UTICAJ ALENDRONATA NA MARKERE METABOLIČKE AKTIVNOSTI KOSTI KOD ŽENA SA OSTEOPOROZOM U POSTMENOPAUZI

EFFECTS OF ALENDRONATE ON THE MARKERS OF BONE METABOLIC ACTIVITY IN POSTMENOPAUSAL WOMEN WITH OSTEOPOROSIS

Jana Ilić, Branka Kovačev, Ljiljana Babić, Nikola Ćurić i Jovanka Radosavljević

Sažetak - Istraživanje je sprovedeno u grupi od 30 žena sa osteoporozom u postmenopauzi lečenih alendronatom u dozi od 70 mg jednom nedeljno-Fosamax tablete. U kombinaciji sa kalcijskom i aktivnim vitamincima D-Alpha D3 0,25mg. Kontrolnu grupu činilo je 30 žena sa osteoporozom koje su primjenjuju druge medicamente (FST, kalcitonin i deca durebolin). Od parametara metaboličke aktivnosti kosti korisni su osteokalcini kao parametar formiranja kosti i cross-laps kao parametar razorećije kosti. Krvi je uvedena pre uvodenja terapije i 6-8 nedjelja nakon uvođenja terapije. Naši rezultati pokazali su izraženu efikasnost alendronata na koštarnu regenciju i supresivni efekat na koštan formiranje što proističe iz vezanosti (temping) između formiranja i razorećije. Na osnovu rezultata sprovedenih istraživanja izvedeni su sljedeći zaključci: alendronat izrazito smanjuje nivo koštane razorećije kod pacijenata u postmenopauzi sa osteoporozom, dok je efekat na formiranje kosti manje izražen, efekat alendronata na koštarni metabolizam uvijek je najkasnije za 6-8 nedjelja nakon uvođenja terapije, proučavanje parametara metaboličke aktivnosti koštarnog tkiva je korisno dijagnosticokršćenje i procesu efekta alendronata na metaboličku aktivnost kosti i eventualno u prosjek progresivnog uticaja na koštarnu masu.

Ključne reči: Alendronat; Postmenopauza; Osteoporoza u postmenopauzi + terapija lečenima; Gistina kosti; Biološki markeri

Uvod

Osteoporozna predstavlja sistemska oboljenja koštanog tkiva, čija je karakteristika smanjenje koštane mase i postrojenje smanjenja kvaliteta koštanog tkiva u mikroarhitektoniji koštanog tkiva [1]. Dakle, radi se o poremećaju u kvalitetu i kvalitetu koštanog tkiva što ima za posledicu sklonost koštarnih frakturama.

U postavljanju dijagnoze osteoporozne poređanje anamneze i kliničkog pregleda i određenih laboratorijskih analiza najznačajnije je određivanje mase, odnosno gostine kosti i procene metaboličke aktivnosti kosti (turnover) [2]. Tačnije rečeno, dijagnoza same osteoporozne postavljanja se na osnovu osteodensitometrije i radiološkog pregleda koštanog tkiva dok dodatni dijagnozski postupci služe za određivanje kvaliteta kod konkretnog pacijentke, jasno definira u smislu eventualnih etoloških faktora i aktualnih metaboličkih karakteristika. U tom kontekstu snažno dijagnozne parametara metaboličke aktivnosti kosti ima veliki značaj. Ovi parametri imaju prognostičku vrednost u pogledu spontane evolucije bolesti i mogu da ukažu na sekundarni uzrok osteoporozne. Značajno je mesto ovih parametara u izboru adekvanog terapijskog sredstva (antiestrogeni ili antiholobici) i još značajnije u praćenju terapijskog efekta i prognoziranju konačnog ishoda terapije u smislu povećanja mase kosti. Dakle, primenom parametara metaboličke aktivnosti kosti može se znatno poboljšati osteodensitometrija i radiološkog pregleda koštanog tkiva precenti efekt lečenja.

