VEROVATNOĆA NALAJENJA HLA IDENTIČNIH I PODUDARNIH NESRONIH DONORA ZA BOLENIKE VOJVODINE U RAZLIČITIM POPULACIJAMA

THE PROBABILITY OF FINDING HLA IDENTICAL OR PARTIALLY MATCHED UNRELATED DONORS IN THE POPULATION OF VOJVODINA

Svetlana VOJVODIĆ i Stevan POPOVIĆ

Sažetak - Alogena transplantacija matičnim čelijama hematoopoze od nesrodnih donora predstavlja terapijski izbor kod bolesnika koji ne poseduju HLA identičnog rođenog brata/sestru ili drugog podudarnog člana familije. Verovatnoća nalaženja kompatibilnog nesrodnog donora zavisi od stepena HLA podudarnosti donora i primaoca, frekvencije HLA fenotipa i broja donora u registru. U ovom studiji ispitivana je verovatnoća nalaženja HLA identičnog i parcialno podudarnog (u 5/6 HLA antigena) nesrodnog donora u različitim populacijama za bolesnike Vojvodine. Naši rezultati pokazuju da je verovatnoća nalaženja HLA identičnog i parcialno podudarnog nesrodnog donora za bolesnike Vojvodine veća u bliskim populacijama sa malim genetskim distancijama kao što su populacije Krita, Rumunije i Škotske. Verovatnoća nalaženja HLA identičnog i parcialno podudarnog nesrodnog donora obrnuto je proporcionalna broju donora potrebnih za pretraživanje radi nalaženja bar jednog HLA kompatibilnog donora.

Ključne reči: HLA antigeni; Verovatnoća; Transplantacija kostne srži; Davaoci tkiva; Histokompatibilnost

Uvod

Izbor kompatibilnog donora matičnih čelija hematopoze (MCH) i kostne srži (KS) jedan je od najznačajnijih i osnovnih uslova pretransplantacijskih priorita. Uspeh transplantacije predominantno zavisi od izbora kompatibilnog donora uz činjenicu da je moguće postići uspeh transplantacije sa najnižim procentom pottransplantacijskih komplikacija potrebno MCH donora od podudarnih u oba HLA haplotipa [1]. Budući da većina (65%) kandidata za allogenu transplantaciju ne poseduju HLA podudarnog rođenog brata/sestru, postoji veliki interes za potrebom MCH od nesrodnih donora [2-5]. Alogena transplantacija MCH/KS može biti izvedena potrebno MCH podudarnih nesrodnih donora uz ograničenje vezano za teškoću nalaženja takvih donora. Verovatnoća nalaženja HLA identičnih nesrodnih donora zavisi od fenotipske frekvencije svakog pojedinačnog antigena u HLA fenotipu, veličine registra i prihvatljivog stepena HLA podudarnosti između potencijalnih donora i primaoca [3,6]. Najpogodnija prihvatljiva podudarnost između donora i primaoca je identična u pogledu svih 6/6 mogućih HLA antigena u fenotipovima parova donor/primalac. Hansen i saradnici kao i Ginić i saradnici su ukazali na uspješan ishod alogene transplantacije potrebno MCH parcialno, u 5/6 HLA antigena, podudarnih nesrodnih donora [7].

Materijal i metode

Fenotip 1 klase HLA antigena određen je standardnim mikrolimfocitotoksičnim testom (NIH) kod 434 zdrave nesrodne osobe na teritoriju Vojvodine. Druga klasa HLA antigena je determinisana potrebom modificirane imunofluorescentne tehnike (IM). Genske frekvencije HLA-A,-B i DR antigena populacije Krita [8], Koreje [9], Kine [10], Škotske [11], Rumunije [12] i Severne Amerike (belci, azijski, afrički, latinoamerički i starosederoci) [13], korisčene su za izračunavanje fenotipskih frekvencija potrebno potrebno sledeće formule: a = 2p-p², gde je: a = frekvencija HLA antigena ili broj osoba koje poseduju dati HLA antigen u populaciji; p = genska frekvencija HLA antigena [3].

