Subclasses of Meromorphic Functions Associated with a Convolution Operator

Mohamed K. Aoufa, Teodor Bulboacab, Tamer M. Seoudyc

aDepartment of Mathematics, Faculty of Science, Mansoura 35516, Egypt
bFaculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
cDepartment of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt

Abstract. The purpose of the present paper is to introduce a subclass of meromorphic functions by using the convolution operator, that generalizes some well-known classes previously defined by different authors. We discussed inclusion results, radius problems, and some connections with a certain integral operator.

1. Introduction

Let \(H(U) \) be the class of functions analytic in the open unit disk \(U = \{ z \in \mathbb{C} : |z| < 1 \} \), and let \(\Sigma(p,n) \) denote the class of all meromorphic functions of the form
\[
f(z) = \frac{1}{z^p} + \sum_{j=n}^{\infty} a_j z^j, \quad z \in \dot{U} = U \setminus \{0\}, \quad (p, n \in \mathbb{N} = \{1, 2, 3, \ldots\}).
\] (1)

Let \(\mathcal{P}_k(\alpha) \) be the class of functions \(g \), analytic in \(U \), satisfying the condition \(g(0) = 1 \) and
\[
\int_0^{2\pi} \left| \frac{\text{Re} g(z) - \alpha}{1 - \alpha} \right| d\theta \leq k\pi,
\] (2)
where \(z = re^{i\theta}, \ 0 < r < 1, \ k \geq 2 \) and \(0 \leq \alpha < 1 \). This class was introduced by Padmanabhan and Parvatham [15], and as a special case we note that the class \(\mathcal{P}_2(0) \) was introduced by Pinchuk [16]. Moreover, \(\mathcal{P}(\alpha) := \mathcal{P}_2(\alpha) \) is the class of analytic functions \(g \) in \(U \), with \(g(0) = 1 \), and the real part greater than \(\alpha \).

Remark 1.1. (i) Like in [13] and [14], from the definition (2) it can easily be seen that the function \(g \), analytic in \(U \), with \(g(0) = 1 \), belongs to \(\mathcal{P}_k(\alpha) \) if and only if there exists the functions \(g_1, g_2 \in \mathcal{P}(\alpha) \) such that
\[
g(z) = \left(\frac{k}{4} + \frac{1}{2} \right) g_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) g_2(z).
\] (3)

2010 Mathematics Subject Classification. 30C45
Keywords. Analytic functions, meromorphic functions, Bazilevič functions, convolution operators
Received: 16 July 2018; Accepted: 19 September 2018
Communicated by Dragan S. Djordjević
Email addresses: mkaouf127@yahoo.com (Mohamed K. Aouf), bulboaca@math.ubbcluj.ro (Teodor Bulboaca), tms@fayoum.edu.eg (Tamer M. Seoudy)
(ii) Notice that, if \(g \in H(U) \) with \(g(0) = 1 \), then there exist functions \(g_1, g_2 \in H(U) \) with \(g_1(0) = g_2(0) = 1 \), such that the function \(g \) can be written in the form (3). For example, taking
\[
g_1(z) = \frac{g(z) - 1}{k} + \frac{g(z) + 1}{2} \quad \text{and} \quad g_2(z) = \frac{g(z) + 1}{2} - \frac{g(z) - 1}{k},
\]
then \(g_1, g_2 \in H(U) \), and \(g_1(0) = g_2(0) = 1 \).

(iii) Using the fact that \(\mathcal{P}(\alpha) \) is the class of functions with real part greater than \(\alpha \), from the above representation formula it follows that
\[
\mathcal{P}_k(\alpha_2) \subset \mathcal{P}_k(\alpha_1), \quad \text{if} \quad 0 \leq \alpha_1 < \alpha_2 < 1.
\]

(iv) It is well-known from [12] that the class \(\mathcal{P}_k(\alpha) \) is a convex set.