Biochemijski markeri metaboličke aktivnosti (turnovera) kosti

Biochemijski markeri metaboličke aktivnosti kosti su molekuli koji se oslobađaju pri izgradnji ili razgradnji kosti ili su enzimi aktivnih osteoblasta. Biochemijski markeri turnovera kosti se mogu podijeliti u dve grupe: biochemijski markeri formiranja kosti i biochemijski markeri razorećije kosti. Biochemijski markeri razorećije kosti (krv) su:
- Ukuća ili koštano-tipična alkalna fosfataza,
- Osteokalcini,
- Karboks-terminalni propeptid kolagena tip I,
- Amino-terminalni propeptid kolagena tip I.
Biochemijski markeri rezorpcije kosti (kv) su:
- Acidna fosfataza otporna na tetratartat,
- Slobodan piridinolin i deoksipiridinolin,
- N- ili C-telepeptid tipa I kolagen,
- Cross-laps.
Biochemijski markeri rezorpcije kosti (urin) su:
- Odnos kalijumin - kreatinina (našte),
- Hidrokspošilin,
- Glikozid hidrokspilina,
- Piridinolin i deoksipiridinolin,
- N- i C-telepeptid kolagena tipa I.
Od biochemijskih markeri turnovera kosti u radu će biti korisni osteokalcini i cross-laps.

Osteokalcini je mali peptid od 49 amino-kiselina, i zove se još koštani GLA-protein, jer sadrži tri ostatka y - karboksiglutaminske kiseline. Ovi ostatci glutaminske kiseline su karboksilirani u gama poziciji njenih ostataka translatorskim dejstvom vitamina K. Najnovije povezivanje nedostatka vitamina K sa osteopenijom može biti u vezi sa ovim efektima na...
osteokalcin. Kao i alkalna fosfataza, osteokalcin je protein koji izlučuju osteoblasti, i široko je distribuiran u kostima. Verovatno ima glavnu ulogu u regulaciji taloženja minerala u kolagen. Inkorporiran je u ekstracelularnom matriksu kosti, a oslobađa se tokom resorpcije kosti, tako da je njegovo prisustvo u plazmi pravi marker turnovera kosti.

Osteokalcin ima veoma širok cirkadijani ritam, sa pikom u rano jutro a udolinom oko pet popodne. U kliničkim studijama bitno je izmeriti osteokalcin u isto doba dana da bi se dobila komparacija promena u nivovima cirkulišćeg osteokalcina. Molekul takođe ima raznovrsne cirkulišće fragmente koje neke metode merenja prepoznaju a neke ne.

Cross-taps je biohemijiški marker resorpcije kosti. Kada su molekuli kolagena izlučeni pomoću osteoblasta u ekstracelularnom matriksu, stabilni su formiranih pitidijumima (piridinolin i deokspiridonolin) ukrušenih veza delovanjem lizil-hidroksilaze na lizin i hidroksilzine ostatke u amino (N) i ugljen (C) terminalnom domenima kolagenih vlakana tipa I (telopeptidi).

Primena biohemijiških markera kod osteoporose
Kod pacijenata sa osteoporozom, izgleda da neka potpuno definisane uloge biohemijiških markera u koštanom turnoveru u generalnoj kliničkoj praksi. Međutim, postaje očigledno da biohemijiški markeri mogu da se koriste u kliničkim studijama preračuna odgovora na razne farmakoške agencije koji se koriste u lečenju osteoporose. Slično, postoji sve veći dokaz da markeri resorpcije imaju naročitu vrednost kao prediktori ukupnog rizika od fraktura. Edipost studija, epidemiološka studija o pojavljivanju osteoporose kod zdravih žena u Francuskoj, identifikovala je dva, biohemijiška markeri koštanog turnovera koji su nezavisni prediktori rizika frakture kuka. To su C-telopeptidi i slobodni deokspiridonolin [3].

