NOVI BIOTEHNOLOŠKI POSTUPCI U REPRODUKCIJI SVINJA*
NEW BIOTECHNOLOGICAL PROCEDURES IN SWINE REPRODUCTION

T. Petrujkić**

Novi biotehniološki postupci i upotreba hormona u svinjarstvu imaju za cilj povećanje broja prasadi u leglu. U manjim krdima i grupama svinja može se godišnje od krmača selekcioniranih sa 16 mamarnih kompleksa (sisa) dobiti i do 32 praseta, tj. tovljenika po jednoj krmaći. Za takvu reprodukciju, osim primene biotehnoloških metoda, koriste se posebni, individualni boksevi za prašenje krmača sa toplim "jezgrom", sa podnim grejanjem, kao i fazna ishrana i čista porodilišta.

Ovulaciona vrednost kod svinja određena je genetskim i para-genetskim delovanjima, a često se provoćira i povećava injekcijama i preparatima za superovulaciju. Međutim, rezultati su varijabilni, jer svako davanje injekcija hormona može da smanji reprodukcijski ciklus, smanji dužinu estrusa ili poremeti rad jajnika i stvari cistične folikule.

Upotreba folikulostimulirajućih hormona do 1000 I.U. po životinji za indukciju i sinhronizaciju estrusa je ustaljena kod krmača i nazimica, kao i upotreba prostaglandina, upotreba GnRH (Gonadorilizing hormona) za povećanje ovulacije kod svinja i povećanje broja folikula 4 mm u prečniku kod primene novih biotehnologija u gajenju svinja povećava broj ovulacije i plodnost kod svinja.

Na taj način reprodukcija je podignuta na najviši mogući nivo, a veštačko osemenjavanje krmača ima 12 posebnih pravila, koja omogućavaju bolje i uspešnije veštačko osemenjavanje krmača.

Ključne reči: biotehnologija, indukcija estrusa, prašenje, embriotransfer, svinje

Uvod / Introduction

Svinjarsku proizvodnju u Srbiji karakteriše veoma raznoliko gajenje svinja bez veće kontrole i bez vođenja matičnog knjigovodstva, nestabilno tržište sa čestim padovima cena, nestabilna i veoma često nerentabilna proizvodnja.

* Rad pripremljen za štampu 15. 5. 2002. godine
** Dr Tihomir Petrujkić, redovni profesor, Fakultet veterinarske medicine, Beograd
Na privatnom sektoru u Srbiji se nalazi preko 90% priplodnih svinja, sa malim udelem organizovane selekcije. Samo oko 5% svinja obuhvaćeno je veštačkim osemnjavanjem i osim na malobrojnim farmama, svinjarstvo je ekstenzivno. Sadašnje stanje u svinjarstvu karakteriše i nepostojanje nacionalnog programa u svinjarstvu i disparitet između cene proizvodnje i hraniva za ishranu svinja.

Gajenje i ishrana svinja na privatnom sektoru je veoma raznoliko, bez proizvodnog plana i kontrolisane, kvalitetne ishrane u velikom broju slučajeva.

Ne postoji ekonomska zainteresovanost na duže vreme za gajenje svinja, osim za potrebe seoskih domaćinstava sa povremenim tržišnim viškovima. Upravo takvo stanje zahteva uspostavljanje kontrole gajenja, selekcije, bolje ishrane i uvođenje novih biotehnoloških postupaka radi povećanja broja osemenjenih krmača, intenziviranja i uvođenja selekcije i kvalitativno i kvantitativno brži razvoj svinjarstva na privatnom sektoru i na selu.

Zbog toga treba što pre omasoviti veštačko osemnjavanje svinja na individualnom sektoru i napraviti projekat v.o. svinja za celu Srbiju – regionalne i centralne program osemenjavanja svinja.

Upotreba hormona u reprodukciji svinja /

Use of hormones in swine reproduction

Poslednjih godina metod biotehnološke kontrole reprodukcije svinja ne može se izvesti bez upotrebe hormona u reprodukciji i planskoj proizvodnji prasadi na farmama.

Upotreba hormona je posebno značajna sa aspekta razvoja svinjarstva i intenziviranja reprodukcije, sinchronizacije i indukcije estrusa, veštačkog osemenjavanja krmača i nazimica i poboljšanja kvaliteta i povećanja broja svinja, kao i proizvodnje genetski homogenih i zdravih svinja.