We recall the differential operator \(\mathcal{D}^m_{\lambda, p} : \Sigma(p, n) \to \Sigma(p, n) \), defined as follows:
\[
\mathcal{D}^m_{\lambda, p} f(z) = f(z),
\]
\[
\mathcal{D}^m_{\lambda, p} f(z) = (1 - \lambda) \mathcal{D}^{m-1}_{\lambda, p} f(z) + \lambda \frac{(z^{p+1} \mathcal{D}^{m-1}_{\lambda, p} f(z))'}{z^p} = \frac{1}{z^p} \sum_{j=0}^{\infty} [1 + \lambda(j + p)] z^j, \quad (\lambda \geq 0, \ p \in \mathbb{N}, \ m \in \mathbb{N}),
\]
where the function \(f \in \Sigma(p, n) \) is given by (1). This operator could be written by using the Hadamard (convolution) product, like
\[
\mathcal{D}^m_{\lambda, p} = q_{p,n}(\lambda, m; z) \ast f(z),
\]
where
\[
q_{p,n}(\lambda, m; z) = \frac{1}{z^p} + \sum_{j=0}^{\infty} [1 + \lambda(j + p)] z^j.
\]

From the expansion formula (4) it is easy to verify the differentiation relation
\[
\lambda z \left(\mathcal{D}^m_{\lambda, p} f(z) \right)' = \mathcal{D}^{m+1}_{\lambda, p} f(z) - (1 + \lambda p) \mathcal{D}^m_{\lambda, p} f(z).
\]

Remark 1.2. The operator \(\mathcal{D}^m_{\lambda, p} \) was defined and studied by Aouf et al. [2] and Aouf and Seoudy [3], and we note that:

(i) The operator \(\mathcal{D}^m_{1,p} = \mathcal{D}^m_{p} \) was introduced and studied by Aouf and Hossen [1], Liu and Owa [8], Liu and Srivastava [9], and Srivastava and Patel [20].

(ii) The operator \(\mathcal{D}^m_{1,1} = \mathcal{D}^m \) was introduced and studied by Uralegaddi and Somanatha [21]. More general results than the work [21], with a different notation for convolution (to distinguish from the analytic case) were obtained in [17].

Next, by using the convolution operator \(\mathcal{D}^m_{\lambda, p} \), we will introduce the subclass of \(p \)-valent Bazilević functions of \(\Sigma(p, n) \) as follows:

Definition 1.3. A function \(f \in \Sigma(p, n) \) is said to be in the class \(\Sigma_{\lambda, p}^m(\mu; \gamma, \alpha) \) if it satisfies the condition
\[
(1 - \gamma) \left(z^p \mathcal{D}^m_{\lambda, p} f(z) \right) + \gamma \mathcal{D}^{m+1}_{\lambda, p} f(z) = \mathcal{D}^{m+1}_{\lambda, p} f(z) \in \mathcal{P}_k(\alpha),
\]
\[
(k \geq 2, \ \gamma \geq 0, \ \mu > 0, \ 0 \leq \alpha < 1),
\]
where all the powers represent the principal branches, i.e. \(\log 1 = 0 \).
We need to remark that, since the left-hand side function from the above definition need to be analytic in U, we implicitly assumed that $D_{\lambda, p}^m f(z) \neq 0$ for all $z \in U$.

To prove our main results, the following lemma will be required in our investigation. We emphasize that slightly general situation than the above lemma is covered in [18], which might be useful to cover the case of nonlinear differential subordination.

Lemma 1.4. [19] If g is an analytic function in U, with $g(0) = 1$, and if λ_1 is a complex number satisfying $\Re \lambda_1 \geq 0$, $\lambda_1 \neq 0$, then

$$\Re [g(z) + \lambda_1 zg'(z)] > \alpha, \ z \in U, \quad (0 \leq \alpha < 1)$$

implies

$$\Re g(z) > \beta, \ z \in U,$$

where β is given by

$$\beta = \alpha + (1 - \alpha)(2\beta_1 - 1), \quad \beta_1 = \int_0^1 (1 + t\Re \lambda_1)^{-1} dt,$$ \hspace{1cm} (7)

and β_1 is an increasing function of $\Re \lambda_1$, and $\frac{1}{2} \leq \beta_1 < 1$. The estimate is sharp in the sense that the bound cannot be improved.

In this paper we investigate several properties of the class $\Sigma B_{k}^m(p; \gamma, \mu, \alpha)$ associated with the operator $D_{\lambda, p}^m$, like inclusion results, radius problems, and some connections with the generalized Bernardi–Libera–Livingston integral operator introduced in [6].

2. Main Results

Unless otherwise mentioned, we assume throughout this paper that $k \geq 2$, $\gamma \geq 0$, $\mu > 0$, $0 \leq \alpha < 1$, and all the powers represent the principal branches, i.e. $\log 1 = 0$.

