On the Geometry of Trans-Para-Sasakian Manifolds

Simeon Zamkovoy

Abstract. In this paper, we introduce the trans-para-Sasakian manifolds and we study their geometry. These manifolds are an analogue of the trans-Sasakian manifolds in the Riemannian geometry. We shall investigate many curvature properties of these manifolds and we shall give many conditions under which the manifolds are either η–Einstein or Einstein manifolds.

1. Introduction

In Grey-Hervella classification of almost Hermitian manifolds (see [3]), there appears a class, W_4, of Hermitian manifolds which are closely related to locally conformal Kähler manifolds. An almost contact structure on a manifold M is called a trans-Sasakian structure (see [8]) if the product manifold $M \times \mathbb{R}$ belongs to the class W_4. The class $C_5 \oplus C_5$ (see [6], [7]) coincides with the class of trans-Sasakian structures of type (α, β). In fact, in (see [7]), local nature of the two subclasses, namely the C_5 and the C_6 structures, of trans-Sasakian structures are characterized completely. We note that the trans-Sasakian structures of type $(0,0), (0, \beta)$ and $(\alpha,0)$ are cosymplectic (see [1]), β–Kenmotsu (see [4]) and α–Sasakian (see [4]), respectively. We consider the trans-para-Sasakian manifolds as an analogue of the trans-Sasakian manifolds. A trans-para-Sasakian manifold is a trans-para-Sasakian structure of type (α, β), where α and β are smooth functions. The trans-para-Sasakian manifolds of types (α, β), and are respectively the para-cosymplectic, para-Sasakian (in case $\alpha = 1$, these are just the para-Sasakian manifolds; in case $\alpha = -1$, these are the quasi-para-Sasakian manifolds, see [11]) and para-Kenmotsu (for the case $\beta = 1$ see [12]). In the second section, we give the formal definition of trans-para-Sasakian manifolds of type (α, β) and we prove some basic properties. We give an example for a 3-dimensional trans-para-Sasakian manifold. In the last section, we investigate the curvature properties of the trans-para-Sasakian manifolds. Further, we find many conditions under which the manifolds are either η–Einstein or Einstein manifolds.
2. Preliminaries

A \((2n+1)\)-dimensional smooth manifold \(M^{(2n+1)}\) has an almost paracontact structure \((\varphi, \xi, \eta)\) if it admits a tensor field \(\varphi\) of type \((1, 1)\), a vector field \(\xi\) and a 1-form \(\eta\) satisfying the following compatibility conditions

\[
\begin{align*}
(i) & \quad \varphi(\xi) = 0, \quad \eta \circ \varphi = 0, \\
(ii) & \quad \eta(\xi) = 1 \quad \varphi^2 = id - \eta \otimes \xi, \\
(iii) & \quad \text{distribution } \mathcal{D} : p \in M \rightarrow \mathcal{D}_p \subset T_pM : \\
& \quad \mathcal{D}_p = \text{Ker} \eta = \{X \in T_pM : \eta(X) = 0\} \text{ is called paracontact distribution generated by } \eta.
\end{align*}
\]

The tensor field \(\varphi\) induces an almost paracomplex structure [5] on each fibre on \(\mathcal{D}\) and \((\mathcal{D}, \varphi, g_\mathcal{D})\) is a \(2n\)-dimensional almost paracomplex distribution. Since \(g\) is non-degenerate metric on \(M\) and \(\xi\) is non-isotropic, the paracontact distribution \(\mathcal{D}\) is non-degenerate.

An immediate consequence of the definition of the almost paracontact structure is that the endomorphism \(\varphi\) has rank \(2n\), \(\varphi \xi = 0\) and \(\eta \circ \varphi = 0\), (see [1, 2] for the almost contact case).

If a manifold \(M^{(2n+1)}\) with \((\varphi, \xi, \eta)\)-structure admits a pseudo-Riemannian metric \(g\) such that

\[
g(\varphi X, \varphi Y) = -g(X, Y) + \eta(X)\eta(Y),
\]

then we say that \(M^{(2n+1)}\) has an almost paracontact metric structure and \(g\) is called compatible. Any compatible metric \(g\) with a given almost paracontact structure is necessarily of signature \((n + 1, n)\).