Za kontinuirano veštačko osemenjavanje svinja takođe je potreban hormonalni tretman i biotehnološka kontrola polnog ciklusa, jer se time omogućava osemenjavanje većeg broja svinja istovremeno, od 85 do 90%.

Međutim, za upotrebu hormona u reprodukciji neophodno je analizirati sledeće činjenice:

- status ishrane nazimice i krmača i njen reproduktivni status;
- kontrolu rasta i razvoja telesne mase i kondicije grla;
- optimalnu kondiciju za parenje ili veštačko osemenjavanje;
- intenzivnost seksualne stimulacije;
- bioklimatske faktore, kao temperaturu, svetlosni program, smeštaj i ishranu pre koncepcije.

Svakako da je biotehnološka kontrola postupaka hronološki i kvantitativno neophodna za program proizvodnje prasadi. Primera radi, sistem sve krmača unutra – sve krmače napolje, je veoma važan zbog higijenskih mera i grupne proizvodnje i gajenja prasadi, tj. formiranje turnusa je jedino moguće za planiranje veštačkog osemenjavanja i sinchronizaciju grupa nazimica ili krmača.
Program sinhronizacije estrusa je najvažniji i u kratkom vremenu on predstavlja limit za veštačko osemnjavanje, a važan metod za realizaciju gajenja životinja, prizvodnju prasadi sa homogenim genetskim nasleđem, dobrog zdravlja i kondicije u širem značenju.

Biotehnološki metodi kontrole baziraju se na perfektnom menadžmentu i zdravim životinjama. Tu spada kontrola ovarijalnog ciklusa krmača pri-premljenih za veštačko osemnjavanje i grupno prašenje. Sledeće za bioteh
nološku kontrolu su podaci o prethodnom prašenju, broju prasadi i polu, kao i stanju kondicije krmača posle prašenja do zalučenja.

Kontrola započinje odmah nakon prašenja kontrolom trijasa i isključivanjem mastitis — metritis — agalakcija sindroma (M.M.A.). Sledeće je: kontrola ishrane i mleka, tj. mlečne žlezde koja u to vreme produkuje od 6 do 9 litara mleka dnevno, i kada je njeno zdravstveno — higijensko stanje odlučujuće za leglo i prasad u celini.

Ovo je najvažnije za dobijanje više prasadi u leglu i visok prag produk
tivnih performansi, prvenstveno za pojavu estrusa posle odbijanja prasadi od četvrta do petog dana posle zalučenja.

Takve krmače imaju signifikantno bolju reprodukciju, tj. procenat gra
iditeta od krmača koje su kasnije bile u estrusu, jer je to najvažnije sa finansijske strane i skupito, tj. cene koštanja prasadi. Jedan dan zakašnjenja nakon četvrtnog i petog dana od zalučenja krmače staje najčešće 2 do 3 evra ako graviditet nastaje kasnije.

Ponekad je problem kako naći optimalno vreme za stimulaciju estrusa kod zalučenih krmača, a posebno kod visoko produktivnih krmača u zavisnosti od:

- visoke temperature leti i niske zimi;
- krmače primipare nakon prvog prašenja, a i pojave ranog estrusa;
- krmača sa dužim periodom dojenja, kada prasad sisaju duže od 5 nedelja.

Za takve krmače najvažnije je korišćenje kvalitetnog hraniva i postupka sa PMSG-om(Pregnant mare serum gonadotropin).

Tačno 24h nakon odbijanja prasadi krmačama se ubrizgava injekcija PMSG-a. Pre toga minimalno vreme za sisanje prasadi jeste 3 sedmice:

- upotreba PMSG-preparata, Folligona,Sugonala ili drugih, kao što su Prolosan,Preganon (Liofiliran) ili drugih gonadotropnih hormona kod krmača koje su se više puta prasile u dozi od 750 do 800 I.U. a kod primiparnih krmača 1000 I.U. tačno 24 časa nakon odbijanja prasadi omogućava 4 do 5. dana pojavu es
trusa i njihovo osemnjavanje 3 do 4 dana posle toga.