Moguće korišćenje biohemijiških markerova u pročenjivanju pacijenata sa osteoporozom sastojalo bi se u identifikaciji onih žena u vreme menopauze, koje podležu rapidnoj brzini koštanog turnovera i mogu biti bolji kandidati za farmakošku intervenciju kao što je hormonska terapija [4].

Iz svih skorašnjih studija o farmakoškim agen-
simima koji se koriste u lečenju osteoporose, jasno je da biohemijiški markeri formiranja i resorpcije odgovaraju dramatično na terapijsku intervenciju. Konkretno, u slučaju antiresorptivne terapije javlja se pad markerja resorpcije kosti u prvim mesecima ili dva od uzimanja terapije, a kasnije i pad u formiranju. Ovo je odraz disbalansa u remodelovanju, tako da supresija resorpcije prethodi i preuzima supresiju formiranja postoji neto pozitivni koštan balans, koji rezultira skromnim povećanjem koštan mase i koji kasnije dostiže plato, pošto se resorpcija i formiranje vrate u balans.

Terapija osteoporose
Terapija osteoporose ima za cilj da se postigne pozitivan bilans kosti i time prevenira ili zaustavi započet proces redukcije mase kosti, bilo stimulisanjem procesa formiranja ili inhibicijom procesa resorpcije. Efekat lečenja se proceni na osnovu subjektivnog stanja bolesnika, kretanja vrednosti mase kosti odredene jednom od densitometrijskih metoda i kretanja parametara metaboličke aktivnosti kosti.

Terapija osteoporose može biti medicamentna i fizikalna.

Medikamentna terapija se može podeliti u tri grupe:
1. terapija koja stimulise formiranje kosti,
2. terapija koja inhibira proces resorpcije kosti,
3. terapija koja i stimulise formiranje i inhibira resorpciju kosti.

Bisfosfonati
U grupi antiresorbenata značajno mesto zauzimaju bisfosfonati.

Prvi bioški efekat analoga pirosfata demonstriran je 1968. godine kada su Fleisch i saradnici u Svajcarskoj otkrili da ovi agensi mogu da inhibiraju aortnu kalciifikaciju izazvane vitaminom D kod pacova [5]. Bisfosfonati su jedinjenja koja imaju dve C-P veze. Oni su analogi neorganiskog pirosfata čije jezgro ima P-O-P struktur.

Bisfosfonati se najčešće primenjuju oralno, iako je bioška raspolaživost mala. Creva apsorpcija varira od 1% do 10%. Niska apsorpcija može da bude posledica niske lipolitičnosti i jakog negativnog naboja što redukuje transcelularni prenos. Ap

Farmakoška dejstva bisfosfonata
Farmakoška dejstva bisfosfonata mogu se podeliti na fiziokhemiska i bioška efekta. Fiziokhemski efekti liče na one koje ima neorganski pirosfotat. Lekovi se vezuju čvrsto za kristale kalciijum fosfata i inhibiraju formiranje, agregaciju i rastvaranje kristala. Glavni bioški efekat koji se smatra kliničkim uspehom ovih lekova je inhibicija resorpcije kosti [7].

Postoje raznovrsni mehanizmi putem kojih bisfosfonati izazivaju inhibiciju resorpcije kosti [8]. Pretpostavljaju se da je oslobađanje leka dejstvom osteoklasta važan način pobuđivanja intracelularnih fiziokhemskih promena u celijama koje redukuju funkciju osteoklasta. Ove promene uključuju...
inhibiciju sinteze proteina, inhibiciju glikolize, inhibiciju nekoliko protein-tirozin fosfataza, kao i povećanje nivaa fosforilacije proteina inhibicijom fosfataze proteina. Inhibicija ATP-pumpe može takođe da redukuje acidifikaciju reserpcije supljinje ispod osteoklasta. Klodronat i drugi bisfosfonati koji su sasvim slični po strukturi pircfosfatu, mogu da se metabolisu u analog ATP-a koji pobuđuje apoptozu osteoklasta. Bisfosfonati koji sadrže amino grupu se ne metabolisu već unesto toga inhibiraju enzime mevalonovog puta sinteze holesterola i tako na
rašavaju funkciju osteoklasta. Na istom putu ali na drugom mestu deluju na nivo holesterola i novija istaživanja ukazuju na moguće zajednički patogenetski mehanizam nastanka poremećaja lipida i poremećaja metabolizma kosti što otvara neke nove terapijske mogućnosti.

