Acute meningoencephalitis in a patient with systemic lupus erythematosus

Akutni meningoencefalitis kod bolesnice sa sistemskim eritemskim lupusom

Aleksandra Perić-Popadić*, Mirjana Bogić*, Vesna Tomić-Spirić*, Vojislav Djurić*, Jasna Bolpačić*, Branko Milošević*, Sanja Spasić†, Sanvila Rašković*

*Faculty of Medicine, University of Belgrade, Belgrade, Serbia; †Clinic of Allergology and Immunology, ‡Institute of Infectious and Tropical Diseases, Clinical Center of Serbia, Belgrade, Serbia

Abstract

Introduction. Infections in patients with systemic lupus erythematosus (SLE) are a significant factor of morbidity and mortality. Although central nervous system infections, including septic meningitis, are rare in patients with SLE, they can be significant causes of mortality inspite of the prompt and accurate diagnosis and proper management.

Case report. We presented a woman with the diagnosis of SLE and diffuse proliferative lupus nephritis. Because of disease activity we introduced cytostatic immunosuppressive therapy, cyclophosphamide and then azathioprine. Meningoencephalitis, staphylococcal sepsis and abscess of the brain, with resulting seizures developed.

Conclusion. This case alerts to the need of careful examination of patients with SLE, collection of adequate cultures and evaluation of predisposition towards infections, before the introduction of immunosuppressants due to potentially fatal infection.

Key words: lupus erythematosus, systemic; central nervous system, infections; meningoencephalitis; immunosuppression.

Introduction

It is known that viral and bacterial infections may be the trigger of development or exacerbation of systemic lupus erythematosus (SLE). The patients with SLE are more prone to infections either due to the nature of disease or the applied immunosuppressive therapy. About 80% of infections in SLE patients are caused by bacteria. Common acute infections in these patients are: pneumonia, urinary infections, cellulitis and sepsis. Of chronic infections, the most frequent is tuberculosis, while fungal infections, and those caused by parasites and protozoa are most often opportunistic infections.

Central nervous system (CNS) infections, including septic meningitis, are rare bacterial complications in SLE, but they can be significant cause of mortality. These infections are most commonly the consequence of a long-term immunosuppressive therapy, and can be a diagnostic problem by mimicking activity of lupus and neurolupus. We presented the instructive and difficult case of CNS infection in a SLE patient.
Case report

A 33-year-old female patient, has been treated for SLE since 2004. The onset of disease was sudden in March 2004, with edemas, pains and stiffness of joints and febrile condition which was followed by cervical and axillary lymphadenopathy, hepatosplenomegaly and anemia (hematological disease was ruled out on the basis of bone marrow puncture). On admission, bilateral neck and axillary lymph nodes were enlarged, the patient had hepatosplenomegaly. We observed an abscess on the left gluteus.

Laboratory results showed elevated erythrocyte sedimentation rate (ESR 80) and leukocytosis (11.4 \times 109/L), anemia [hemoglobin (Hb) 97 g/L] and slight thrombocytopenia (131 \times 109/L). Biochemistry was normal (with hypoalbuminemia of 28 g/L). Immunological analyses showed high immunoglobulin G (21.9 g/L), consumption of complements (C3 = 0.43 g/L and C4 < 0.04 g/L), positive antinuclear antibodies (ANA) homogenous 1 : 640, ds DNA ++++, positive anticardiolipin antibodies (ACLA) and positive Coombs test. The urine sediment showed 8–10 fresh, 10–12 pale erythrocytes. Urine culture was negative, 24-hour proteinuria below 0.5 g. Gluteal wound swab: *Escherichia coli*.

Further treatment included two-time pulse therapy with the intravenous (iv) methylprednisolone, 500 mg, followed by pulse therapy of iv cyclophosphamide, 800 mg. The patients was advised to take prednisone 20 mg, azathioprine 50 mg, and drugs for gastric mucosal protection.