Funkcija molekula PMSG je dvostruka:

- funkcionalno stimulisanje folikulostimulirajućeg hormona (FSH), i
- stimulisanje luteinizirajućeg hormona (LH).
| Oralno davanje preparata progesterona (npr. Altrenogest) /
| Oral administration of progesterone preparation (Altrenogest, for example) |
|---|---|
| 1. Dnevna doza 20mg – 18. dana. 4-9 dana oko 95% nazimica u estrusu, drugog dana estrusa v.o.
Daily dose 20 mg on day 18, 4-9 days about 95% gilts in estrus, artificial insemination on the 2nd day of estrus |
| 2. Oralno davanje 16-20mg progesterona – 18. dana. 19. dana PMSG 1000 I.U. – 4-6 dana oko 85% nazimica u estrusu - v.o.
Oral administration of 16-20 mg progesterone on day 18, PMSG 1000 IU of PMSG on day 19 – 4-6 days about 85% gilts in estrus – artificial insemination |
| 3. Oralno davanje 15.-18. dana 16mg progesterona, 19. dan PMSG 1000 I.U. – u roku od 1 do 9 dana pojava estrusa skoro 100% - veštačko osemenjavanje
Oral administration of 16 mg progesterone on days 15.-18, 1000 IU PMSG on day 19 within 1-9 days estrus occurred in almost 100% – artificial insemination |

Na bazi te dve funkcije i relativno dugog poluživota specifičnog PMSG-tretmana stimulije se rast i razvoj ovarijalnih folikula i sekrecija 17β estradiola u prvom estrusu i nastanak ovulacije.

Jednokratno davanje PMSG-a je bolje za fiziološku sekreciju FSH i LH i pokazalo se bolje od simultanog tretmana sa PMSG-om i HCG za start estrusa, jer ovaj drugi metode ne omogućava optimalne uslove za koncepciju.

Sistem sa PMSG-om daje mogućnost ciljanog starta neposredno nakon odbijanja – kontrolisan estrus, kontrolisano i planirano osemenjavanje krmača i u svako doba godine kontinuiranu proizvodnju prasadi.

Između širokih granica i uslova koji su potrebni za krmače, ipak postoje i krmače u gradu koje imaju i individualne reproduktivne performanse.

Sinhronizacija estrusa kod zrelih nazimica (od 210 do 240 dana starosti) na farmama prasila sa grupnim prašenjem – uvođenje nazimica i sastavljanje grupa je specifičan metod za uklapanje nazimica u grupe. To posebno otežava visoka varijabilnost puberteta, a isto tako i kondicija nazimica kao i početak i vreme trajanja estrusa.

Specifični uslovi za popunjavanje i integriranje grupa za remont su otežani i:
- kada farme koriste 14-dnevnii ili 21-dnevni ritam pripusta;
- kada farme uvođe veći broj nazimica, i
- širok "stepen" kondicije nazimica, mršave ili ugojene nazimice.