Načini dejstva za inhibiciju resorpcije kosti mogu biti:
- direktna inhibicija funkcije zrelih osteoklasta,
- indukcija osteoklastne apopoteze,
- osteoblastna inhibicija diferencijacije osteo-
klasta,
- inhibicija diferencijacije prekursora osteokla-
sta.

Bisfosfonati su pokazali da indukuju sekreciju inhibitora osteoklasta od strane osteoblasta [9]. Ta-
kode se došlo do zaključka da sposobnost alendro-
nata da inhibira osteoklastičnu aktivnost ne zavisi od oslobađanja leka sa površine kosti, kao i da razlikuju tipovi čeliča u kostima (osteoblasti, strona čeličje) mogu da asistiraju u poboljšanju efekata bis-
ofosonata na resorpciju kosti [10]. Giulani i sara-

Prevenija i terapija osteoporozu u postmenopauzi

U postmenopauzi, zbog nedostatka estrogena, dolazi do povećane resorpcije kosti i osteoporozu. Postoje žene kod kojih primena HST (hormonske supstitucije terapije) nije prihvatljiva, te kod njih bisfosfonati predstavljaju lek izbora. Osim kod žena sa osteoporozom u postmenopauzi bisfosfonati se primenjuju kod osteoporozom uzrokovane primenom kortikosteroidne terapije, padžetove bolesti i kod muškaraca sa osteoporozom.

U grupu ovih lekova ubrajamo: Etidronat, Klon-
dronat, Tiludronat, Alendronat, Rizendronat, Pa-
midronat, Zoledronat i Ibandronat.

Etidronat je najslobišniji bisfosfonat koji se pri-
menjuje u dozi 200–400 mg. U četverogodišnjoj stu-
diji koja je sprovedena kod žena u postmenopauzi sa već razvijenom osteoporozom primenjena supstitucijona terapija sa estrogenima i tretiranja, etidronaton mineralna gustina kosti je povećana za 10,4% u lumbalnoj kičmi i za 7% u kuku [12].

Klonadronat je bisfosfonat koji je dobiven širom sveta za metaboličku bolest kosti u okviru maligniteta, a u nekoliko zemalja i za padžetove bolest.

Može se primenjivati peroralno ili parenteralno. Prema jednom doznom režimu primenjuje se peroralno i u dozi od 400 mg tokom trideset dana, nakon čega se povećavaju trideset dana. Parenteralno se primenjuje u obliku infuzija od 300 mg. U studiji sprovedenoj u Italiji 200 mg intravenske infuzije klonadronata primenjeno je kod 235 žena sa osteoporozom u postmenopauzi svake tri nedelje u trajanju od šest godina. Gustina lumbalne kičme je povećana za 5,69% [13].

Danas se u lečenju najčešće primenjuju dva oralna bisfosfonata: alendronat i rizendronat.

U jednoj meta analizi [14] ispitivana je grupa žena u postmenopauzi sa osteoporozom koja je pri-
menjivala alendronat u dozi od 10 mg i 5 mg dnevno i kontrolnu grupu koja je uzimala placebo. Terapija je trajala tri godine i nakon toga je verificirano da je kod žena sa osteoporozom koje su uzima-
le 10 mg alendronata došlo do povećanja gustine kosti za 7,48% lumbalne kičme, za 5,6% kuka i 2,08% sako u odnosu na kontrolnu grupu. Bolji efekat terapije je bio kod bolesnica koje su prime-
njive 10 mg alendronata dnevno u dozi od 5 mg. Tretman sa alendronatom je redukovao rizik od frakture kičmenih prisijena i kuka.

