ON CLASSES OF HARMONIC FUNCTIONS OF CARLEMAN TYPE

Elmostafa Bendib

ABSTRACT. Let \(f \) be harmonic functions on the unit disk \(D \) of the complex plane \(\mathbb{C} \). We show that \(f \) can be expanded in a series \(f = \sum_n f_n \), where \(f_n \) is a harmonic function on \(D_n, \Gamma, A \) satisfying \(\sup_{z \in D_n, \Gamma, A} |f_n(z)| \leq C \rho^n \) for some constants \(C > 0 \) and \(0 < \rho < 1 \), and where \((D_n, \Gamma, A)_n \) is a suitably chosen sequence of decreasing neighborhoods of the closure of \(D \). Conversely, if \(f \) admits such an expansion then \(f \) is of Carleman type. The decrease of the sequence \((D_n, \Gamma, A)_n \) characterizes the smoothness of \(f \). These constructions are perfectly explicit.

1. Introduction

It was shown for special classes of harmonic functions in [2] that Gevrey harmonic functions on the unit disk, \(D \), of the complex plane are, in fact, sums of certain series of harmonic functions on specific neighborhoods of \(\overline{D} \). It seems that a similar result holds in largest classes. This gives a motivation for asking about classes of harmonic functions of Carleman type. The principal difficulty is that we have to control an infinity of derivatives of a function. The purpose of this paper is to extend results of [2] to the case of Harmonic functions of Carleman type. Our principal result (Theorem 4.1) gives a more useful characterization. Precisely, we show that the Harmonic functions of Carleman type on \(D \) are exactly those which are sums of certain series in specific neighborhoods of \(\overline{D} \).

2. Notations and Definitions

Let \(D = \{z \in \mathbb{C}, |z| < 1\} \) the disk of the plane \(\mathbb{C} \) and \(m(t) \) be a real-valued \(C^\infty \) function defined for \(t \gg 0 \). We suppose that \(m(t), m'(t), m''(t) \) are strictly positive and \(\lim_{t \to \infty} m'(t) = +\infty \); we suppose also that there exists \(\delta > 0 \) such that \(m''(t) \leq \delta \). Put \(M(t) = \exp(m(t)) \). \(\mathcal{H}(D) \) denotes the spaces of harmonic functions on a neighborhood of \(\overline{D} \). Let us consider \(\mathcal{H}_M(D) \) to be the class of

2010 Mathematics Subject Classification: 30B10; 26E10; 30E10.

Key words and phrases: approximations, analytic functions, Carleman classes, harmonic functions.

Communicated by Stevan Pilipović.
harmonic functions on \(\mathbb{D} \) given by those \(f \) for which there are positive constants \(C \) and \(\rho \) such that
\[
|f^{(n)}(z)| \leq Cp^n M(n),
\]
for any \(z = x + iy \in \mathbb{D} \) and any \(n = p + q \in \mathbb{N} \) where
\[
f^{(n)}(z) := \frac{\partial^n f}{\partial x^p \partial y^q}(z).
\]
Note that every function \(f \) belonging to a class \(\mathcal{H}_M(\mathbb{D}) \) can be extended in a unique way to a \(C^\infty \) function on \(\overline{\mathbb{D}} \): if \(\xi \in \partial \mathbb{D} \) and if \(z_j \rightarrow \xi \) all partial derivatives of \(f \) at \(z_j \) are uniformly bounded on \(\mathbb{D} \) and we can apply the mean value theorem. We denote this extension by the same symbol \(f \). The class \(\mathcal{H}(\mathbb{D}) \) correspond, then, to \(M(t) = t^i \), so that \(m(t) = t \ln(t) \). It is interesting to note that there exist functions in \(H_m(\mathbb{D}) \) which are monotonic at infinity, we suppose that \(M(t) = t \ln(t) + t \mu(t) \) with \(\mu(t) \) being a strictly increasing \(C^\infty \) function for \(t \gg 0 \). In this short paper, we will consider classes that contain strictly \(H(\mathbb{D}) \); for this end we suppose that \(m(t) = t \ln(t) + t \mu(t) \) with \(\mu(t) \) being a strictly increasing \(C^\infty \) function for \(t \gg 0 \)

In view of Cauchy’s inequalities, Stirling formula and Heine–Borel theorem, if \(f \) is harmonic on neighborhood of \(\mathbb{D} \) and real valued, then \(f \) is real analytic on \(\mathbb{D} \) and the restriction of \(f \) to \(\mathbb{D} \) belongs to the class \(\mathcal{H}_M(\mathbb{D}) \). The class \(\mathcal{H}(\mathbb{D}) \) is strictly increasing according to the same symbol \(\mu(t) \). For \(m(t) = t \ln(t) \), \(m(t) + a(t) \), \(a(t) \), \(m(t) \) being a strictly increasing \(C^\infty \) function for \(t \gg 0 \) and \(\mu(t) \) being a strictly increasing \(C^\infty \) function for \(t \gg 0 \).