Note that setting \(Y = \xi\), we have \(\eta(X) = g(X, \xi)\).

Further, any almost paracontact structure admits a compatible metric.

Definition 2.1. If \(g(X, \varphi Y) = d\eta(X, Y)\) (where \(d\eta(X, Y) = \frac{1}{2}(X\eta(Y) - Y\eta(X) - \eta([X, Y]))\) then \(\eta\) is a paracontact form and the almost paracontact metric manifold \((M, \varphi, \xi, \eta, g)\) is said to be a paracontact metric manifold.

A paracontact metric manifold for which \(\xi\) is Killing is called a K-paracontact manifold. A paracontact structure on \(M^{(2n+1)}\) naturally gives rise to an almost paracomplex structure on the product \(M^{(2n+1)} \times \mathbb{R}\). If this almost paracomplex structure is integrable, then the given paracontact metric manifold is said to be para-Sasakian. Equivalently, (see [10]) a paracontact metric manifold is a para-Sasakian if and only if

\[
(\nabla_X \varphi)Y = -g(X, Y)\xi + \eta(Y)X,
\]

for all vector fields \(X\) and \(Y\) (where \(V\) is the Livi-Civita connection of \(g\)).

Definition 2.2. If \((\nabla_X \varphi)Y = \alpha(-g(X, Y)\xi + \eta(Y)\xi) + \beta(g(X, \varphi Y)\xi + \eta(Y)\varphi X),\) then the manifold \((M^{(2n+1)}, \varphi, \eta, \xi, g)\) is said to be a trans-para-Sasakian manifold.

From Definition 2.2 we have

\[
\nabla_X \xi = -\alpha \varphi X - \beta(X - \eta(X)\xi).
\]

Definition 2.3. A \((2n+1)\)-dimensional almost paracontact metric manifold is called normal if \(N(X, Y) - 2d\eta(X, Y)\xi = 0\), where \(N(X, Y) = \varphi^2[X, Y] + [\varphi X, \varphi Y] - \varphi[X, \varphi Y] - \varphi[X, \varphi Y]\) is the Nijenhuis torsion tensor of \(\varphi\) (see [10]).

Denoting by \(\mathcal{L}\) the Lie differentiation of \(g\), we see

Proposition 2.4. Let \((M^{(2n+1)}, \varphi, \eta, \xi, g)\) be a trans-para-Sasakian manifold. Then we have

\[
(\nabla_X \eta)Y = \alpha g(X, \varphi Y) - \beta(g(X, Y) - \eta(X)\eta(Y)),
\]

\[
d\eta(X, Y) = \alpha g(X, \varphi Y),
\]
the standard coordinates in ∇ of 1

Let 3. Some curvature properties of trans-para-Sasakian manifolds

Finally, the sectional curvature ∇

Let us consider the 3-dimensional manifold M

Example 2.5. Let us consider the 3-dimensional manifold $M^3 = \{ (x, y, z) : (x, y, z) \in \mathbb{R}^3 \}, z \neq 0$, where (x, y, z) are the standard coordinates in \mathbb{R}^3. We choose the vector fields

$E_1 = e^x \left(\frac{\partial}{\partial X} + y \frac{\partial}{\partial Z} \right), \quad E_2 = e^x \frac{\partial}{\partial Y}, \quad E_3 = \frac{\partial}{\partial Z}$

which are linearly independent at each point of M. We define an almost paracontact structure (φ, ξ, η) and a pseudo-Riemannian metric g in the following way:

$\varphi E_1 = E_2, \quad \varphi E_2 = E_1, \quad \varphi E_3 = 0$

$\xi = E_3, \quad \eta(E_3) = 1, \quad \eta(E_1) = \eta(E_2) = 0,$

$g(E_1, E_1) = g(E_3, E_3) = -g(E_2, E_2) = 1,$

$g(E_i, E_j) = 0, \quad i \neq j \in \{1, 2, 3\}$.

