. Increased QTD value is a marker for electric instability of the ventricular myocardium and is a predictor for complex ventricular arrhythmias, including ventricular tachycardia, also found in our patients. According to QTD values, we can identify patients with heart failure, who are at a higher risk for cardiac death.

Most of our patients with T2DM had residual ischemia, which certainly contributed to the occurrence of arrhythmias. In experimental studies, before the occurrence of ischemia, ventricular fibrillation (VF) could not be caused even by premature stimuli, while during ischemia, VF was caused by a single premature stimulus, between the 17th and 32nd minute from the beginning of the ischemia. Ischemia causes intracellular and extracellular acidosis and damages cell membrane, causing potassium to exit and calcium to enter the cell, which leads to decreased membrane resting potential and creates conditions for trigger activity. Slowing or complete blocking of conduction is also caused by increased resistance of gap connection due to acidosis. Besides that, the decrease of action potential creates conditions for the occurrence of arrhythmias on automatism. These changes are heterogenic in the ischemic region, depending on the level of ischemia. All our patients with T2DM and residual ischemia, had frequent and complex ventricular arrhythmias.

A correlation between increased level of fasting plasma glucose and cardiovascular diseases is well-known. Hyperglycemia causes coronary dysfunction by creating reactive oxygen species, which inactivates nitric oxide produced in the endothelium, and activates protein kinase C, which induces the production of vasoconstrictor prostanoids. It is considered that hyperglycemia is one of the most important causes of the occurrence of myocardial fibrosis, it causes local production of angiotensin II in myocytes, leading to their apoptosis. According to Framingham study, hyperglycemia, including mild hyperglycemia, causes reduced values of HRV parameters. Similar results were recorded in the ARIC study.

Parameters of heart rate variability as markers of the autonomic nervous system state are used for evaluation of the influence of both, sympathetic and parasympathetic effect on the heart function, and for the identification of patients who are at higher risk for cardiovascular events. It has been recorded that there is a significantly higher mortality rate in patients with reduced SDNN values. Many studies have shown that HRV is an independent predictor for sudden cardiac death in patients after myocardial infarction. It has also been documented that in patients with T2DM after myocardial infarction, reduced HRV values are predictors for cardiac death and sudden cardiac death.

Cardiovascular autonomic neuropathy (CAN) is significantly associated with subsequent mortality in people with DM (T1DM and T2DM) in meta-analysis of 15 studies. Probably, in our patients with T2DM, CAN also contributed to significantly higher percentage of registered frequent and

Table 3

Comparison of basic electrocardiographic parameters in the patients after myocardial infarction with and without type 2 diabetes mellitus (T2DM)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Patients with T2DM</th>
<th>Patients without T2DM</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>95</td>
<td>198</td>
<td>-</td>
</tr>
<tr>
<td>SDNN (ms), (\bar{x} \pm SD)</td>
<td>79.0 ± 20.5</td>
<td>101.5 ± 30.9</td>
<td>0.001</td>
</tr>
<tr>
<td>SDANN (ms), (\bar{x} \pm SD)</td>
<td>68.0 ± 18.7</td>
<td>85.3 ± 29.5</td>
<td>0.001</td>
</tr>
<tr>
<td>RMS-SD (ms), (\bar{x} \pm SD)</td>
<td>25.1 ± 10.5</td>
<td>35.3 ± 15.2</td>
<td>0.001</td>
</tr>
<tr>
<td>NN > 50 (ms), (\bar{x} \pm SD)</td>
<td>5.9 ± 5.7</td>
<td>12.0 ± 10.4</td>
<td>0.001</td>
</tr>
<tr>
<td>RR (ms), (\bar{x} \pm SD)</td>
<td>0.78 ± 0.11</td>
<td>0.90 ± 0.10</td>
<td>0.001</td>
</tr>
<tr>
<td>QTdc (ms), (\bar{x} \pm SD)</td>
<td>88.0 ± 22.7</td>
<td>66.2 ± 26.5</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Results compared with Student’s t-test.

SDNN – standard deviation of all normal RR intervals during 24 hours;

SDANN – standard deviation of the averages of normal RR intervals in all five-minute segments during 24 hours;

RMS-SD – the square root of the mean of the sum of the squares of differences between adjacent normal RR intervals during 24 hour); NN > 50 ms, percentage of consecutive RR intervals which differed for more than 50 ms during 24 hours; RR – RR interval; QTdc – corrected QT dispersion.
complex ventricular arrhythmias, compared to the patients without T2DM. Patients with T2DM had significantly lower values of HRV parameters, which maintained the vagal tone, as well as RMS – SD and NN > 50 ms, and RR interval values, compared to the patients without T2DM, which was also found in our patients. The presence of tachycardia at rest is an early sign of CAN in patients with T2DM, and we recorded sinus tachycardia which occurred at rest or developed easily at slight effort. Early detection of CAN may help us to detect earlier development of atherosclerosis in patients with T2DM to prevent unfavorable outcomes.

Regulation of glycemia, hypertension, myocardial ischemia, increased sympathetic activity and dysfunction of the left ventricle would lead to reduced vulnerability of the myocardium and reduced arrhythmic deaths in patients with T2DM after myocardial infarction. Regulation of these pathological states would reduce arrhythmic deaths and thus improve the prognosis for these patients after myocardial infarction.

Conclusion

This study showed that in patients after myocardial infarction, type 2 diabetes mellitus has a significant impact on ventricular arrhythmias, heart rate variability, and QT dispersion. We also showed that these patients had a significantly higher percentage of frequent and complex ventricular arrhythmias, compared to non-diabetic patients. Finally, heart rate variability and QT dispersion, may be an easy and helpful tool for easier identification of patients with type 2 diabetes mellitus who are at greater risk for further cardiovascular events.

REFERENCES