Danas se savjetuje da se alendronat primenjuje kod žena sa osteoporozom u postmenopauzi i kod muškaraca sa osteoporozom u dozi od 10 mg nedeljno. Kod bolesnika sa osteoporozom uzrokovane pri-
menom kortikosteroidne terapije savjetuje se konti-
nuirana terapija alendronata u dozi od 5 do 10 mg dnevno.

Rizendronat se takođe pokazao kao efikasan ami-
obisfosfonat u duplo splojoj studiji kod 2 458 žena sa najmanje jednom vertebralnom frakturom. Ora-
lna doza od 5 mg dnevno povećala je mineralnu koštanu gustinu lumbalne kičme za 5,4% i femura za 1,6% nakon tri godine [15]. Danas se primenjuje rizendronat u dozi od 35 mg jedanput nedeljno.

Alendronat i rizendronat se mogu kombinovati sa estrogenom sa terapijom ili na različitim osnovama kao na primeru dodavanjem osteoblastna (selectivni modulator estrogenih receptora) [16].

Pamidronat je prvi potencijalni aminobisfosfonat. Odobren je u mnogim zemljama za intravenski tret-
man hiperkalciemije maligniteta, metastaza kostiju i Padžetove bolesti. Može da se primeni i kod bole-
snika koji ne podnose oralne bisfosfonate. Primene se u inicijalnoj dozi od 90 mg, a zatim 30 mg svaka tri meseca u vidu intravenske infuzije u trajanju od 1 sata. Oralko primenjena pamidronat može da poveća gustinu kostiju kičme i kuka, slično efek-
tima etidronata i klonadronata (3–5%) [17].

Zoledronat je najmočniji aminobisfosfonat koji se primenjuje kod malignih promena na kostima. Iako još nije registrovan za lečenje osteoporoz, neke ustanove inicijalno i njegovo ustanove u terapiji osteoporozne bolesti [18].

Ibandronat primenjen intravenski u dozi 0,5-2 mg svaka tri meseca, dovodi do porasta BMD i
smanjenja biohemijskih markera koštane resorpcije [19]. U dozi 0,2–6 mg ibandronat se koristi u terapiji hiperkalcemije u okviru maligniteta.

Porod postmenopauzne osteoporoze, u opštoj populaciji je veoma česta osteoporoza koja je komplikacija dugotrajne kortikosteroidne terapije veoma brojnih i različitih oboljenja. Postoje brojne studije koje dokumentiru koristi bisfosfonata u prevenciji gubitka kosti zbog primene kortikosteroidne terapije [20].

Neželjena dejstva bisfosfonata

Ciljevi istraživanja bili su:
1. Utvrditi da li i u kom stepenu alendronat utiče na parametre metaboličke aktivnosti kod žena u postmenopauzi;
2. Utvrditi da li postoji razlika između uticaja alendronata i drugih medicamenta na parametre metaboličke aktivnosti kosti.

Materijal i metode

Istraživanje je sprovedeno u grupi od 30 žena sa osteoporozom u postmenopauzi lećenih alendronatom u dozi od 70 mg jedanput nedeljno (Fosamax tablette) u kombinaciji sa 500 mg kalcijuma i 0,25 mcg Alpha D3. Kontrolnu grupu činilo je 20 žena koje su primijevali druge medicamente. IST je primijenjala 5 žena, kalcitoin 9 žena, decadurobolin 6 žena u terapiji osteoporozu. Od parametara metaboličke aktivnosti korisćeni su osteokalcin i cross-laps. Krv je vadena pre uvođenja terapije i 6-8 nedelja nakon uvođenja terapije.

U grupu ispitanica ušle su pacijentkinje sa nedvosmisleno postavljenom dijagonozom osteoporoze. Merećenje parametara metaboličke aktivnosti sprovođeno je elektrohemiluminiscentnom metodom.