Fenotipske frekvencije populacije Vojvodine su korisčene za izračunavanje genskih frekvencija potrebno potrebno Bernsteinove formule: p = 1 - 1/n, gde je: a = frekvencija HLA antigena, p = genska frekvencija HLA antigena [14-16]. Genske frekvencije populacije Vojvodine i genske frekvencije populacije Krita [9], Koreje [9], Kine [10], Škotske [11], Rumunije [12], Severne Amerike [13], Francuske [17], Italije [18], Portugala [19], Bugarske [20], Nemačke [21], Grčke [22], Japana [23] i Taivana [24], su potrebne za izračunavanje genskih distancija potrebno potrebno sledeće formule: Dxy = 1/n² ∑ (f-xi - f-xy), gde je: f, i f, genske frekvencije u populacijama x i y; k je broj ispitivanih alela [25-27]. Fenotipske frekvencije su potrebne za izračunavanje verovatnoće nalaženja HLA identičnijih i parcialno podudarnih nesrodnih donora. Formula za izračunavanje verovatnoće nalaženja HLA identičnijeg nesrodnog donora je data: P = A, x A, x B, x B, x DR, x DR, gde je: P = verovatnoća nalaženja HLA identičnog nesrodnog donora; A, do DR, = verovatnoća pojavljivanja u populaciji ili feno-
Skracenice
- HLA - umnimi limfocitni antigeni
- MCH - maticne celije hematopoieze
- KS - kostna sreb
- NIH - National Institute of Health
- IM tehnika - imunomagnetska tehnika

Tipski broj nesrednih donora za pretraživanje

Formula za izračunavanje broja nesrednih donora potrebnih za pretraživanje radi nalaza nesrednog donora jednog HLA identičnog donora je:

\[
n = \frac{1}{P(A_1 \times A_2 \times B_1 \times B_2 \times DR_1 \times DR_2)}
\]

gde je:

- \(n \) broj nesrednih donora
- \(P \) verovatnoća nalaza parcijalnog HLA podudarnog nesrednog donora

Formula za izračunavanje verovatnoće nalaza parcijalnog HLA podudarnog nesrednog donora je:

\[
P = \frac{f_1}{C_1} \times \frac{f_2}{C_2} \times \frac{f_3}{C_3} \times \frac{f_4}{C_4} \times \frac{f_5}{C_5} \times \frac{f_6}{C_6}
\]

gde je:

- \(f_i \) verovatnoća pojavljivanja u populaciji ili fenotipska frekvencija antigena HLA A, B, DR i DQ lokusa
- \(C_i \) - verovatnoća pojavljivanja nekog događaja u datojar seriji od 6.

Rezultati

Fenotipske i genske frekvencije antigena HLA-A1, B1, DR i DQ lokusa u populaciji Vojvodine su prikazane u Tabeli 1.

Najviše fenotipske i genske frekvencije uočene su za antigen HLA A1, A2, A3, A9, A10, B5, B12 i B35, dok su antigeni B47, B48, A34 i A33 nisko zastupljeni u populaciji Vojvodine. Frekvencije HLA antigena sa blindom (alele X) imaju relativno visoku frekvenciju i time direktno proporcionalno utiču na verovatnoću nalaza kompatibilnih donora.

Genetske distancije između populacije Vojvodine i ispitivanih populacija su prikazane u Tabeli 2.

Vrednosti genetskih distancija mogu da variraju od 0 do 1. Ukoliko su vrednosti genetskih distancija

oko 1, stanovnici kompariranih populacija ne posećuju veliki broj zajedničkih alela. Ukoliko su vrednosti genetskih distancija oko 0, stanovnici upoređivanih populacija poseduju većinu zajedničkih alela. Populacije, sa najvišim genetskim distancija-
Tabela 2. Genetske distancije između populacije Vojvodine i ispitivanih populacija

<table>
<thead>
<tr>
<th>Populacija</th>
<th>Genetske distancije</th>
<th>Genetske distancije/Geneic distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severna Amerika - Belo/North America - Caucasus</td>
<td>0.285999</td>
<td>0.265286</td>
</tr>
<tr>
<td>Severna Amerika - Afro Amerikanci</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>Severna Amerika - Azijci Amerykańscy</td>
<td>0.591583</td>
<td>0.591583</td>
</tr>
<tr>
<td>Severna Amerika - Latino Amerikanici</td>
<td>0.439546</td>
<td>0.439546</td>
</tr>
<tr>
<td>Severna Amerika - Starostna/Staro/ North America - Native</td>
<td>0.407233</td>
<td>0.407233</td>
</tr>
<tr>
<td>Rumunija/Rumania</td>
<td>0.167500</td>
<td>0.167500</td>
</tr>
<tr>
<td>Škotska/Scotland</td>
<td>0.345055</td>
<td>0.345055</td>
</tr>
<tr>
<td>Francuska/France</td>
<td>0.354150</td>
<td>0.354150</td>
</tr>
<tr>
<td>Italija/Italy</td>
<td>0.328600</td>
<td>0.328600</td>
</tr>
<tr>
<td>Portugalska/Portugal</td>
<td>0.382100</td>
<td>0.382100</td>
</tr>
<tr>
<td>Bugarska/Bulgaria</td>
<td>0.212500</td>
<td>0.212500</td>
</tr>
<tr>
<td>Koreja/Korea</td>
<td>0.640650</td>
<td>0.640650</td>
</tr>
<tr>
<td>Švedska/Sweden</td>
<td>0.323350</td>
<td>0.323350</td>
</tr>
<tr>
<td>Grčka/Greece</td>
<td>0.583250</td>
<td>0.583250</td>
</tr>
<tr>
<td>Kina/China</td>
<td>0.768400</td>
<td>0.768400</td>
</tr>
<tr>
<td>Japanska/Japan</td>
<td>0.562080</td>
<td>0.562080</td>
</tr>
<tr>
<td>Tajvan/Taiwan</td>
<td>0.580550</td>
<td>0.580550</td>
</tr>
</tbody>
</table>