Sinhronizacija je praktičan metod prevođenja zrelih nazimica na vreme uvođenja i neophodnih za remont stada. Svrha uvođenja tog biotehnološkog metoda jeste tretman i uvođenje u estrus u kratkom vremenu svih krmača grupno.
<table>
<thead>
<tr>
<th>Metod / Method</th>
<th>Krmаче / Sows</th>
<th>Nazimice / Gilts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pojačana ishrana i teranje životinja da se kreću + vitamin + selen / Richer diet and increased movement of animals + vitamin + selenium</td>
<td>Zadnji dani sisanja prasadi 4 dana pre zaličanja, poslednje sedmice pripreme / Final days of suckling 4 days before weaning, preparations during the final week</td>
<td>15-dnevno oralno davanje 4 ml "Regumate R" (16 mg progesterona) svakoj nazimici individu- alno / 15-day oral administration of 4 ml "Regumate R" (16 mg progesterone) individually to each gilt</td>
</tr>
<tr>
<td>Davanje injekcija PMSG-a (od 800 do 1000 I.U.) ili FSH / Administration of PMSG injection (800-1000 IU) or FSH</td>
<td>24 časa posle odbijanja prasadi 800 do 1000 I.U. stare krmаче i primipare uvek 1000 I.U. / 24 hours after weaning 800 - 1000 IU, old sows and gilts always 1000 IU</td>
<td>Davanje 15 dana 4 ml "Regumate R" per os 24 časa po pre- stanku "Regumate" davanja i.m. 800 I.U. FSH, PMSG / Administration of 4 ml "Regumate R" per os for 15 days, administration of 800 IU FSH, PMSG i.m. 24 hours after termination of "Regu- mate" treatment</td>
</tr>
<tr>
<td>Davanje injekcija za sinhronizaciju ovulacije (Preparat Gonavet) 50 μg Preparati GnRH doza 50 μg / Administration of injection for sy- nchronization of ovulation (Gonavet) 50 mg</td>
<td>Zalučivanje krajem 4. nedelje si- sanja 56-58 časova posle da- vanja FSH 4. nedelje 72 sata posle davanja FSH 3. nedelje 78-80 sati posle davanja FSH / Weaning towards end of 4th week of suckling 50-58 hrs after admin- istration of FSH in the 4th week 72 hrs after administration of FSH in 3rd week 78-80 hrs after admin- istration of FSH</td>
<td>80 časova posle davanja PMSG-a (FSH) daje se preparat GnRh / GnRH is administered 80 hrs after administration of FSH</td>
</tr>
<tr>
<td>Davanje prostaglandina "Estrumate E" / Administration of prostaglandin "Estrumate E"</td>
<td>0.7 ml i.m. jednom 4. dan posle odbijanja prasadi / 0.7 ml i.m. once on day 4 after wea- ning of piglets</td>
<td>Posle 213 dana starosti 0.7 ml "Estrumate E" / Administration of 0.7 ml "Estrumate E" after 213 days of age</td>
</tr>
<tr>
<td>Kod većine krmаче i nazimica estrus i ovulacija se javljaju po- sle 5.5 dana od dana davanja injekcije prostaglandina "Estrumate E" / In most sows and gilts, estrus and ovulation occur 5.5 days after the administration of a prostaglandin injection "Estrumate E"</td>
<td>Estrus / Estrus</td>
<td></td>
</tr>
<tr>
<td>Veštacko osamenjavanje se vrši / Artificial insemination is performed</td>
<td>Estrus / Estrus</td>
<td></td>
</tr>
<tr>
<td>Izabrani su kao primeri preparati: Regumate (R), Estrumate (E) i Gonavet (G) / The preparations Regumate (R), Estrumate (E) and Gonavet (G) have been selected as examples</td>
<td>Estrus / Estrus</td>
<td></td>
</tr>
</tbody>
</table>
Stimulacija otkrivanja estrusa je veoma važna pri kraju metestrusa kod svih nažimica u grupi. Tada je proestrus stimulisan rastom folikula, mada uopšte no, nažimice imaju spontanu luteolizu za to.

Početak novog proestrusa je određen sa vremenom kada nažimice završavaju ciklus, jer je pre toga jajnički ciklus blokiran.

Za to se koriste i progesteronski preparati koji blokiraju ciklus, a koji ima sličan efekat progesteronu za vreme prirodnog ovarijalnog ciklusa.

Progesteron dat egzogeno dovodi do negativnog feed back-a, slično prirodnom, inhibiše sintezu dekapektida Gn-RH u hipotalamusnim jedrima.

Sinhronizacija ovulacije i fiksirano osemenjavanje nažimica i krmača

Synchonization of ovulation and fixed insemination of gilts and sows

Važno je u toku estrusa nažimica i krmača fiksirati vreme v.o. Istovremeno, osemenjavanje nažimica i krmača za kratko vreme, od velike je važnosti u većim krdima sa grupnim prašenjem. Ako se to radi organizovano, biotehnološki metod omogućava smanjenje skupog i ekstenzivnog "individualnog" rada oko prašenja estrusa, smanjenje broja radnika i olakšava otkrivanje optimalnog vremena za veću grupu nažimica ili krmača (grupa od 80 životinja).

Ustanovljeni metod tretnama svodi se na sledeće:

Kod krmača sa periodom dojenja od četiri nedelje, razmak je 72 časa, a kod krmača sa periodom dojenja od 5 nedelja razmak je 56-58 časova. Međutim, ispitivanja su pokazala da često možemo umesto HCG-a dati GnRH (različite analoge od proizvođača), sintetski proizvedene, kao npr. "Gonavet", koji je sintetski analog GnRH.

Ispitivanja upoređivanjem klasičnog davanja HCG i "Gonavet R" krmačama i nažimicima, pokazala su da znatno bolji efekat ima (p<0.05) davanje GnRH analoga na "Živo rođenu prasad u prvim 100 osemenjavanja".

Metod sinhronizacije estrusa i ovulacije često se primjenjuje kao metod jednodnevne proizvodnje prasadi u turnusima.

Određivanje fiksiranog vremena osemenjavanja, koje se koristi dva puta u estrusu kod nažimica i krmača, omogućava dobijanje više prasadi.