Rezultati

Pacijentkinje kontrolne grupe bile su starije (64,5±9,84 godine) od pacijentkinja alendronat grupe (61,6±6,22 godine) ali ova razlika nije statistički značajna (p=0,20). Na taj način su dve ispitivane grupe komparabilne po životnoj dobi.

Prosečna vrednost serumskog osteokalcina u kontrolnoj grupi pre započetete terapije je nešto viša nego u alendronat grupi ali ova razlika nije statistički značajna. Prosečna vrednost serumskog cross-lapsa u kontrolnoj grupi viši je od onog u alendronat grupi ali ova razlika takođe nije statistički značajna (Tabela 1). Ispitivane grupe su međusobno komparabilne u odnosu na određivanje parametara metaboličke aktivnosti kosti pre uvođenja terapije.

Tabela 1. Parametri koštanog metabolizma pre terapije

<table>
<thead>
<tr>
<th>Grupa/Group</th>
<th>Osteokalcin (ng/ml)</th>
<th>Cross-laps (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x ± SD</td>
<td>Anova</td>
</tr>
<tr>
<td>Alendronat-grupa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alendronat group</td>
<td>39,97±22,96</td>
<td>-</td>
</tr>
<tr>
<td>Kontrolna grupa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control group</td>
<td>47,72±57,36</td>
<td>0,44</td>
</tr>
</tbody>
</table>

Serumski nivo osteokalcina u toku terapije je niži u alendronat grupi nego u kontrolnoj grupi ali ova razlika nije statistički značajno. Prosečna vrednost serumskog cross-lapsa je niža u alendronat grupi nego u kontrolnoj i ova razlika je nagrani statističke značajnosti (Tabela 2).

Tabela 2. Parametri koštanog metabolizma u toku terapije

<table>
<thead>
<tr>
<th>Grupa/Group</th>
<th>Osteokalcin (ng/ml)</th>
<th>Cross-laps (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x ± SD</td>
<td>Anova</td>
</tr>
<tr>
<td>Alendronat-grupa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alendronat group</td>
<td>27,17±16,30</td>
<td>-</td>
</tr>
<tr>
<td>Kontrolna grupa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control group</td>
<td>41,50±55,42</td>
<td>1,78</td>
</tr>
</tbody>
</table>

Na Tabeli 3 uočava se da je serumski nivo osteokalcina u toku primene alendronata statistički signifikantno niži u poredačju sa preterapijskim nivoom (p=0,01), a serumski nivo cross-lapsa u toku primene alendronata je visoko statistički značajno niži od preterapijske vrednosti (p=0,00).

Tabela 3. Parametri koštanog metabolizma pre i u toku terapije

<table>
<thead>
<tr>
<th>Parameter/Parameter</th>
<th>Alendronat-grupi/Alendronat group</th>
<th>x ± SD</th>
<th>ttest</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteokalcin (ng/ml)</td>
<td>39,97±22,96</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Osteocalcin</td>
<td>27,17±16,30</td>
<td>2,48</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Cross-laps (pg/ml)</td>
<td>592,46±354,94</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Serumski nivo osteokalcina u toku terapije primijenjene u kontrolnoj grupi neznatno je i statistički nesignifikantno niži od preterapijskog nivoea. Nadala, vrednosti serumskog cross-lapsa u toku terapijske primene u kontrolnoj grupi niža je od preterapijske vrednosti ali ova razlika takođe nije statistički značajna (Tabela 4).