Theorem 2.1. If $f \in \Sigma B_{k}^m(p; \lambda; \gamma, \mu, \alpha)$, then

$$(z^p D_{\lambda, p}^m f(z))^{\mu} \in \mathcal{P}_k(\beta),$$ \hspace{1cm} (8)

where β is given by (7), with $\lambda_1 = \frac{\gamma \lambda}{\mu}$.

Proof. Since the implication is obvious for $\gamma = 0$, suppose that $\gamma > 0$. Let f be an arbitrary function in $\Sigma B_{k}^m(p; \lambda; \gamma, \mu, \alpha)$, and denote

$$g(z) := (z^p D_{\lambda, p}^m f(z))^{\mu}. \hspace{1cm} (9)$$

It follows that g is analytic in U, with $g(0) = 1$, and according to the part (ii) of Remarks 1.1 the function g can be written in the form

$$g(z) = (k^4 + \frac{1}{2}) g_1(z) - (k^4 - \frac{1}{2}) g_2(z), \hspace{1cm} (10)$$

where g_1 and g_2 are analytic in U, with $g_1(z) = g_2(z) = 1$.

From the part (i) of Remarks 1.1 we have that $g \in \mathcal{P}_k(\beta)$, if and only if the function g has the representation given by the above relation, where $g_1, g_2 \in \mathcal{P}(\alpha)$. Consequently, supposing that g is of the form (10), we will prove that $g_1, g_2 \in \mathcal{P}(\alpha)$.
Using the differentiation formula (6) and the notation (9), after an elementary computation we obtain
\[(1 - \gamma) \left(s^\mu D^n_{\lambda,p} f(z) \right) + \gamma \left(s^\mu D^n_{\lambda,p} f(z) \right) = g(z) + \frac{\gamma \lambda}{\mu} zg'(z). \quad (11)\]

Now, using the representation formula (3), we have
\[g(z) + \frac{\gamma \lambda}{\mu} zg'(z) = \left(\frac{k + \frac{1}{2}}{4} \right) \left[g_1(z) + \frac{\gamma \lambda}{\mu} zg'(z) \right] - \left(\frac{k - \frac{1}{2}}{4} \right) \left[g_2(z) + \frac{\gamma \lambda}{\mu} zg'(z) \right]. \quad (12)\]

Since \(f \in \Sigma B_k^m(p, \lambda; \gamma, \mu, \alpha) \), from the relations (11) and (12) it follows that
\[g_i(z) + \frac{\gamma \lambda}{\mu} zg'(z) \in \mathcal{P}(\alpha), \quad i = 1, 2. \quad (13)\]

To prove our result we need to show that (13) implies \(g_i \in \mathcal{P}(\beta) \), \(i = 1, 2 \). Thus, the conditions (13) are equivalent to
\[\text{Re} \left[g_i(z) + \lambda_1 zg'(z) \right] > \alpha, \quad z \in \mathbb{U},\]

with \(\lambda_1 = \frac{\gamma \lambda}{\mu} \). According to Lemma 1.4, it follows that \(g_i \in \mathcal{P}(\beta) \), where \(\beta \) is given by (7), with \(\lambda_1 = \frac{\gamma \lambda}{\mu} \). Thus, according to the part (i) of Remarks 1.1 and to the representation formula (3) we obtain the desired result. \(\square \)

Theorem 2.2. If \(0 \leq \gamma_1 < \gamma_2 \), then
\[\Sigma B_k^m(p, \lambda; \gamma_2, \mu, \alpha) \subset \Sigma B_k^m(p, \lambda; \gamma_1, \mu, \alpha).\]

Proof. If we consider an arbitrary function \(f \in \Sigma B_k^m(p, \lambda; \gamma_2, \mu, \alpha) \), then \(\varphi_2 \in \mathcal{P}(\alpha) \), where
\[\varphi_2(z) := (1 - \gamma_2) \left(s^\mu D^n_{\lambda,p} f(z) \right) + \gamma_2 \left(s^\mu D^n_{\lambda,p} f(z) \right).\]

According to Theorem 2.1 we have
\[\varphi_1(z) := \left(s^\mu D^n_{\lambda,p} f(z) \right) \in \mathcal{P}(\beta),\]

where \(\beta \) is given by (7), with \(\lambda_1 = \frac{\gamma \lambda}{\mu} \). Since \(\beta = \alpha + (1 - \alpha)(2\beta_1 - 1) \) and \(\frac{1}{2} \leq \beta_1 < 1 \), it follows that \(\beta \geq \alpha \), and from the part (ii) of Remarks 1.1 we conclude that \(\mathcal{P}(\beta) \subset \mathcal{P}(\alpha) \), hence \(\varphi_1 \in \mathcal{P}(\alpha) \).