Tabela 3. Fenotipske frekvencije ispitivanih populacija

<table>
<thead>
<tr>
<th>Phenotype frequencies in investigated populations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
</tr>
<tr>
<td>A3</td>
</tr>
<tr>
<td>A9</td>
</tr>
<tr>
<td>A10</td>
</tr>
<tr>
<td>A11</td>
</tr>
<tr>
<td>A28</td>
</tr>
<tr>
<td>A29</td>
</tr>
<tr>
<td>A30</td>
</tr>
<tr>
<td>A31</td>
</tr>
<tr>
<td>A32</td>
</tr>
<tr>
<td>A33</td>
</tr>
<tr>
<td>AX</td>
</tr>
<tr>
<td>B5</td>
</tr>
<tr>
<td>B7</td>
</tr>
<tr>
<td>B8</td>
</tr>
<tr>
<td>B11</td>
</tr>
<tr>
<td>B13</td>
</tr>
<tr>
<td>B14</td>
</tr>
<tr>
<td>B15</td>
</tr>
<tr>
<td>B16</td>
</tr>
<tr>
<td>B17</td>
</tr>
<tr>
<td>B18</td>
</tr>
<tr>
<td>B21</td>
</tr>
<tr>
<td>B22</td>
</tr>
<tr>
<td>B27</td>
</tr>
<tr>
<td>B32</td>
</tr>
<tr>
<td>B37</td>
</tr>
<tr>
<td>B40</td>
</tr>
<tr>
<td>B41</td>
</tr>
<tr>
<td>B47</td>
</tr>
<tr>
<td>B48</td>
</tr>
<tr>
<td>B65</td>
</tr>
<tr>
<td>B68</td>
</tr>
<tr>
<td>B90</td>
</tr>
<tr>
<td>D1</td>
</tr>
<tr>
<td>D2</td>
</tr>
<tr>
<td>D3</td>
</tr>
<tr>
<td>D4</td>
</tr>
<tr>
<td>D5</td>
</tr>
<tr>
<td>D6</td>
</tr>
<tr>
<td>D7</td>
</tr>
<tr>
<td>D8</td>
</tr>
<tr>
<td>D9</td>
</tr>
</tbody>
</table>

* Populacija Severne Amerike North American populations
Verovatnoća nalaženja HLA identičnih nesrodnih donorа i broj donorа potrebnih za pretraživanje radi nalaženja bar jednog kompatibilnog donorа

Tabela 4. Verovatnoća nalaženja HLA identičnih nesrodnih donorа i broj potrebnih donorа za pretraživanje radi nalaženja bar jednog kompatibilnog donorа

<table>
<thead>
<tr>
<th>Populacija</th>
<th>Vojvodina</th>
<th>Kri</th>
<th>Korenja</th>
<th>Kina</th>
<th>Škotska</th>
<th>Rumunija</th>
<th>Beli</th>
<th>Afri</th>
<th>Anz</th>
<th>Latino</th>
<th>Starošćani</th>
<th>Native</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A2,1B,1D,R3,7</td>
<td>0,00000000000</td>
</tr>
<tr>
<td>2A1,9,24,07,14,4</td>
<td>0,00000000000</td>
</tr>
<tr>
<td>R3,4</td>
<td>0,00000000000</td>
</tr>
</tbody>
</table>

Tabela 5. Verovatnoća nalaženja parcialnog HLA podudarnih nesrodnih donorа i broj donorа potrebnih za pretraživanje radi nalaženja bar jednog kompatibilnog donorа

<table>
<thead>
<tr>
<th>Populacija</th>
<th>Vojvodina</th>
<th>Kri</th>
<th>Korenja</th>
<th>Kina</th>
<th>Škotska</th>
<th>Rumunija</th>
<th>Beli</th>
<th>Afri</th>
<th>Anz</th>
<th>Latino</th>
<th>Starošćani</th>
<th>Native</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A2,3B,1D,R2,5</td>
<td>0,00000000000</td>
</tr>
<tr>
<td>2A1,9,24,07,14,4</td>
<td>0,00000000000</td>
</tr>
<tr>
<td>R3,4</td>
<td>0,00000000000</td>
</tr>
</tbody>
</table>