Kada se posmatraju pojedinačno parametri metaboličke aktivnosti kosti (grafikoni 1 i 2) uočava se...
Tabela 4. Parametri koštanih metabolizma pre i u toku terapije

Table 4. Parameters of bone turnover before and in the course of therapy

<table>
<thead>
<tr>
<th>Parameter/Parameters</th>
<th>Kontrolna grupa/Control group</th>
<th>t-test T</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteokalcin (ng/ml)</td>
<td>47,72± 57,36</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Osteocalcin</td>
<td>41,50±55,42</td>
<td>0,34</td>
<td>0,72</td>
</tr>
<tr>
<td>Cross-laps (pg/ml)</td>
<td>851,7±1247,72</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>688,37±1264,64</td>
<td>0,41</td>
<td>0,68</td>
</tr>
</tbody>
</table>

da parametar formiranja kosti ima tendenciju opadanja u obe grupe pacijentkinja ali je taj pad nesumnjivo više izražen u alendronat grupi u poređenju sa kontrolnom grupom. Ono što je posebno potrebno zapaziti jeste da parametar resorpncije kosti takođe u obe grupe pacijentkinja pokazuje pad ali je on upadljivo više izražen u alendronat grupi u poređenju sa kontrolnom grupom.

60
50
40
30
20
10
0

Andrelonat grupa
Alendronat group

Kontrolna grupa
Control group

Osteokalcin

Grafikon 1. Osteokalcin u serumu pre i u toku terapije
Graph 1. Serum osteocalcin before and in the course of therapy

6000
5000
4000
3000
2000
1000

1000
800
600
400
200
0

Cross-laps

Grafikon 2. Cross-laps u serumu pre i u toku terapije
Graph 2. Serum cross-laps before and in the course of therapy

Diskusija

Danas je opšteprihvaćeno da su bisfosfonati veoma moćna terapijska sredstva u lečenju osteoporozne i da se njihovo delovanje zasniva na inhibiciji resorpcije kosti. Do otkrića novih terapijskih sredstava bisfosfonati ostaju terapija izbora za lečenje osteoporozne čija je karakteristika povećanje metaboličke aktivnosti kosti sa dominacijom resorpcije nad formiranjem. Višegodišnja primena bisfosfo-

nata u lečenju osteoporozne otvorila je neka pitanja i dileme prvenstveno u pogledu optimalnosti trajanja ove vrste terapije i eventualnih neželjenih efekata suprimovane metaboličke aktivnosti kosti duže vremena nakon prekida primene terapije.

U radu su prikazani prvo obradeni rezultati kliničke primene alendronata u dozi od 70 mg nedeljno peroralno (Fosamax tablete) u kombinaciji sa odgovarajućom dožem kalcijskom i aktivnom D vitaminom u lečenju osteoporozne žena u postmenopauzi. Za procenu terapijskog efekta korišćeno je određivanje dva parametara metaboličke aktivnosti kosti, od kojih jedan pokazuje stepen formiranja kosti (osteokalksin), a drugi stepen resorpcije kosti (cross-laps). Od ključnog interesa za nasu istraživanje bilo je prace

nje ovih parametara tokom terapije i uporedjivanje dobijenih rezultata sa preterapijskim nivoom. Naši rezultati pokazali su izrazitu efikasnost alendronata u dozi od 70 mg jedanput nedeljno na koštano resorpciju što je visokostatistički sigurno. Ovaj efekat prema našim rezultatima učeljiv je najkasnije za 6-8 nedelja nakon uvođenja terapije. Ova činjenica je za kliničara veoma značajna jer pracenjem ovog metaboličkog parametra veoma brzo može proceniti koštan konačni terapijski efekat u smislu povećanja koštane mase. Naši su rezultati pokazali i supresivni efekat na koštano formiranje što svakako proističe iz vezanosti (coupling) između formiranja i resorpcije, ali ovaj efekat je bio manje statistički signifikantan.

U paleti različitih terapijskih sredstava koji se danas primenjuju u lečenju osteoporozne bisfosfonati su samo neki od elemenata. Ovim radom želeli smo način prelaminarno, da upoređimo efekat alendronata na parametre metaboličke aktivnosti kosti sa efikasnošću tri druga terapijska sredstva. Prelaminarno zbog toga što su pacijenti lečeni drugim terapijskim sredstvima (HST, kalcitronin i dece durobin) bili su veoma malom broju ali su činili korelantu kontrolnu grupu nasuprot grupi lećenih samo alendronatom.