A simple computation shows that
\[(1 - \gamma_1) \left(s^\mu D^n_{\lambda,p} f(z) \right) + \gamma_1 \left(s^\mu D^n_{\lambda,p} f(z) \right) = \left(1 - \frac{\gamma_1}{\gamma_2} \right) \varphi_1(z) + \frac{\gamma_1}{\gamma_2} \varphi_2(z). \quad (14)\]

Since the class \(\mathcal{P}(\alpha) \) is a convex set (see the part (iv) of Remarks 1.1), it follows that right-hand side of (14) belongs to \(\mathcal{P}(\alpha) \) for \(0 \leq \gamma_1 < \gamma_2 \), which implies that \(f \in \Sigma B_k^m(p, \lambda; \gamma_1, \mu, \alpha) \). \(\square \)
Theorem 2.3. Let us define the integral operator \(J_{c,p} : \Sigma(p,n) \to \Sigma(p,n) \) by
\[
J_{c,p}f(z) = \frac{c + 1}{z^{c+1}} \int_0^z t^{-p} f(t) dt \quad (c > -1).
\] (15)

We will give a short proof that this operator is well-defined, as follows. If the function \(f \in \Sigma(p,n) \) is of the form (1), then the definition (15) can be written
\[
J_{c,p}f(z) = \frac{1}{z^{c+1}} \int_0^z t^{-p} (t^c f(t)) dt = \frac{1}{z^{c+1}} \int_0^z t^c \varphi(t) dt = \frac{c + 1}{z^{c+1}} J_{c,p} \varphi(z),
\]
where
\[
J_{c,p} \varphi(z) = \frac{1}{z^{c+1}} \int_0^z t^c \varphi(t) dt
\]
and
\[
\varphi(z) = z^p f(z) = 1 + \sum_{j=n}^\infty a_j z^{j+p}, \quad z \in U,
\] (16)
is analytic in \(U \). We see that integral operator \(J_{c,p} \) defined above is similar to that of Lemma 1.2c. of [11]. According to this lemma, it follows that \(J_{c,p} \) is an analytic integral operator for any function \(\varphi \) of the form (16) whenever \(\text{Re} \, c > -1 \), and \(J_{c,p}f \in \Sigma(p,n) \) has the form
\[
J_{c,p}f(z) = \frac{1}{z^{c}} + \sum_{j=0}^{\infty} \frac{a_j}{j + p + c} z^j, \quad z \in U.
\]

The operator \(J_{c,p} \) was introduced by Kumar and Shukla [6], connected with the Bernardi–Libera–Livingston integral operators (see [4], [7] and [10]).

Theorem 2.3. If \(f \in \Sigma(p,n) \), the integral operator \(J_{c,p} \) is given by (15), \(\gamma \geq 0 \) and \(\mu > 0 \), then
\[
(1 - \gamma) \left(z^p D_{\lambda,p}^\mu J_{c,p}f(z) \right) + \gamma z^p D_{\lambda,p}^\mu f(z) \left(z^p D_{\lambda,p}^\mu J_{c,p}f(z) \right)^{\mu-1} \in \mathcal{P}_k(a),
\]
implies that
\[
\left(z^p D_{\lambda,p}^\mu J_{c,p}f(z) \right)^{\mu} \in \mathcal{P}_k(\beta),
\]
where \(\beta \) is given by (7), with \(\lambda_1 = \frac{\gamma}{\mu(c+1)} \).

Proof. Like in the remark mentioned after the Definition 1.3, since the left-hand side function from the above definition need to be analytic in \(U \), we implicitly assumed that \(D_{\lambda,p}^\mu J_{c,p}f(z) \neq 0 \) for all \(z \in U \).

