Original scientific paper

SENESCENCE OF RIN, rin/rin, rin/+ AND +/+ TOMATO FRUITS

Jasmina ZDRAVKOVIĆ, Živoslav MARKOVIĆ, Ljiljana STANKOVIĆ, Milan ZDRAVKOVIĆ, and Milan DAMJANOVIĆ

Agricultural Research Institute “Serbia”, Centre for Vegetable Crops, 11420 Smederevska Palanka, Serbia and Montenegro

Ripening inhibitor (rin) gene is a spontaneous recessive mutant which changes fruit ripening aspects (most important synthesis of carotene, especially lycopene). It also delays fruit senescence. Tomato is a vegetable crop with specific maturing climax (pik). Tomato genotypes homozygote for rin gene does not have this maturing climax, so the ethylene production and red, lycopene colour does not appear. In order to research the maturing process material from the final tomato selection cycle we used: pure line S-49 (genetic constitution u/u, with uniform ripening), line hom 4 (rin/rin, homozygote with ripening inhibitor) and hybrid combination 449 F1 (u/rin, heterozygote for ripening inhibitor). Fruits with uniform ripening and hybrids ripened simultaneously, while homozygote with rin gene did not ripe at all. Ethylene stimulates the appearance of yellow colour in rin fruits and the lycopene production. After treatment with ETEPHONE (0.1%) (Ethylene) fruits with uniform ripening, senescence more quickly, while hybrids senescence slowly. Rin homozygotes did not change colour, but the fruits senescence more quickly comparing to control. Ethylene treatment speeded the maturing and senescence process in tomato fruits. Extended maturing process as a result influence of rin gene, makes the new created hybrids a late maturing ones. On the other

Corresponding author: Jasmina Zdravković, Agricultural Research Institute “Serbia”, Centre for Vegetable Crops, 71 Karadordeva St, 11420 Smederevska Palanka, Serbia and Montenegro. phone: + 381 26 323 170; Fax: + 381 26 323 785
e-mail: jzdavkovic@cvcsp.co.yu
hand, the firmness of fruits is improved as well as the »shelf life«, which enables longer transportation and storing, coordinated maturing according to market demands. The aim was to research the maturing process of rin heterozygote, and the reaction of some genotypes to treatment with ET-REL (Ethylene) in order to decrease extremely late maturing.

Key words: tomato, fruit maturing and senescence, uniform maturing, effects of ETephone

INTRODUCTION

Gene rin (ripening inhibitor) stops or elongates the usual fruit maturing processes excluding the seed maturing. All these mutants do not increase ethylene production, while for rin gene, there is no ethylene whatsoever (TIMOTY and TIGCHELAAR, 1977; TIGCHELAAR et al. 1988). The first change of fruit colour for F₁ hybrids gained from crossing rin genotypes with normal ripening varieties is very late. Late appearance of fruit colour points to slow lycopene synthesis. These fruits have late maturing and senescence and longer shelf life (fruits are fresh long after picking) (LUKASHENKO, 1990; AGAR et al., 1994; GRANGES et al., 1995; FARKASH, 1995).

Table 1. Maturing of heterozygote +/rin fruits

<table>
<thead>
<tr>
<th>Maturing characteristics</th>
<th>+/rin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time from pollination to respirator climax</td>
<td>delays 2-3 days</td>
</tr>
<tr>
<td>Respirator climax</td>
<td>delays significantly from normal</td>
</tr>
<tr>
<td>Decrease of ethylene production</td>
<td>delays 35-50% from normal</td>
</tr>
<tr>
<td>Shelf life</td>
<td>Normal</td>
</tr>
<tr>
<td>PG activity</td>
<td>25-60% from normal</td>
</tr>
<tr>
<td>Carotene accumulation</td>
<td>delays and stops maturing</td>
</tr>
<tr>
<td>Fruit quality a) pH</td>
<td>normal</td>
</tr>
<tr>
<td>b) titrate acids</td>
<td>normal</td>
</tr>
<tr>
<td>c) soluble matters</td>
<td>normal</td>
</tr>
</tbody>
</table>

(TIGCHELAAR et al., 1988)

For heterozygote normal x mutated genotypes, most changes are: decrease number of fruit and late ripening (Table 1). From the physiological point of view, period from pollination till maturing is not the same for hybrid genotypes, normal and homozygote mutants. This diversity could be explained by un-harmonized gene reaction, which is being activated in various fruit development stadiums and during the maturing process (Scheme 1).