Opšto je poznato da i HST i kalcitronin i anabolistički steroizi imaju svoje mesto u lečenju osteoporozne u kliničkoj jasno odabranim kategorijama pacijenata. Zbog toga rezultate naše studije u ovoj terapijskoj režimi ne treba uzeti kao negativističke jer ispitivanje nije koncipirano da vrednuje one re

žime nego da vrednuje kliničku primenu alendronata u odnosu na pacijente koji nisu lećeni alendronatom.

Grupa tretirana alendronatom i kontrolna grupa bile su međusobno komparabilne po životnoj dobi i parametrima koštanog metabolizma pre uvođenja terapijskog režima. Kontrola parametra koštanog metabolizma u toku terapije pokazala je da je nivo osteokalcina niz u alendronat grupi nego u kontrolnoj grupi ali bez statistički značajnosti, dok je nivo cross-lapsa niz u alendronat grupi u poređenju sa kontrolnom grupom i ta je razlika na granici statističke značajnosti. O značajno većoj
efikasnosti alendronata u poređenju sa drugim terapijskim režimima pokazuju grafikoni 1 i 2.

Zaključak

Alendronat kao predstavnik bisfosfonatne grupe terapijskih sredstava za lečenje osteoporoze izrazito smanjuje nivo koštane resorpcije kod pacijenkinja u postmenopauzi sa osteoporozom, dok je efekat na formiranje kosti manje izražen. Ovakav efekat alendronata može se smatrati povoljnim metaboličkim miljeom za povećanje mase kosti i time smanjivanje fraktarnog rizika.

Efekat alendronata na koštani metabolizam učeđaj je najkasnije za 6-8 nedelja nakon uvođenja terapije. Praćenje parametara metaboličke aktivnosti kosti kao što su ostekalacini i cross-laps veoma je korisno dijagnostičko sredstvo u proceni efekta alendronata na metaboličku aktivnost kosti i eventualno u prognozi konačnog ishoda na koštanu masu. Pri tome, pojedinačno posmatrano, cross-laps ima veću vrednost.

Literatura

Summary

Introduction
Bisphosphonates are synthetic compounds used in treatment of osteoporosis and inhibition of bone resorption.

Material and methods
The research included a group of 30 postmenopausal women with osteoporosis, treated with alendronate (70 mg per week - Fosamax tablets in combination with calcium and active vitamin D - Alpha D3 0.25mcg). The control group included 20 women with osteoporosis treated with hormone substitution therapy (HST), calcitonin and deca duraboline. Bone metabolic activity was evaluated using osteocalcin for bone formation and cross-laps for bone resorption. Blood samples were taken before therapy and 6-8 weeks after.

Results
The serum levels of osteocalcin and cross-laps during application of alendronate were statistically significantly lower comparing to those in pre-therapy. The serum levels of osteocalcin and cross-laps during the therapy applied in the control group were statistically insignificantly lower than values in pre-therapy. Osteocalcin has a tendency of decreasing in both groups, and it was slightly more evident in alendronate group. Cross-laps demonstrated the same tendency of decreasing in both groups, and it was more evident in alendronate group.

Discussion
Our results have shown the efficacy of alendronate in preventing bone loss, which was highly statistically significant. They have also shown its suppressive effect on bone formation and resorption, but the effects were statistically less significant.

Conclusion
Alendronate significantly reduces the level of bone resorption in postmenopausal women with osteoporosis. Its effects on bone formation are less expressed. Alendronate's effects on bone metabolism become evident not later than 6-8 weeks after therapy application. Parameters of bone metabolic activity are very useful diagnostic means in evaluation of alendronate effect on bone metabolic activity and in the prognosis of bone mass loss.

Key words: Alendronate, Postmenopause; Osteoporosis, Postmenopausal + drug therapy; Bone Density; Biological Markers