Prvo osemenjavanje treba uraditi 24-26 sati posle davanja injekcije analoga GnRH analoga (u našim uslovima koristili smo "Gonavet R"), a drugo osemenjavanje u razmaku od najmanje 16 sati.

Za dobijanje dobrih rezultata potrebno je obezbediti ambientalne uslove, ishranu, i analizu kondicije krmača, kao i obučavanje jednog radnika za takav praktičan rad na većem broju krmača.
Tabela 3. Program sinhronizacije ovulacije i fiksiranog osemenjavanja krmača i nazimica na farmama

Program of ovulation synchronization and fixed insemination of sows and gilts on farms

<table>
<thead>
<tr>
<th></th>
<th>Kremače / Sows</th>
<th>Nazimice / Gilts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Četvrtak / Thursday</td>
<td>Pred podne/posle podne zalučenje / Morning/afternoon weaning</td>
<td>Kraj sinhronizacije "Regumate R" 24 časa / End of synchronization of "Regumate R" 24 hrs</td>
</tr>
<tr>
<td>Petak / Friday</td>
<td>Pred podne/posle podne 24. časa davanje 1000 I.U. PMSG i.m. / Morning/afternoon administration of 1000 IU PMSG on the 24th hour</td>
<td>Davanje PMSG - 1000 I.U. / Administration of 1000 I.U.</td>
</tr>
<tr>
<td>Subota / Saturday</td>
<td>Pred podne/posle podne / Morning/afternoon</td>
<td></td>
</tr>
<tr>
<td>Nedelja / Sunday</td>
<td>Pred podne/posle podne 72 časa davanje "Gonavet" 50μg / Morning/afternoon, administration of Gonavet 72 hrs</td>
<td>Stimulacija ovulacije sa GnRH sint. analožima "Gonavet" 50 μg 78-80 h / Stimulation of ovulation with GnRH synthetic analogues "Gonavet" 50 μg 78-80 hrs</td>
</tr>
<tr>
<td>Ponedeljak / Monday</td>
<td>Pred podne/posle podne 24-26 časova prvo v.o. / Morning/afternoon, 24-26 hrs first artificial insemination</td>
<td>Prvo v.o. 24-26 časova / First artificial insemination 24-26 hrs</td>
</tr>
<tr>
<td>Utorak / Tuesday</td>
<td>Pred podne/posle podne = 42 časa drugo v.o. / Morning/afternoon = 42 hrs second artificial insemination</td>
<td>Drugo v.o. 40 časova / Second artificial insemination 40 hrs</td>
</tr>
</tbody>
</table>

Indukcija i kontrola prašenja / Induction and control of delivery of piglets

Kontrola porođaja, prašenja krmača zahteva nadgledanje krmača od 110. dana graviditeta. Prethodno se od 100. do 110. dana boksevi sa suprasnim krmačama ne čiste, već se samo nadgledaju ili samo malo čiste od izmeta. Prvo i osnovno je da se menja ishrana, daje se tečni napoj i smanjuje koncentrat, a dodaju se mekinje. Drugo, meri se telesna temperatura rektalno i pravi temperaturna lista, a krmače se očiste, operu topom vodom, a najbolje je da se 110. dana okupaju. Za indukciju prašenja preporučuje se upotreba prostaglandina, sintetskih preparata analoga PGF₂α; npr. "cloprostenola", jer daje dobre efekte. Prvo, poslednjih dana graviditeta prasad najviše rastu i to može da oteža stanje krmače ili suprasne nazimice. Drugo, porođaj se može indukovati najranije 112. dana kod krmače, ali je bolje ako je to 114. dan graviditeta, osim kod nazimica.

Naša iskustva iz analize ogleda indukcije prašenja većeg broja krmača pokazuju da se 90 % krmača oprasilo 36 časova posle davanja injekcije "cloprostenola", što navode i mnogi strani autori. Ovim smo, osim kontrole porođaja, dobili i manji broj krmača kod kojih se javljao MMA sindrom, a i drugih oboljenja je bilo u manjem procentu. Davanje analoga PGF₂α omogućava i bolju produkciju oksitocina kod tretiranih krmača. Isto tako, može se pored PGF₂α is-
Indukcija porođaja / Induction of delivery

Cilj ove biotehničke mere je da se u određenom vremenskom terminu, posle 110. dana suprasnosti, izazove porođaj grupe krmača. Indikacija za primenu ove mere je mogućnost da se izbegne produžen graviditet sa najčešće otežanim porođajem. Na taj način, moguća je kontrola toka porođaja životinja, nega mladunčadi i krmače u puerperijumu. Najčešće se to primjenjuje 112. ili 113. dana graviditeta.