It is interesting to note that there exist functions in \(\mathcal{H}_M(\mathbb{D}) \) which are not harmonic on any neighborhood of \(\mathbb{D} \). Take, for instance,
\[
f(z) = \sum_{p \in \mathbb{Z}} \exp \left(-\sqrt{|p|}|z|^p \exp(ip\theta) \right).
\]
This function belongs to \(\mathcal{H}_M(\mathbb{D}) \) for \(\mu(t) = \ln(t) \) but it cannot be extended to be harmonic on any neighborhood of \(\mathbb{D} \) as we verify easily [2, p. 413].

Finally the condition \(m''(t) \leq \delta \) means that \(m(t) \) has a growth at infinity less than \(t^2 \); then we may suppose also that
\[
(2.2) \quad \mu(t) \leq at, \ t \gg 0, \ a > 0.
\]

3. The associated functions \(\Omega(s) \) and \(\Gamma(u) \)

Set \(\Omega(s) := \inf_{t \geq t_0} s^{-t} M(t) \), \(s \gg 0 \), where \(t_0 \) is fixed. The infimum is attained when \(m'(t) = \ln(s) \). The function \(t m'(t) + \mu(t) \) tends to infinity as \(t \rightarrow \infty \) and so it is strictly increasing \((\mu(t) \) belongs to a Hardy field); so we have a unique value
of t where the infimum is attained. Thus, if $\Omega(s) = \exp(-\omega(s))$, then we get the system

$$s = \exp(m'(t)), \quad \omega(s) = t m'(t) - m(t). \tag{3.1}$$

Since $\mu'(t) > 0$, we have $\omega(s) > 0$ and $\lim_{s \to +\infty} \omega(s) = +\infty$. Thus $\Omega(s)$ is strictly decreasing and $\lim_{s \to +\infty} \Omega(s) = 0$. Set $\Gamma(u) := \exp(-\gamma(u))$, where u and $\gamma(u)$ are defined by

$$u = t^2 \mu'(t), \quad \gamma(u) = t \mu'(t) + \mu(t). \tag{3.2}$$

as $\mu(t)$ is strictly increasing, and $\lim_{t \to +\infty} \mu(t) = +\infty$, it follows that $\gamma(u)$ is strictly increasing and $\lim_{u \to +\infty} \gamma(u) = +\infty$. Hence $\Gamma(u)$ is strictly decreasing and $\lim_{u \to +\infty} \Gamma(u) = 0$. System (3.2) gives easily

$$t = \frac{1}{\gamma'(u)}, \quad \mu(t) = \gamma(u) - u \gamma'(u), \tag{3.3}$$

which shows that $\gamma'(u)$ is strictly decreasing, positive and $\lim_{u \to +\infty} \gamma'(u) = 0$. Note that $\gamma(u)$, just as $\mu(t)$, is defined modulo an additive constant.

4. Main Result

By harmonic polynomial on $\mathbb{R}^2 \simeq \mathbb{C}$, we mean a complex polynomial P of two variables which satisfies Laplace’s equation, $\Delta P = 0$. In other words, P is a finite linear combinations, on the field \mathbb{C}, of harmonic polynomials δ_n ($n \geq 1)$:

$$\delta_1 = 1, \quad \delta_n(r \exp(i\theta)) = \begin{cases} r^k \cos k\theta & \text{if } n = 2k, \\ r^k \sin k\theta & \text{if } n = 2k + 1. \end{cases}$$

Consequently a harmonic polynomial is a polynomial in $|z|$ with coefficients in \mathbb{C}. Define $\mathbb{D}_{n,\Gamma,A} := \{ z \in \mathbb{C}; \; d(z, \mathbb{D}) < A \Gamma(n) \}$, where A is a positive real number and $n = 1, 2, \ldots$.