By the definition of Lie bracket, we have

$[E_1, E_2] = ye^2E_2 - e^2E_3, \quad [E_2, E_3] = -E_2, \quad [E_1, E_3] = -E_3.$

Then $(M, \varphi, \xi, \eta, g)$ is a 3-dimensional almost paracontact manifold. The Koszul equality becomes

$V_{E_1} E_1 = E_3, \quad V_{E_1} E_2 = -\frac{1}{2} e^{2z} E_3, \quad V_{E_1} E_3 = -E_1 - \frac{1}{2} e^{2z} E_2,$

$V_{E_2} E_1 = -ye^2E_2 + \frac{1}{2} e^{2z} E_3, \quad V_{E_2} E_2 = -ye^2E_1 - E_3, \quad V_{E_2} E_3 = -\frac{1}{2} e^{2z} E_1 - E_2,$

$V_{E_3} E_1 = -\frac{1}{2} e^{2z} E_2, \quad V_{E_3} E_2 = -\frac{1}{2} e^{2z} E_1, \quad V_{E_3} E_3 = 0.$

We have $V_{E_i} \xi = -\alpha \varphi E_i - \beta \eta \varphi E_i, \quad V_{E_i} \xi = -\alpha \varphi E_i - \beta \eta \varphi E_i, \quad V_{E_i} \xi = 0$ for $E_3 = \xi$, where $\alpha = \frac{1}{2} e^{2z}$ and $\beta = 1$.

Again, by virtue of (5) and $(V_{E_i} \eta) Y = Y(\eta(\varphi Y)) - \eta(V_{E_i} Y)$ we obtain

$(V_{E_i} \eta) E_1 = -\beta = -1, \quad (V_{E_i} \eta) E_1 = \alpha = -\frac{1}{2} e^{2z}, \quad (V_{E_i} \eta) E_1 = 0.$

Thus from above the calculation the condition (4) and (5) are satisfied and the structure (φ, ξ, η, g) is a trans-para-Sasakian structure of type (α, β), where $\alpha = \frac{1}{2} e^{2z}$ and $\beta = 1$. Consequently $(M^3, \varphi, \xi, \eta, g)$ is a trans-para-Sasakian manifold.

Finally, the sectional curvature $K(\xi, X) = \epsilon_X R(X, \xi, \xi, X)$, where $|X| = \epsilon_X = \pm 1$, of a plane section spanned by ξ and the vector X orthogonal to ξ is called ξ-sectional curvature, where denoting by R the curvature tensor of V.

3. Some curvature properties of trans-para-Sasakian manifolds

We begin with the following Lemma.

Lemma 3.1. Let $(M^{2n+1}, \varphi, \eta, \xi, g)$ be a trans-para-Sasakian manifold. Then we have

$R(X, Y) \xi = -\alpha^2 + \beta^2)(\eta(Y)X - \eta(X)Y) - 2\alpha \beta(\eta(Y)\varphi X - \eta(X)\varphi Y) - X(\alpha)\varphi Y + Y(\alpha)\varphi X + Y(\beta)\varphi^2 X - X(\beta)\varphi^2 Y$. (10)
Proof. Using Definition 2.2, we obtain
\[\nabla_X \nabla_Y \xi = \nabla_X (-\alpha \varphi Y - \beta (Y - \eta(Y))\xi) = \]
\[= -X(\alpha)\varphi Y - aV_X \varphi Y - X(\beta)\varphi^2 Y - \beta V_X Y - \beta (X\eta(Y))\xi - \]
\[-\alpha \beta \eta(Y)\varphi X - \beta^2 \eta(Y)X + \beta^2 \eta(X)\eta(Y)\xi, \]

From here and (4), we get
\[R(X, Y)\xi = \nabla_X \nabla_Y \xi - \nabla_Y \nabla_X \xi - \nabla_{[X,Y]} \xi = \]
\[= -X(\alpha)\varphi Y + Y(\alpha)\varphi X - a((V_X \varphi)Y - (V_Y \varphi)X) - \]
\[-X(\beta)\varphi^2 Y + Y(\beta)\varphi^2 X + \beta((V_X \eta)Y - (V_Y \eta)X)\xi - \]
\[-\alpha \beta (\eta(Y)\varphi X - \eta(X)\varphi Y) - \beta^2 (\eta(Y)X - \eta(X)Y), \]

which in view of Definition 2.2 and (5) gives (10). \(\square \)