Sinhronizacija, odnosno indukcija porođaja kod krmače je relativno lako moguća. Porođaj se indukuje isključivo PGF\(_2\alpha\) preparatima ili njihovim analožima. Graviditetna žuta tela krmače pri kraju graviditeta su osetljiva na egzogeno davanje PGF\(_2\alpha\).

Jednokratna injekcija PGF\(_2\alpha\) preparata posle nekoliko sati dovodi do luteolize, nivo progesterona u krvi opada i indukuje se pripremna faza porođaja. Pored ovog luteolitičkog efekta, PGF\(_2\alpha\) preparatima se u indukciji porođaja svinja pripisuje i uticaj na kontrakcije miometrijuma.

Primena glukokortikosteroida u indukciji porođaja svinja nije pogodna za praksu, jer injekcije glukokortikosteroida treba da se daju višekratno, a porođaj nastupa tek 2. ili 3. dana posle davanja injekcija.

Faza istiskivanja plodova nastaje 12-36 časova po aplikaciji PGF\(_2\alpha\) preparata ili analoga, a sam porođaj normalno protiče.

Kao što je već rečeno, za indukciju porođaja svinja koriste se prirodni PGF\(_2\alpha\) preparati i njihovi analozi u dozi koju preporučuje proizvođač.

Najčešće primjenjivan PGF\(_2\alpha\) analog u praksi, u cilju indukcije porođaja svinja je "cloprostenol", Doza od 175 µg dovodi do porođaja.

Jednokratna aplikacija prirodnih PGF\(_2\alpha\) preparata dovodi do porođaja prosečno za 30 sati; kod primene PGF\(_2\alpha\) analoga porođaj nastupa nekoliko sati ranije. Porođaj nastupa nešto kasnije kod prvopraskinja nego kod krmača koje su se više puta prasile.

Neželjeni efekti (crvenilo kože, podrhtavanje mišića, česta mikcija i defekacija) češći su po primeni prirodnih prostaglandina nego ako se daju preparati analoga PGF\(_2\alpha\).

Porođaj se ubrza ako se primeni oksitocin u dozi od 20 I.U. i.m. 20 sati po davanju PGF\(_2\alpha\) preparata. Dejstvo oksitocina počiva na već ispoljenom uticaju
prostaglandina na matericu, jer je poluvreme života oksitocina kratko, a porođaj nastupa tek 30 minuta do tri sata kasnije. U slučaju da postoji visok nivo oksitocina u krvi, mleko curi u mlazu iz mamarnih kompleksa. Nekontrolisano davanje oksitocina može tada da bude štetno, jer dovodi do spazma materice.

Embriotransfer u svinja / Embryotransfer in swine

U biotehnološke metode razmnožavanja svinja spada i transplantacija oplodnihajnih ćelija, transfer gena, oplodnje *in vitro* i usmeravanje pola. Embriotransfer se prvo primenjivao u istraživačke svrhe, a sada se počinje uspešno primenjivati i kao praktična metoda za unapređenje svinjarstva. Prvi uspešan embriotransfer svinja izvršio je 1951. godine Kvasnicki u Sovjetskom Savezu. U prvim radovima, embrioni svinja u dvo- i četvoroćelijskom stadijumu preseđani su samo u jajovod, a kasnije i u materične rogove primacoa.

Metod transplantacije embriona (TE) sastoji se od niza operacija, koje su podeljene u nekoliko faza:

1. Izazivanje superovulacije donora (davaoca);
2. Synchronizacija estrusa donora i recipijenta (primaoca);
3. Uzimanje oplodnihajnih ćelija od davaoca – dobijanje embriona;
4. Kontrola kvaliteta i konzervisanja embriona;
5. Prenošenje ajnih ćelija u primaoco.

Vrednost spontane, normalne ovulacije kreće se oko 24 ovulirane ajne ćelije u jednom estrusnom ciklusu krmaće.

Po navodima Stančića i sar. (1995), sličnim hormonalnim tretmanom polno zrelih nazimica, izazvali su superovulaciju kod 100 nazimica, pri čemu je prosečna ovulaciona vrednost iznosila 27.7 žutih tela po nazimici.