The implication is obvious for \(\gamma = 0 \), hence suppose that \(\gamma > 0 \). Differentiating the relation (15) we have
\[
z \left(J_{c,p}f(z) \right)' = (c + 1)f(z) - (c + p + 1)J_{c,p}f(z),
\]
and using the fact that \(D_{\lambda,p}^\mu \) and \(J_{c,p} \) commute, this implies
\[
z \left(D_{\lambda,p}^\mu J_{c,p}f(z) \right)' = (c + 1)D_{\lambda,p}^\mu f(z) - (c + p + 1)D_{\lambda,p}^\mu J_{c,p}f(z).
\] (17)
If we let
\[g(z) := (z^p D^m_{λ, p, f}(z))^μ, \]
then by part (ii) of Remarks 1.1 the function \(g \) can be written in the form (10), where \(g_1 \) and \(g_2 \) are analytic in \(U \), with \(g_1(0) = g_2(0) = 1 \). According to the the part (i) of Remarks 1.1 we need to prove that \(g_1, g_2 \in \mathcal{P}(β) \).

Using (17), from the above relation we have
\[
(1 - γ)(z^p D^m_{λ, p, f}(z))^μ + γ z^p D^m_{λ, p, f}(z)(z^p D^m_{λ, p, f}(z))^{μ-1} =
\]
\[
g(z) + \frac{γ}{μ(c + 1)} zg_1(z) = \left(\frac{k}{4} + \frac{1}{2}\right) \left[g_1(z) + \frac{γ}{μ(c + 1)} zg_1^1(z) \right] - \frac{k}{4 - 2} \left[g_2(z) + \frac{γ}{μ(c + 1)} zg_2^1(z) \right] \in \mathcal{P}(α).
\]

Now, from the part (i) of Remarks 1.1 it follows that
\[
g_i(z) + \frac{γ}{μ(c + 1)} zg_i^1(z) \in \mathcal{P}(α), \quad i = 1, 2,
\]
and from Lemma 1.4 we conclude that \(g_i \in \mathcal{P}(β), \quad i = 1, 2, \) with \(β \) given by (7) and \(λ_1 = \frac{γ}{μ(c + 1)} \). □

The following result represents the converse of Theorem 2.1.

Theorem 2.4. If \(f \in Σ(p, n) \) such that \(\left(z^p D^m_{λ, p, f}(z)\right)^μ \in \mathcal{P}(α) \), then \(ρ^p f(ρz) \in ΣB^m(p, λ; γ, μ, α) \), with
\[
ρ = \min \left\{ \frac{-nγλ + \sqrt{μ^2 - n^2γ^2λ^2}}{μ}; r_0 \right\}
\]
where
\[
r_0 = \begin{cases} \min \{ r > 0 : φ(r) = 0 \}, & \text{if } \exists r > 0 : φ(r) = 0 \\ 1, & \text{if } \forall r > 0 : φ(r) = 0, \end{cases}
\]
and
\[
φ(r) = (2α - 1)r^2 + 2\left[2α - 1 - n(1 - α)\frac{γλ}{μ}\right]r + 1.
\]

Proof. For an arbitrary \(f \in Σ(p, n) \) such that \(\left(z^p D^m_{λ, p, f}(z)\right)^μ \in \mathcal{P}(α) \), let \(g \) be defined as in (9), i.e.
\[
\left(z^p D^m_{λ, p, f}(z)\right)^μ = g(z) \in \mathcal{P}(α).
\]

From the part (i) of Remarks 1.1 we have that (20) holds if and only if
\[
g(z) = \left(\frac{k}{4} + \frac{1}{2}\right) g_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right) g_2(z),
\]
where \(g_1, g_2 \in \mathcal{P}(α) \).
Using the above representation formula, like in the proof of Theorem 2.1 we deduce that

\[
(1 - \gamma) \left(z^p \mathcal{D}_{\alpha, p, f(z)}^{m+1} \right) + \gamma \frac{\mathcal{D}_{\alpha, p, f(z)}^{m+1}}{z^p \mathcal{D}_{\alpha, p, f(z)}^m} \left(z^p \mathcal{D}_{\alpha, p, f(z)}^m \right)^\mu = \left(\frac{k}{4} + \frac{1}{2} \right) \left[g_1(z) + \frac{\gamma \lambda}{\mu} z g_1'(z) \right] - \left(\frac{k}{4} - \frac{1}{2} \right) \left[g_2(z) + \frac{\gamma \lambda}{\mu} z g_2'(z) \right],
\]

and substituting \(G_i(z) := \frac{g_i(z) - \alpha}{1 - \alpha}, i = 1, 2 \), we finally obtain