Under the condition

$$\lim_{t \to +\infty} \frac{\ln(t)}{\mu(t)} \neq 0 \tag{4.1}$$

we prove the following results:

Theorem 4.1. (1) Let $f \in \mathcal{H}_M(\mathbb{D})$. Then there exist constants $C > 0$, and ρ with $0 < \rho < 1$; there exist a sequence $(P_l)_l$ of harmonic polynomials defined on $\mathbb{D}_{l,\Gamma,1}$ such that $f(z) = \sum_{l \geq 0} P_l(z)$ and $\|P_l\|_{\mathbb{D}_{l,\Gamma,1}} \leq C \rho^l$, for every $l \gg 0$.

(ii) Conversely, suppose that there exist constants $A > 0$, $C > 0$, $0 < \rho < 1$, and a sequence $(f_n)_{n \geq 1}$ of harmonic functions on $(\mathbb{D}_{n,\Gamma,A})_n$, such that $\|f_n\|_{\mathbb{D}_{n,\Gamma,A}} \leq C \rho^n$ for all $n \gg 1$; then the series $\sum_n f_n := f$ belong to $\mathcal{H}_M(\mathbb{D})$.

5. Proof of Theorem 4.4

Following [24], we denote by $\mathcal{H}_M([0, 2\pi])$ the indefinitely differentiable functions g on the interval $[0, 2\pi]$, $g \in C^\infty([0, 2\pi])$, such that the following holds. There exist constants $C > 0$ and $\rho > 0$ such that $|g^n(x)| \leq C\rho^n M(n)$ for all $x \in [0, 2\pi]$ and for all $n \in \mathbb{N}$. By remarking a fact that a given function f which is harmonic on \mathbb{D} and C^∞ on $\overline{\mathbb{D}}$ belongs to the class $\mathcal{H}_M(\mathbb{D})$ if and only if the function $\theta \mapsto g(\theta) := f(\exp(i\theta))$ belongs to the class $\mathcal{H}_M([0, 2\pi])$, we have the following:

Proposition 5.1. Let $f(z) = \sum_{p \in \mathbb{Z}} a_p |p|^{\omega} \exp(i p \theta)$ be a harmonic function on \mathbb{D} and C^∞ on $\overline{\mathbb{D}}$. Then $f \in \mathcal{H}_M(\mathbb{D})$ if and only if, there exist constants $C > 0$ and $\rho > 0$ such that $|a_p| \leq C e^{-\rho} \Omega(\frac{|p|}{\rho})$, $|p| \gg 0$.

Proof. If $f \in \mathcal{H}_M(\mathbb{D})$ then $g(\theta) := f(\exp(i\theta)) \in \mathcal{H}_M([0, 2\pi])$. There exist, then, constants $C > 0$ and $\rho > 0$ such that $|g^n(\theta)| \leq C\rho^n M(n)$. But $g^{(n)}(\theta) = \sum_{p \in \mathbb{Z}} a_p (i p)^n \exp(i p \theta)$; consequently $|a_p||p|^n \leq C\rho^n M(n)$ for every $n \geq 1$; and, so, $|a_p| \leq C \inf_{n \geq 1} (\frac{\rho}{|p|})^n M(n)$. A suitable application of Taylor’s formula shows that the last infimum is bounded by $\exp(\frac{\rho}{|p|}) M(t)$, which is equal to $e^{\frac{\rho}{\rho}} \Omega(\frac{|p|}{\rho})$. Conversely, if the coefficients a_p satisfy these estimates then $|a_p| \leq C \inf_{n \geq 1} (\frac{\rho}{|p|})^n M(n)$; or equivalently $|a_p||p|^n \leq C \rho^n M(n)$, for every $n \geq 1$. Then, we have

$$|g^{(n)}(\theta)| \leq \sum_{p \in \mathbb{Z} \setminus \{0\}} |a_p||p|^n \frac{1}{|p|^2} \leq C \rho^{n+2} M(n+2) \sum_{p \in \mathbb{Z} \setminus \{0\}} \frac{1}{|p|^2}.$$

We conclude by (2.1) and the remark preceding the proposition (5.1) that $f \in \mathcal{H}_M(\mathbb{D})$. The proof is, then, complete. □

Let us remark that, in general, $f(z) = \sum_{p \in \mathbb{Z}} \Omega(|p|)|z|^p \exp(i p \theta)$. This function belongs to $\mathcal{H}_M(\mathbb{D})$ but it cannot be extended to be harmonic function on any neighborhood of \mathbb{D} as we verify easily.