O uticaju ponovljene postupaka superovulacije na ovarijalno reagovanje i zdravstveno stanje tretiranih životinja, prema navodima Hajašija (Hayashi) i sar. (1994), moguće je bez značajnih posledica i negativnih efekata izvesti 4 do 16 postupaka po krmaći.

Treba napomenuti da je za postupke superovulacije potrebno pripremiti krmaču "ishranom na plodnost" tj. hraniti obrokom sa dovoljno proteina, vitamina i minerala, masti i ugljenih hidrata.
Da bi se postigao maksimalni efekat fertilizacione vrednosti, preporučuje se da se donori osemenjavaju kad krmača pokazuje refleks stajanja sva- kih 12 časova. Ako se, radi sinhronizovanja ovulacije, daje injekcija HCG, ose- menjavanje treba izvesti 24 časa i 36 časova posle injekcije HCG, dozom u kojoj se nalazi 4x10⁸ do 5x10⁹ progresivno pokretljivih spermatozoida.

Embriotransfer kao biotehnički postupak u biologiji razmnožavanja svinja ne može da zameni veštakove osemenjavanje, u prvom redu sa ekonomi- skog stanovišta. Za svakodnevnu primenu to je stručno složen postupak, a nisu do kraja rešeni svi biotehnički postupci sa embrionima svinja, posebno duboko zamrzavane embriona, što bi najdirektnije otvorilo nove perspektive u selekciji svinja.

Embriotransfer se izvodi u prvom redu radi dobijanja zdravog potomstva od genetski visoko kvalitetnih jedinki, čistih u prvom redu od oboljenja kao što su PPV – Porcine parvovirus (svinska parvoviroza); SFV – Swine fever virus (svinska kuga); ADV – Aujesky disease virus (Aujeckijeva bolest); leptospiroza, bruceloa i PPRS – Porcine respiratory reproductive sindrom (svinski resp. – re- produktivni sindrom). Praktični značaj embriotransfera u reprodukciji i selekciji svinja ogleda se u sledećem:

1. Smanjenju rizika od prenošenja virusnih i bakterijskih oboljenja;
2. Smanjenju rizika i materijalnih troškova pri podlogov materijala pri- likom transporta, aklimatizacije i uginuća;
3. Efikasnom unošenju visokovrednog genetskog materijala u farme i međunarodna razmena genetskog materijala;
4. Dobijanju zdravog potomstva od zdravih genetski visokovrednih ro- ditelja koji ne mogu dalje da se pare;
5. Kontroli i sprečavanju širenja zaraznih bolesti svinja;
6. Izazivanju superovulacije i dobijanju većeg broja potomaka od genetski superiornih nerastova i krmača.

Mikromanipulacije sa gametima i embrionima /
Micromanipulations with gametes and embryos

Brojna naučna saznanja u vezi sa morfologijom i fiziologijom ovocita, posebno posle razvoja laboratorijske tehnike i tehnologije, pružaju neslućene mogućnosti u manipulaciji sa gametima i embrionima.

Te tehnike omogućile su resekciju embriona, transfer gena, modifika- ciju genoma, kloniranje, proizvodnju himera i mikroinjekciju spermatozoida (Robl i sar. 1995).

Pod transgenom životinjom se smatra jedinka koja u svim čelijama sadrži stranu DNK sekvencu. Metodom mikrinjekcije u nuklesus embriona u jednokelijskom stadiumu, neposredno posle singamije prouklesusa, dobijaju se transgene životinje. Naime, sam cilj je da se gen integriše u genom embriona, da bi on ispoljio svoj fenotipski efekat posle rođenja jedinke, a da ona to novoformirano svojstvo prenosi na svoje potomstvo. Na taj način se poboljšavaju postojeća svojstva, ali i proizvode nova genetska svojstva kod transgenih životinja, a i kod njihovih potomaka (Pursel i sar; 1996).

Evidentno je da su postignuti uspjesi u stvaranju transgenih životinja. U eksperimentalnom radu sa svinjama postignut je uspeh sa genom za hormon rasta. Naime, pojavio se ubrzan rast, smanjena debljina slanine i poboljšana je iskorišćavanje hrane. Ovakav uspeh sa genom za hormon rasta je proizveo niz sporednih efekata koji su ugrozili zdravstveno stanje svinja, a ovi efekti su verovalno posledica visoke koncentracije hormona rasta.

Za sada većina nabrojanih metoda mikromanipulacije ima naučnog, ali nema praktičnog značaja.