Verovatnoća nalaženja HLA identičnih nesrodnih donorа kao i broj donorа potrebnih za pretraživanje radi nalaženja bar jednog HLA identičnog donora izračunavane su na primeru deset bolesnika. Na osnovu fenotipskih frekvencija HLA antigena koje predstavljaju verovatnoću pojavljivanja dati HLA antigena u populaciji, izračunavali smo kumulativnu verovatnoću pojavljivanja svih HLA antigena u fenotipu bolesnika u isto vreme.

Verovatnoća nalaženja parcialnog HLA podudarnih nesrodnih donorа i broj osoba potrebnih za preraživanje radi nalaženja bar jednog kompatibilnog donorа
pretraživanje radi nalaženja bar jednog HLA podudarnog donora dati su u Tabeli 5.

Verovatnoća nalaženja paricijalno HLA podudarnih nesrodnih donora kao i broj donora potreban za pretraživanje radi nalaženja bar jednog kompatibilnog donora izračunavani su u odnosu na HLA fenotip istih bolesnika za koje je izračunavana verovatnoća nalaženja HLA identičних donora. Takođe su izračunavani verovatnoće nalaženja parcijalno HLA podudarnih nesrodnih donora obuhvatila iste populacije kao i za pretraživanje HLA identičnih donora, zbog čega odgovarajući rezultati mogu biti uporedivi.

Diskusija

Budući da podudarnost u HLA sistemu između potencijalnih donora i primoca ima veliki uticaj na ishod alogene transplantačije (3,5,7), pretraživanje nesrodnih donora MCH/KS je ograničeno na HLA identične i parcijalno (u 5/6 HLA antigena) podudarne donore. Verovatnoća nalaženja kompatibilnog nesrodnog donora kao i broj donora potreban za pretraživanje, zavisí od stepena prihvatljive podudarnosti između donora i primoca.

Naši rezultati su pokazali da kod nižeg stepena prihvatljive podudarnosti, tačnije kod parcijalno HLA podudarnih donora, verovatnoća nalaženja donora je proporcionalno viša, dok je broj donora potrebnih za pretraživanje radi nalaženja bar jednog podudarnog donora proporcionalno niži u poređenju sa odgovarajućim rezultatima u pretraživanju HLA identičnih donora. U tabelama 4 i 5 prikazana je verovatnoća nalaženja HLA identičnih i parcijalno HLA podudarnih donora na primjeru deset bolesnika Vojvodine u ispitivanim populacijama. Naši rezultati ukazuju da je verovatnoća nalaženja HLA identičnih kao i parcijalno HLA podudarnih nesrodnih donora obrnutu proporcionalnu broju donora potrebnih za pretraživanje radi nalaženja HLA identičnih i parcijalno HLA podudarnih donora. Niža verovatnoća nalaženja HLA identičnih i parcijalno podudarnih donora odgovara višem broju donora potrebnih za pretraživanje a time i većem broju donora u registru.

Verovatnoća nalaženja HLA identičnih i parcijalno podudarnih donora zavisi i od genetskih dis-

Literatura

Summary

Introduction

Allotransplantation and hematopoietic stem cell transplantation from unrelated donors are treatments of choice for patients lacking HLA identical siblings or family matched donors.

Material and methods

Class I HLA typing was performed by using a standard microlymphocytotoxicity test in 434 unrelated persons from Vojvodina, while, class II HLA typing was performed using a modified immunofluorescent technique. The estimated gene frequencies for the populations of Crete, Korea, China, Scotland, Romania, and North America, were used to calculate phenotype frequencies, the probability of finding HLA identical or partially (in 5/6 HLA antigens) matched unrelated donors, the number of donors necessary for research, as well as genetic distances between populations.

Results

The probability of finding HLA identical or partially matched unrelated donors for patients from Vojvodina is higher in closely related populations with low genetic distances, such as populations of Crete, Romania and Scotland.

Discussion

The probability of finding HLA identical or partially matched unrelated donors is in inverse proportion with the number of unrelated donors necessary for research with aim of finding at least one HLA compatible donor.

Conclusion

The probability of finding compatible unrelated donors depends on the degree of HLA matching between the donor and recipient. HLA phenotype frequencies and the donor pool size. These methodology may have a wider usage, because it can be applied in calculating the probability of finding suitable genetically matched donors, by using HLA allele frequencies defined by molecular techniques.

Key words: HLA Antigens; Probability; Bone Marrow Transplantation; Tissue Donors; Histocompatibility