Eighteen days after iv cyclophosphamide pulse therapy, the patient developed massive left-side effusion, hypertension, lower leg edemas, hepatosplenomegaly. During the same evening, the patient’s condition worsened, she was febrile (38°C) with a headache. We evacuated 1,400 mL of serous pleural exudation. Proteinuria was 9.39 g/24 h. Parenteral quinolones and cephalosporins were empirically introduced in full doses, as well as iv methylprednisolone, 3 \times 40 mg.

Neurological findings revealed positive meningeal signs without lateralization. Lumbal puncture was performed, and the cerebrospinal fluid was turbid, pouring out under intense pressure. The analysis revealed cerebrospinal fluid (CSF) with 820 cellular elements (98% neutrophils, 2% lymphocytes), hypoglycorrhachia, 1.94 mmol/L, and hyperproteinorrachia, 1.78 g/L. Etiological examinations of CSF were negative.

The patient was transferred to the Clinic of Infectious Diseases.

Antimicrobial therapy was continued by: ampicilin 3 \times 3.0 g iv, gentamicin 120 mg, rifampicin 600 mg. After 6 days, isoniazid 300 mg and pirazinamide 1,500 mg were added, because specific CNS infection was suspected. Although antimicrobial and antiedematous therapy was continued, her condition became aggravated, manifested by generalized epileptic seizures. The introduction of antiepileptics (phenobarbiton and carbamazepine) made convulsions stop. Endocranial computed tomography (CT) was carried out and the right temporoparietal hypodense area was evident. At that time, ampicilin was ruled out and vancomycin, 3 \times 500 mg, was introduced (in condition of sufficient diuresis), because of cerebritis. Few days later, endocranial magnetic resonance imaging (MRI) demonstrated meningoencephalitis of the right temporo-basic region together with encephalomalacia (Figure 1) and *Staphylococcus aureus* was isolated.

from two blood cultures. At that time, middle-grade renal failure was registered (creatinine clearance 27.6 mL/min). According to therapeutic algorithm, we introduced meropenem (but in doses of 3 × 1.0 g) with fluconasol. After few days, antituberculotic therapy was excluded. Three weeks later, when the patient's clinical improvement was evident and renal function was repaired (proteinuria 0.89 g/24 h), vancomycin and meropenem were ruled out and antimicrobial therapy was continued with gentamicin 120 mg and cefotaxim 2 × 3.0 g.

Anemia was corrected by the substitution therapy. Control endocranial MRI showed a significant regression of above-described pathological changes but, in further course, agranulocytosis was noted and bone marrow puncture was done. Filgrastim, a colony-stimulating factor, was added, resulting in the retrieval of white blood cell count and afebrile condition. In the meantime, the patient experienced abdominal difficulties, with clinical and radiologic picture of ileus and underwent surgical interventions (laparotomy, ascites evacuation and drainage). Postoperative course was uneventful. Further on, the patient was better, proteinuria was about 1 g/daily. A gluteal abscess developed again, in the right region, and was treated (Figure 2).

In June 2005, worsening of urine sediment and proteinuria occurred, so we introduced mycophenolate-mofetil in increasing doses to 2 g/day. After several days, the patient developed fever and acute bronchitis, followed by nausea, and laboratory inflammatory syndrome. Because of that, mycophenolate therapy was discontinued.

In further course there has been no attempt to introduce immunosuppressive therapy other than GCS. Control endocranial MRI (Figure 3), showed right temporoparietal hypodense area. During the last hospital stay in October 2011, the patient felt mostly well, with occasional events of bronchitis, rare epileptic seizures (approximately 1 per month) and without significant proteinuria.

![Fig. 2 – An abscess in the right gluteal region.](image1)

![Fig. 3 – Control endocranial magnetic resonance imaging findings: right temporoparietal hypodense area; and chronic sinusitis (opacification of paranasal cavities).](image2)
Discussion

One of the most severe complications during SLE condition may be CNS infection, which is most commonly the consequence of a long-term use of GCS and other immunosuppressive agents, as well as immune disorder due to the illness itself. The majority who died from infection were on high dose prednisolone plus at least 1 other immunosuppressive agent and had serologically active disease. CNS infection symptoms may mimic the activity of the disease or, conversely, may be camouflaged by GCS therapy.