Lemma 3.1 yields the following

Proposition 3.2. If \((M^{2n+1}, \varphi, \eta, \xi, g)\) is a trans-para-Sasakian manifold, then it is of \(\xi \)-sectional curvature \(K(\xi, X) = -\varepsilon_X(\alpha^2 + \beta^2 - \xi(\beta)). \)

In a trans-para-Sasakian manifolds the functions \(\alpha \) and \(\beta \) can not be arbitrary. This fact is shown in the following

Theorem 3.3. In trans-para-Sasakian manifold, we have
\[R(\xi, X)\xi = (\alpha^2 + \beta^2 - \xi(\beta))(X - \eta(X))\xi, \quad (11) \]
\[2\alpha \beta - \xi(\alpha) = 0. \quad (12) \]

Proof. Using (10) in \(R(\xi, Z, X, Y) = R(X, Y, \xi, Z) \), we get
\[R(\xi, Z)X = - (\alpha^2 + \beta^2)(g(X, Z) - \eta(X)Z) - 2\alpha \beta (g(\varphi X, Z)\xi + \eta(X)\varphi Z) + \]
\[+X(\alpha)\varphi Z + g(\varphi X, Z)\varphi \alpha - X(\beta)(Z - \eta(Z))\xi - \eta(\varphi X, \varphi Z)\varphi \beta. \quad (13) \]

From (10), we get
\[R(\xi, X)\xi = (\alpha^2 + \beta^2 - \xi(\beta))(X - \eta(X))\xi + (2\alpha \beta - \xi(\alpha))\varphi Y, \]

while gives us (10)
\[R(\xi, X)\xi = (\alpha^2 + \beta^2 - \xi(\beta))(X - \eta(X))\xi - (2\alpha \beta - \xi(\alpha))\varphi Y. \]

The above two equations provide (11) and (12). \(\square \)

From Lemma 3.1, we have the following

Proposition 3.4. In a \((2n + 1)\)-dimensional tran-para-Sasakian manifold, we have
\[\text{Ric}(X, \xi) = -(2n(\alpha^2 + \beta^2) - \xi(\beta))\eta(X) + (2n - 1)\xi(\beta) - \varphi X(\alpha), \quad (14) \]
\[Q\xi = -(2n(\alpha^2 + \beta^2) - \xi(\beta))\xi + (2n - 1)\varphi \alpha + \varphi \eta(\varphi \alpha), \quad (15) \]

where \(\text{Ric} \) is the Ricci tensor and \(Q \) is the Ricci operator given by
\[\text{Ric}(X, Y) = g(QX, Y). \quad (16) \]
Corollary 3.5. If in a \((2n + 1)\)-dimensional trans-para-Sasakian manifold we have \(\varphi(\text{grad}a) = -(2n - 1)\text{grad} \beta\), then
\[
\xi(\beta) = g(\xi, \text{grad} \beta) = -\frac{1}{2n - 1} g(\xi, \varphi(\text{grad}a)) = 0,
\]
and hence
\[
\text{Ric}(X, \xi) = -2n(\alpha^2 + \beta^2)\eta(X),
\]
\[
Q\xi = -2n(\alpha^2 + \beta^2) \xi.
\]

From here on, we shall assume that \(\varphi(\text{grad}a) = -(2n - 1)\text{grad} \beta\).

The Weyl-projective curvature tensor \(P\) is defined as
\[
P(X, Y)Z = R(X, Y)Z - \frac{1}{2n}(\text{Ric}(Y, Z)X - \text{Ric}(X, Z)Y).
\]

Hence we can state the following

Theorem 3.6. A Weyl projectively flat trans-para-Sasakian manifold is an Einstein manifold.