Proof of part 1 of Theorem 4.4. Let

$$f(z) = \sum_{p \in \mathbb{Z}} a_p |p|^\omega \exp(i p \theta) \in \mathcal{H}_M(\mathbb{D}).$$

Without loss of generality, by proposition (5.1) we can suppose that we have $|a_p| \leq C e^{-\omega(|p|)}$, $|p| \gg 0$. Let $n \geq 0$ and consider all indexes $p \in \mathbb{Z}$ satisfying

(5.1)

For p satisfying (5.1) and $z \in \mathbb{D}_{n+1, \Gamma, 1}$ we have with $C_1 = C_0 e^{-\omega}$,

$$|a_p||p|^\omega \exp(i p \theta)| \leq C_1 e^{-\omega(|p|)|p| \ln(1 + \Gamma(n+1))} \leq C_1 e^{-\omega(|p|)+|p|\Gamma(n+1)} \leq C_1 e^{-\omega(|p|)+|p|\omega(|p|)} \leq C_1 e^{-\omega(|p|)+|p|\omega(|p|)}.$$
Using (3.1) and (3.2) and taking into account (5.1), we obtain
\[|a_p| |z|^p \exp(ip\theta)| \leq C_1 e^{-u(p)} \leq C_1 e^{-n}. \]

Otherwise the number \(\delta_n \) of indexes \(p \) satisfying (5.1) is bounded by
\[2(u^{-1}(n+1) - u^{-1}(n)) = 2\left(\frac{1}{\Gamma'(n)} - \frac{1}{\Gamma'(n+1)} \right) = 2 \frac{\Gamma''(\theta)}{(\Gamma'(\theta))^2} \]
where \(n < \theta < n+1 \). Condition (2.2) implies that the function \(\Gamma \) has subexponential decay when \(u \to \infty \). Then the function \(\frac{1}{\Gamma'} \) and its derivative have also subexponential decay. Thus \(\delta_n \leq 2e^{\frac{1}{2}n} \) for \(n \to 0 \). Now, set
\[P_\mu(z) = \sum_{u^{-1}(n) \leq |p| < u^{-1}(n+1)} a_p |z|^p \exp(ip\theta). \]

Clearly \(P_n \) is a harmonic polynomial and \(f(z) = \sum_{n \geq 0} P_n(z), \ z \in \mathbb{D} \). Furthermore, by the preceding estimates, we have \(\|P_n\|_{\mathbb{D}_{n+1}, \Gamma, A} \leq 2C_1 e^{\frac{1}{2}n} \). This completes the proof of part one of Theorem 4.1 by setting \(C = 2C_1 \) and \(\rho = e^{\frac{1}{2}} \). □

Proof of part 2 of Theorem 4.1. Without loss of generality, we can suppose that all \(f_n \) are real valued. Consequently \(f_n \) is the real part of holomorphic function \(g_n \) on \(\mathbb{D}_{n+1, \Gamma, A} \). We use Borel–Caratheodory’s inequality [5, p. 21], to get
\[\|g_n\|_{\mathbb{D}_{n+1, \Gamma, A}} \leq 2 \left(\frac{A}{2} \Gamma(n) \right)^{-1} \left(1 + \frac{A}{2} \Gamma(n) \right) \left\| f_n \right\|_{\mathbb{D}_{n+1, \Gamma, A}} + \left(\frac{A}{2} \Gamma(n) \right)^{-1} \left(2 + \frac{3A}{2} \Gamma(n) \right) |f_n(0)|. \]

This implies
\[\|g_n\|_{\mathbb{D}_{n+1, \Gamma, A}} \leq \frac{2C}{A} \left(4 + \frac{5A}{2} \Gamma(n) \right) \frac{\rho^n}{\Gamma(n)} \quad \text{for } n \gg 0. \]

We obtain, with \(\lambda := -\ln(\rho) \),
\[\|g_n\|_{\mathbb{D}_{n+1, \Gamma, A}} \leq \frac{2C}{A} \left(4 + \frac{5A}{2} \Gamma(n) \right) \exp(-\lambda n + \gamma(n)) \quad \text{for } n \gg 0. \]