Reviewing the causes/focus of CNS infection, the possibilities in the presented case were multiple: predisposition to infections due to conditions with complement deficit and reduced bacterial clearance; higher exposure to respiratory infections within their environment; higher frequency of switching from the pre-school and school children at home, poor economic conditions; the existing chronic sinusitis; and the presence of paranasal cavities with the possibility of infection spread and the existence of “silent foci” (such as gluteal abscess) which become reactivated upon immunosuppression and could reach the CNS through circulation.

In addition, the risk factors of infections described in the literature such as: nephritis, activity of the disease, leukopenia, positive dsDNA > 20 IU/mL, prednisin in daily dose higher than 10 mg, application of cyclophosphamide, as well as immune disorder due to the time of infection, and received GCS therapy.

Due to GCS side effects and the activity of the disease, the presented patient received iv pulse cyclophosphamide therapy followed by oral azathioprine, which produced many side effects, among them life-threatening CNS infection.

At that time, the question of differential diagnosis was raised: whether it was about SLE exacerbation and development of neurolupus, or antiphospholipid syndrome (APLS), or CNS infection. The following examinations were performed: lumbar puncture, CT scanning and MRI imaging, which confirmed the infection of CNS and ruled out CNS vasculitis and APLS. The patient was on full-dose antibiotic therapy. At the moment of decision about meropenem dosage, we were guided by the two facts: the patient had middle-stage renal failure, and meningocerebritis had already achieved clinical improvement, so the dose of meropenem was adapted (from the recommended dose of 3 × 2.0 g to 3 × 1.0 g).

We consider this report instructive and interesting because of many aspects. CNS infections are rare in patients with SLE, but they can be significant causes of mortality.

During a 20-year review period, among 3,165 Taiwanese SLE patients, Hung et al. identified 17 patients with CNS infections. Cryptococcus neoformans was the causative microorganism in 10 patients and bacterial meningitis was found in 7 of them. Most patients (94%) had active SLE at the time of CNS infection. A total of 15 patients received corticosteroid therapy, and of these, 7 in combination with immunosuppressive agents. The mortality rate was extremely high (41.2%). The presented patient also had active SLE at the time of infection, and received GCS therapy in conjunction with immunosuppressive agents.

Yang et al. described 38 SLE patients with CNS infections (Mycobacterium tuberculosis was identified in 19 of the patients, Listeria monocytogenes in 3, Klebsiella pneumoniae in 1, Staphylococcus aureus in 1, Cryptococcus neoformans in 12 patients, and Aspergillus fumigatus in 1 patient). In 2009, Baizabal-Carvallo et al. reported 23 patients with SLE and meningitis among 1,411 SLE patients in Mexico.

Conclusion

Since SLE patients are at higher risk of infections, before utilization of any immunosuppressive therapy, it is necessary to identify infections. Complete and careful examination of a patient, collection of throat, nasal and sputum swabs, urine culture as well as monitoring of CNS manifestations are required for choosing the therapy. Also, care is required about additional risk factors (mentioned above), and individual disposability for infection, and to be aware that infection in immunosuppressed patients can be unpredictable.

Acknowledgements

We want to thank Academician Professor Miodrag Čolić (Faculty of Medicine of the Military Medical Academy in Belgrade University of Defence) for useful suggestions, advices, and well-intentioned criticism during preparing this paper.

REFERENCES

14. Ng WL, Chen CM, Wu AK, Chong VC, Yuen KY. Lymphopenia at presentation is associated with increased risk of infections in patients with systemic lupus erythematosus. QJM 2006; 99(1): 37–47.

Received on October 26, 2011. Revised on February 2, 2012. Accepted on February 10, 2012.