The most critical moment is the beginning of ethylene production, which is low for genotypes with rin gene comparing to genotypes with uniform ripening. In that way the beginning of maturing process is postponed and it takes more time for complete ripening i.e. till the full colour and therefore they delay the maturing.
Specifically aimed molecules

System 2

ACC sinteza

Limited code \(alc, Nr, F_1, nor F_1 \ rin \)

System 2

\(C_2H_4 \)

Limited code \(alc, Nr, F_1, nor \)

Transformation of chloroplast

PG

Additional \(C_2H_4 \) quickening

(High suppression for nor, \(alc, Nr \), Partial suppression for nor)

R

GS * R

Complex (es)

Partial detour in homozygote \(rin \) and nor

Limited code \(alc, Nr, F_1, nor \)

Limited code \(alc, Nr, F_1, nor \)

Limited code \(alc, Nr, F_1, nor \)

Accumulation of specific \(C_2H_4 \) maturing receptors

rin deficient

Scheme 1. - Genetic control of tomato maturing
Fruits do not have a good taste (MC Glasson et al., 1987; Gavrish and Korol, 1988; Granges et al., 1995; Agar et al., 1994).

There are lots of commercial tomato hybrids bearers of rin gene, which delay fruit maturing and practically these are middle late hybrids with good fruit firmness (Gavrish and Korol, 1988; Tigchelaar and Silvas Rios, 1988). The aim was to research the ripening of rin heterozygote, as a reaction of genotypes to ETREL (ETEPHONE) treatment in order to reduce the extreme values of late ripening.

MATERIAL AND METHODS

For researching the effect of ethylene in maturing processes, the researching material was selected from the finishing cycle of selection pure line S-49 (genetic constitution +/+ with uniform ripening), line hom 4 (rin/rin, homozygote for ripening inhibitor) and hybrid combination 449 F1 (+/rin, heterozygote for ripening inhibitor). Plants were grown in green house conditions in the Centre for Vegetable Crops. Fruits were picked on July 31st 2003 in condition when the seed is mature and the colour of fruits is still green. The picked fruits were stored in dark room on 23°C. Data regarding the maturing and senescence were taken every two days, starting from 9.09.2003.

Half of the fruits were treated with 0.1% etephone solution for 1 minute. Non treated fruits were the control both for genotypes and treatments.

Results of research were presented regarding the trend of maturing and senescence of fruits during the shelf life (NeGić et al., 1991)

RESULTS AND DISCUSSION

Based on visual comparisons of the fruit colour, we found significant decrease of +/rin comparing to control. Rin fruits were red, while the inner colour was similar to the wild type. Heterozygote +/rin showed significant similarity to homozygote control (+/+ except for the colour.

![Fig. 1 and 2 - Fruit maturing influenced by (ETEPHONE)](image-url)
Results of fruit maturing influenced by ethylene for genotypes bearers of different genes for tomato fruit ripening, showed that fruits treated with rin/+ (449 F1) genotype have similar ripening period comparing to control. Comparing to +/+ (S-49), fruits with uniform ripening matured more quickly comparing to genotype rin/+, but the control was mature in 5 days. Treated variant started to ripe earlier during the first days after picking and was completely mature after 5 days (Fig. 1. and 2.). Concentration of 100 ppm of ETAFONE did not cause change of colour for rin/rin genotypes till the end of experiment.

Eleven observations showed that fruits were falling and that the differences were greater than in maturing process. Fruits of rin/+ genotypes were falling rapidly, and treated fruits were falling more rapidly than control. Treated fruits of +/+ gene constitution were falling rapidly, while non treated fruits had longer shelf life. Fruits had good quality for 18 days, and than they started to fall rapidly. For control variant rin/rin (hom4) we found that fruits did not fall due to over-maturing, except for few specimens that were contaminated with saprophyte pathogens. Treated variant was falling rapidly while fruits even did not reach the red colour (Fig. 3-5.).
Tomato is a vegetable crop with specific maturing climax. Genotypes+/+(S-49) and rin/+ (449 F1), have a climax maturing, while we did not found one for genotype rin/rin (hom4) (Fig. 6-8.).