\[
(1 - \gamma) \left(z^p \mathcal{D}_{\alpha, p, f(z)}^{m+1} \right) + \gamma \frac{\mathcal{D}_{\alpha, p, f(z)}^{m+1}}{z^p \mathcal{D}_{\alpha, p, f(z)}^m} \left(z^p \mathcal{D}_{\alpha, p, f(z)}^m \right)^\mu = \left(\frac{k}{4} + \frac{1}{2} \right) \left[(1 - \alpha) \left(G_1(z) + \frac{\alpha}{1 - \alpha} + \frac{\gamma \lambda}{\mu} z G_1'(z) \right) - \frac{1}{2} \right] - \left(\frac{k}{4} - \frac{1}{2} \right) \left[(1 - \alpha) \left(G_2(z) + \frac{\alpha}{1 - \alpha} + \frac{\gamma \lambda}{\mu} z G_2'(z) \right) \right],
\]

where \(G_1, G_2 \in \mathcal{P}(0) \).

To prove our result we need to determine the value of \(\rho \), such that

\[
\text{Re} \left[G_i(z) + \frac{\alpha}{1 - \alpha} + \frac{\gamma \lambda}{\mu} z G_i'(z) \right] > 0, \quad \text{for } |z| < \rho, \ i = 1, 2,
\]

whenever \(G_1, G_2 \in \mathcal{P}(0) \).

Since \(f \in \Sigma(p, n) \), using the well-known estimates [5] for the class \(\mathcal{P}(0) \), i.e.

\[
|z G_i'(z)| \leq \frac{2m^n}{1 - r^{2n}} \text{Re} G_i(z), \quad |z| \leq r < 1, \ i = 1, 2,
\]

\[
\text{Re} G_i(z) \geq \frac{1 - r^n}{1 + r^n}, \quad |z| \leq r < 1, \ i = 1, 2,
\]

we conclude that

\[
\text{Re} \left[G_i(z) + \frac{\alpha}{1 - \alpha} + \frac{\gamma \lambda}{\mu} z G_i'(z) \right] \geq \frac{\alpha}{1 - \alpha} + \text{Re} G_i(z) - \frac{\gamma \lambda}{\mu} |z G_i'(z)| \geq \frac{\alpha}{1 - \alpha} + \text{Re} G_i(z) \left[1 - \frac{\gamma \lambda}{\mu} \frac{2m^n}{1 - r^{2n}} \right],
\]

for all \(|z| \leq r < 1 \) and \(i = 1, 2 \).

A simple calculation shows that \(1 - \frac{\gamma \lambda}{\mu} \frac{2m^n}{1 - r^{2n}} \geq 0 \) if and only if

\[
r \in \left[0, \left(-\frac{2\gamma \lambda}{\mu} + \frac{\mu^2 + n^2\gamma^2 \lambda^2}{\mu} \right) \right] \frac{1}{n},
\]

and assuming that (22) holds, from (21) we obtain

\[
\text{Re} \left[G_i(z) + \frac{\alpha}{1 - \alpha} + \frac{\gamma \lambda}{\mu} z G_i'(z) \right] \geq \frac{\alpha}{1 - \alpha} + \frac{1 - r^n}{1 + r^n} \left[1 - \frac{\gamma \lambda}{\mu} \frac{2m^n}{1 - r^{2n}} \right], \quad |z| \leq r < 1, \text{ for } i = 1, 2.
\]
It is easy to check that the right-hand side of the above inequality is greater or equal than zero if and only if
\[r \in [0, \min \{1; r_0\}], \]
where \(r_0 \) is given by (19), and combining this with (22) we obtain our result.

Remark 2.5. (i) For the special case \(n = 1 \), it follows that if \(f \in \Sigma(p, 1) \) then
\[
\rho = \min \left\{ -\frac{\gamma \lambda}{\mu} + \sqrt{\frac{\mu^2 + \gamma^2 \lambda^2}{\mu}}; r_0 \right\}.
\]
(ii) We remark that for the special case \(n = 1 \) and \(\alpha = 0 \), the formula (18) reduces to
\[
\rho = -\left(1 + \frac{\gamma \lambda}{\mu}\right) + \sqrt{\left(1 + \frac{\gamma \lambda}{\mu}\right)^2 + 1}.
\]
(iii) Putting \(\lambda = 1 \) in the above results, we obtain the similar results associated with the operator \(\mathcal{D}_m^\rho \).
(iv) Taking \(\lambda = p = 1 \) in the above results, we obtain the similar results involving the operator \(\mathcal{D}_m^\rho \).

Acknowledgments. The authors are grateful to the reviewers of this article, that gave valuable comments and advices, in order to revise and improve the content of the paper.

References