Proof. Suppose that \(P = 0\). Then from equation (19), we have
\[
R(X, Y)Z = \frac{1}{2n}(\text{Ric}(Y, Z)X - \text{Ric}(X, Z)Y).
\]

From (20), we obtain
\[
R(X, Y, Z, W) = \frac{1}{2n}(\text{Ric}(Y, Z)\eta(X) - \text{Ric}(X, Z)\eta(Y)).
\]

Putting \(W = \xi\) in (21), we get
\[
\eta(R(X, Y)Z) = \frac{1}{2n}(\text{Ric}(Y, Z)\eta(X) - \text{Ric}(X, Z)\eta(Y)).
\]

Again taking \(X = \xi\), and using (10) and (17), we get
\[
\text{Ric}(X, Y) = -2n(\alpha^2 + \beta^2)\eta(X, Y).
\]

\(\square\)

Theorem 3.7. A trans-para-Sasakian manifold satisfying \(R(X, Y)P = 0\) is an Einstein manifold and also it is a manifold of scalar curvature \(\text{scal} = -2n(2n + 1)(\alpha^2 + \beta^2)\).

Proof. Using (10) and (17) in (19), we get
\[
\eta(P(X, Y)\xi) = 0
\]
and
\[
\eta(P(\xi, Y)Z) = -(\alpha^2 + \beta^2)\eta(Y, Z) - \frac{1}{2n}\text{Ric}(Y, Z)
\]

Now,
\[
\]

By assumption \(R(X, Y)P = 0\), so we have
\[
\]
Therefore
\[g(R(\xi, Y)P(U, V)Z, \xi) - g(P(R(\xi, Y)U, V)Z, \xi) - g(P(\xi, R(\xi, Y)V)Z, \xi) - g(P(U, V)R(\xi, Y))Z, \xi) = 0. \]

From this, it follows that,
\[-P(U, V, Z, Y) + \eta(Y)\eta(P(U, V)Z) - \eta(U)\eta(P(Y, V)Z) + g(Y, U)\eta(P(\xi, V)Z) - g(Y, V)\eta(P(U, \xi)Z) + \eta(Z)\eta(P(U, V)Y) = 0. \]
Let \(e_i \), \(i = 1, ..., 2n + 1 \) be an orthonormal basis. Then summing up for \(1 \leq i \leq 2n + 1 \) of the relation (27) for \(Y = U = e_i \) yields
\[2n\eta(P(\xi, V)Z) + \eta(Z)P(V, e_i, e_i, \xi) = 0. \]
From (25), we have
\[Ric(V, Z) = -2n(\alpha^2 + \beta^2)g(Y, Z) - ((2n + 1)(\alpha^2 + \beta^2) + \frac{scal}{2n}). \]
Taking \(Z = \xi \) in (29) and using (17) we obtain
\[scal = -2n(2n + 1)(\alpha^2 + \beta^2) \text{ and } Ric(V, Z) = -2n(\alpha^2 + \beta^2)g(Y, Z) \]

\[\square \]

The Weyl-conformal tensor \(C \) is defined by
\[C(X, Y)Z = R(X, Y)Z - \frac{1}{2n - 1}(g(Y, Z)QX - g(X, Z)QY + Ric(Y, Z)X - \text{scal}(2n - 1)(g(Y, Z)X - g(X, Z)Y). \]
We have the following

Theorem 3.8. A conformally flat trans-para-Sasakian manifold is an \(\eta \)-Einstein manifold.

Proof. Suppose that \(C = 0 \). Then from (31), we get
\[R(X, Y)Z = \frac{1}{2n - 1}(g(Y, Z)QX - g(X, Z)QY + Ric(Y, Z)X - \text{scal}(2n - 1)(g(Y, Z)X - g(X, Z)Y). \]
From the identity (32), we have
\[\eta(R(X, Y)Z) = \frac{1}{2n - 1}(g(Y, Z)Ric(X, \xi) - g(X, Z)Ric(Y, \xi) + \eta(X)Ric(Y, Z) - \text{scal}(2n - 1)(g(Y, Z)\eta(X) - g(X, Z)\eta(Y). \]
Again taking \(X = \xi \) in (33), and using (10) and (17) we get
\[Ric(X, Y) = ((\alpha^2 + \beta^2) + \frac{scal}{2n})g(Y, Z) - ((2n + 1)(\alpha^2 + \beta^2) + \frac{scal}{2n})\eta(Y). \]

\[\square \]
Theorem 3.9. A trans-para-Sasakian manifold satisfying \(R(X,Y)C = 0 \) is an \(\eta \)-Einstein manifold.