Zaključak / Conclusion

Biotehnološke metode koje se koriste u svinjarstvu u svetu, koje smo opisali u našem radu nije moguće primeniti u svinjarstvu Srbije iz više razloga, i to:

1. Pretežno ekstenzivno gajenje svinja, nestabilno tržište i nepostojanje realnih pariteta između cene proizvodnje i cene žive vage svinje. Mali broj robnih proizvođača.
2. Ekonska iscrpljenost proizvođača i nezainteresovanost za razvoj svinjarstva, gajenje rasa svinja koje su manje plodne. Neprimenjivanje v.o. svinja, selekcije i intenzivne ishrane zbog stanja u društvu i na tržištu.
3. Nepostojanje nacionalnog programa uzgaja, selekcije, genetike i reprodukcije, kao i nepostojanje obeležavanja i evidencije svinja koje je neophodno za stvaranje boljeg kvaliteta i kvantiteta svinja.
4. Ekonska neisplativost primene novih biotehnoloških metoda zbog cene svinja.
5. Nepostojanje kreditiranja proizvodnje svinja i skupe proizvodnje svinja, i zbog ekonomske nezainteresovanosti proizvođača na selu u Srbiji.
NEW BIOTECHNOLOGICAL PROCEDURES IN SWINE REPRODUCTION

T. Petrujčić

New biotechnological procedures and the use of hormones in swine breeding are aimed at increasing the number of piglets in the litter. In small herds and groups, selected sows with 16 mammary complexes (tits) can yield up to 32 piglets, or porkers, per year per sow. In order to achieve such reproduction results, special, individual stalls for sow deliveries are used, in addition to biotechnological methods, with a warm core and floor heating, phased diet and clean facilities.

The ovulation value in swine is determined by their genetic and paragenetic effects, and it is often provoked and increased with injections and preparations for superovulation. However, the results vary, since any administration of hormone injections can reduce the reproductive cycle, shorten the duration of estrus, or disrupt the work of ovaries and create cystic follicles.

The use of follicle-stimulating hormones in quantities up to 1000 IU per animal for the induction and synchronization of estrus has become customary for sows and gilts, as well as the use of prostaglandins, the use of GnRH for increasing ovulation in swine and increasing the number of follicles >4 mm in diameter in the implementation of new biotechnologies in swine breeding, increases the number of ovulations and fertility in swine.

In this way, reproduction is raised to the highest possible level, and artificial insemination of sows has 12 separate rules which enable better and more successful artificial insemination of sows.

Key words: biotechnology, induction of estrus, delivery, embryotransfer, swine
НОВЫЕ БИОТЕХНОЛОГИЧЕСКИЕ ПОСТУПКИ В РЕПРОДУКЦИИ СВИНЕЙ

Т. Петруйкич

Новые биотехнологические поступки и употребление гормонов в свиноводстве имеют для цели увеличение числа поросят в выводке. В более маленьких стадах у группах свиней можно ежегодно от свиноматок селекционированных с 16 мрамарных комплексов (сосков) получить и до 32 поросёнка, т.е. откормленных по одной свиноматке. Для такой репродукции, кроме применения биотехнологических методов, пользуются отдельные, индивидуальные боксы для опороса свиноматок с тёплым "ядром" с половым отоплением, словно и фазовое кормление и чистые родильные домы.

Овуляционная стоимость у свиней определена генетическими и парагенетическими воздействиями, а часто провоцируется и увеличивается инъекциями и препаратами для суперовуляции. Между тем, результаты вариабельные, ибо каждое давление инъекций гормонов может уменьшить репродукционный цикл, уменьшить длину эструса, или нарушить работу яичников и открыть и создать кистозные фолликулы.

Употребление фоликулостимулирующих гормонов до 1000 I.U. по животному для индукции и синхронизации эструса установлена у свиноматок и зимних свиней, словно и употребление простагландин, употребление ГнРХ (Гонадорин или гормона) для увеличения овуляции у свиней и увеличение числа фолликул 4 мм в диаметре у применения новых биотехнологий в свиноводстве увеличивает число овуляций и плодовитость у свиней.

Таким образом репродукция воздвигнута на наибольший возможный уровень, искусственное осеменение свиноматок имеет 12 отдельных правил, которые дают возможность более хорошее и более успешное искусственное осеменение свиноматок.

Ключевые слова: биотехнология, индукция эструса, опорос, эмбриотрансфер, свиньи