Fifteen days of shelf life could be useful information for planning storing, transportation or longer disposal of tomato fruits on the market. Two weeks period from picking till fresh consumption is a usual period for long distance transportation. This sort of usage of tomato demands picking of fruits in their late green phase when they can be transported for 90 days and stay fresh (LIN, 1979; SISLER, 1982).

In our research, ethylene concentration of 1000 ppm did not cause the change of colour for rin/rin tomato fruit genotypes. According to BUESCHER (1977) the maximal colour was reached with 10000 ppm of ethylene solution (when researching various ethylene quantities). When researching various genotypes, BUESCHER et al. (1975) found that carotene synthesis is increased due to ETEPHONE. Our results showed various reactions of certain genotypes comparing to variant treated with ETEPHONE. The most noticeable effect is rapid appearance of colour for genotypes with uniform ripening, than heterozygotes during ripening, as well as rapid senescence of fruits in treated variants. The rin homozygote fruits failed rapidly, although they did not change colour, previously. MC GLASSON (1985) found that rin homozygote fruits behave typically non-climacteric. Heterozygote rin gene (449 F1) fruits were the same as fruits with uniform ripening (S-49), but with longer shelf life. Comparing to rin homozygote fruits (hom 4), heterozygote (449F1) fruits were not so long-lasting, but that again, usable regardless to ethrel applying in their ripening process, since they were falling slower than homozygote (S-49) with uniform ripening.
Longer shelf life means a greater firmness of fruits. Delayed maturing and greater firmness of fruits have a favourable influence on longer shelf life and give more time for transportation to long distance. Preservation can be shortened by using ethylene (SHERMAN, 1985) which proves that control of maturing an important process for commercial vegetable growing.

Received November 30th, 2004.
Accepted December 27th, 2004.

REFERENCES

Sazrevanje i starenje-propadanje plodova paradajza Rin rin/rin, rin/+ i +/- genetske konstitucije

Jasmina Zdравковић, Љивослав Марковић, Љилијана Станковић, Милен Здравковић и Милен Дамјановић

Институт за израду на полјопривredi “Србија”, Центар за посебна култура, 11420 Смедеревска Паланка, Србија и Црна Гора

Izvod

Inhibitor sazrevanja (rin) gen predstavlja spontani rcесивни mutant koji menja aspekte sazrevanja ploda, a najznačajniji sintezu karotenoida posebno likopina. Такође успорава стarenje плодова. Paradajz спада у биљке које имају katakterистични врхунак (пик) прilikом sazrevanja плодова. Genotipovi paradajza homozigotи за rin gen nemaju ovaj врхунac у sazревањu, тако да izostaje производњa etilена и crvena likopinsка боja. За потребе испитивања процеса sazrevanja, korišćeni су материјали из завршних циклуса селекцијe paradajza: чиста линијa S-49 (генетска конституциja +/-, uniformнog sazревањa), линијa hom 4 (rin/rin, homozigot za ripening inhibitor) i hibridна комбинацијa 449 F1 (+/rin, heterozigot за ripening inhibitor). Plодovi sa uniformним sazревањем и hibriди sazrevali су истo време док homozиготи за rin gene nisu sazrevali. Etilен стимулише развој žute боje у rin плодовима стимулише поjavу likopина Posle tretmana etephonom (0.1%) (etilen) од плодова sa uniformним sazревањем utvrđeno je брže propadanje, kod hibrida je utvrđen duži period izдрžljivости, односno споријe propadanje. Kod rin homозигота nije dobijena promena боje, али су плодови propadali убрзаниje у односу на netretiranu varijantu. Tretman etilenom убрзвао je процесе sazrevanja, али i starenja плодова paradajza. Prolongacija sazrevanja kao posledica delovanja rin gena svrстava dobijene hibrate у каснijу групу sazrevanja, али se gubi на ranостасностi. S druge, стране dobija se на 『шеф life』, који omогуćava да првиди и складишће, a ukoliko se ubiraju зелени плодови и на координираним задрживањем плодова према потребама тржишта. Средњина испитивања je bio da se utvrди ponašanje у sazrevањe rin heterозигота, као и reakcija genotipova на tretman etrelom у целу ублаžавања ekстремних вредности касног sazrevanja.

Odobreno 27. XII 2004.