By the assumption (1.1) and by [11, p. 224], we can choose \(\gamma = \mu \) and hence there exists \(B > 0 \) such that \(\gamma(n) \leq B \ln(n) \) \(n \gg 0 \). Consequently,
\[\|g_n\|_{\mathbb{D}_{n+1, \Gamma, A}} \leq C_1 \exp \left(-\frac{\lambda n}{2} \right) \quad \text{for } n \gg 0 \]
where \(C_1 = C(f, \Gamma, A) > 0 \) does not depend on \(n \). By Cauchy’s inequalities, for each \(p = 0, 1, \ldots \), we get
\[\|g_n^{(p)}\|_\mathbb{D} \leq C_1 p! \left(\frac{2}{A} \right)^p \left(\Gamma(n) \right)^{-p} \exp \left(-\frac{\lambda n}{2} \right) \leq C_1 p! \left(\frac{2}{A} \right)^p \left(\max_{t \geq 0} \exp \left(-\frac{\lambda t}{4} + p\gamma(t) \right) \right) \exp \left(-\frac{\lambda n}{4} \right). \]
That is because the closed disk $\overline{D}(z, \frac{\Delta r(n)}{2})$ is contained in D_{n+1} for every $z \in D$.

On the other hand the maximum of the function $u \mapsto \exp\left(-\frac{\lambda}{\mu} u + p \gamma(u)\right)$ is obtained at a_0 such that $\frac{\gamma(a_0)}{\mu} = \frac{2}{\lambda}$ and equal, by the system (3.3), to $\exp\left(p \mu\left(\frac{\lambda}{\mu}\right)\right)$.

By [1], Lemma 3, we can replace $\mu\left(\frac{\lambda}{\mu}\right)$ by $\mu(p)$. Then, we obtain
\[
\|g^{(p)}\|_D \leq C_1 p! \left(\frac{2}{\lambda}\right)^p \exp(p \mu(p)) \exp\left(-\frac{\lambda n}{4}\right).
\]
Adding the inequalities (5.2) over $n \gg 1$ and put $g := \sum_n g_n$, it follows that
\[
\|g^{(p)}\|_D \leq C_1 p! \left(\frac{2}{\lambda}\right)^p \exp(p \mu(p)) \sum_n \exp\left(-\frac{\lambda n}{4}\right);
\]
and, then, the derivatives of f have similar estimates, i.e.,
\[
\|f^{(p)}\|_D \leq C_1 p! \left(\frac{2}{\lambda}\right)^p \exp(p \mu(p)) \sum_n \exp\left(-\frac{\lambda n}{4}\right).
\]
We conclude that $f \in \mathcal{H}_{\Delta r}(D)$. This finishes the proof of Theorem 4.1. □

Example 5.1. $\mu(t) = 1 \ln(t)$, $k > 0$, which correspond to Gevrey class of order k. From (3.2) we obtain $u = \frac{1}{k} t$ and $\gamma(u) = \frac{1}{k} \ln(t) + \frac{1}{k} = \frac{k}{k}(\ln(t) + \ln(k))$; so we can choose $\gamma(u) = \frac{1}{k} \ln(u)$. In this situation (that is, if $\mu(t) = \frac{1}{k} \ln(t)$, $k > 0$) Theorem 4.1 is exactly the result of [2].

Example 5.2. $\mu(t) = \beta \ln(\ln(t))$ $\beta > 0$. We obtain $u = \frac{\beta t}{\ln(t)}$, so $\ln(u) \sim \ln(t)$, and $\gamma(u) = \beta \ln(\ln(t)) + \frac{\beta}{\ln(t)}$; so we can choose $\gamma(u) = \beta \ln(\ln(u))$.

We can construct other examples by taking $\mu(t) = a_1 \ln_1(t) + \cdots + a_p \ln_p(t)$ where $\ln_1(t) = \ln(t)$ and $\ln_{p+1}(t) = \ln(\ln_p(t))$, a_i are positive constants $i = 1, \ldots, p$ and $p \in \mathbb{N}^*$.

Example 5.3. $\mu(t) = at$, $a > 0$; (extremal case), we obtain $\gamma(u) = 2\sqrt{au}$.

5.1. Acknowledgements. The author would like to thank the editor and reviewers for their valuable comments and suggestions to improve the quality of the paper.

References