About the journal

Vojnosanitetski pregled 2009 Volume 66, Issue 10, Pages: 785-790
Full text ( 287 KB)

Hydrolysis of cefazolin by enzymes produced by Pseudomonas aeruginosa after exposure to ceftazidime in vitro

Papaioannidou Paraskevi, Nitsas Vassilios, Mirtsou-Fidani Vassiliki

Background/Aim. Sometimes resistance of Pseudomonas aeruginosa (Ps. aeruginosa) is developed during antibiotic treatment, in spite of the initial susceptibility in vitro. The aim of this study was to use an in vitro model for the study of the development of resistant strains of Ps. aeruginosa after a short exposure to ceftazidime, and to study the hydrolysing capacity of β-lactamases produced by the resistant strains. Methods. Among 563 clinical strains of Ps. aeruginosa, 37 multisensitive strains were collected for the study. After being identified, strains with simultaneous sensitivity to 5 expanded spectrum cephalosporins were chosen. For each strain, the minimal inhibitory concentration (MIC) of the 5 expanded spectrum cephalosporins was determined, and the production of extended spectrum β-lactamases (ESBL) was excluded by the double-disc synergy diffusion test. Strains non producing ESBL were cultivated in concentrations of ceftazidime equal to MIC×2 and MIC×4. After 24 hours of culture, the development of resistant strains was estimated and the cephalosporinase activity of the produced β-lactamases was determined by their ability to hydrolyse cefazolin. Hydrolysis of cefazolin was studied by measuring the change of its absorbance on 272 nm using a Shimadzu 160A spectrophotometer. The hydrolyzing capacity of the enzymes was expressed as the percentage of the antibiotic, which was hydrolysed in 10 sec. Results. A total of 60% and 50% of strains developed resistant strains after exposure to ceftazidime in concentration MIC×2 and MIC×4, respectively. The hydrolyzing capacity of the original strains was 15-36% while the hydrolyzing capacity of the resistant strains was 10-73%. Totally 64% of the resistant strains expressed higher hydrolyzing capacity than the original strains. Conclusion. Regardless of the susceptibility test results, Ps. aeruginosa presented a high tendency to develop resistant strains after a short exposure to ceftazidime in vitro. In most cases the resistant strains expressed higher cephalosporinase activity than the original strains, suggesting derepression of chromosomal β-lactamases. Our model offers a simple, inexpensive and rapid method for detecting resistance of Ps. aeruginosa developed due to derepression of β-lactamases, and for discriminating resistant strains with derepressed β-lactamases from strains that developed other mechanisms of resistance.

Keywords: drug resistance, bacterial, anti-bacterial agents, cephalosporins, cefazolin, ceftazidime, Pseudomonas aeruginosa

More data about this article available through SCIndeks