Proof. From identity (31), we have \(\eta(C(X,Y)\xi) = 0 \) and

\[
\eta(C(\xi, Y)Z) = \frac{1}{2n-1}((\alpha^2 + \beta^2) + \frac{\text{scal}}{2n})(g(Y, Z) - \eta(Y)\eta(Z)) - \frac{1}{2n-1}(\text{Ric}(Y, Z) + 2n(\alpha^2 + \beta^2)\eta(Y)\eta(Z)). \tag{35}
\]

Now,

\[
(R(X,Y)C(U,V)Z = R(X,Y)(C(U,V)Z) - C(R(X,Y)U,V)Z - C(U, R(X,Y)V)Z - C(U, V)R(X,Y)Z.
\]

By assumption \(R(X,Y)C = 0 \), so we have

\[
R(X,Y)C(U,V)Z - C(R(X,Y)U,V)Z - C(U, R(X,Y)V)Z - C(U, V)R(X,Y)Z = 0. \tag{36}
\]

Therefore

\[
g(R(\xi, Y)C(U,V)Z, \xi) - g(C(R(\xi, Y)U,V)Z, \xi) - g(C(U, R(\xi, Y)V)Z, \xi) - g(C(U, V)R(\xi, Y)Z, \xi) = 0.
\]

From this, it follows that,

\[
-C(U, V, Z, Y) + \eta(Y)\eta(C(U, V)Z) - \eta(U)\eta(C(Y, V)Z) + \eta(V)\eta(C(U, \xi)Z) \tag{37}
\]

is an Einstein manifold.

Let \(\{e_i\}, i = 1, ..., 2n + 1 \) be an orthonormal basis. Then summing up for \(1 \leq i \leq 2n + 1 \) of the relation (37) for \(Y = U = e_i \) yields

\[
\eta(C(\xi, Y)Z) = 0. \tag{38}
\]

From (35), we have

\[
\text{Ric}(Y, Z) = \left(\frac{\text{scal}}{2n} + (\alpha^2 + \beta^2)\right)g(Y, Z) - ((2n + 1)(\alpha^2 + \beta^2) + \frac{\text{scal}}{2n})\eta(Y)\eta(Z). \tag{39}
\]

The concicular curvature tensor \(\overline{C} \) is defined by

\[
\overline{C}(X, Y)Z = R(X, Y)Z - \frac{\text{scal}}{2n(2n + 1)}(g(Y, Z)X - g(X, Z)Y). \tag{40}
\]

We have the following

Theorem 3.10. A trans-para-Sasakian manifold satisfying \(R(X,Y)\overline{C} = 0 \) is an Einstein manifold and a manifold of scalar curvature \(\text{scal} = -2n(2n - 1)(\alpha^2 + \beta^2) \).

Proof. From equality (40), we have \(\eta(\overline{C}(X,Y)\xi) = 0 \) and

\[
\eta(\overline{C}(\xi, Y)Z) = (-\frac{\text{scal}}{2n(2n + 1)} + (\alpha^2 + \beta^2))(g(Y, Z) - \eta(Y)\eta(Z)). \tag{41}
\]

Now,

\[
(R(X,Y)\overline{C}(U,V)Z = R(X,Y)\overline{C}(U,V)Z - \overline{C}(R(X,Y)U,V)Z - \overline{C}(U, R(X,Y)V)Z - \overline{C}(U, V)R(X,Y)Z.
\]

By assumption \(R(X,Y)\overline{C} = 0 \), so we have

\[
R(X,Y)\overline{C}(U,V)Z - \overline{C}(R(X,Y)U,V)Z - \overline{C}(U, R(X,Y)V)Z - \overline{C}(U, V)R(X,Y)Z = 0. \tag{42}
\]
Theorem 3.11. A trans-para-Sasakian manifold satisfying $R(X, Y)\Pi = 0$ is an Einstein manifold and a manifold of scalar curvature $\text{scal} = -2n(2n - 1)(\alpha^2 + \beta^2)$.

Proof. From the identity $R(X, Y)\Pi = 0$, we get

$$\Pi(R(X, Y)U, V) + \Pi(U, R(X, Y)V) = 0.$$ (47)

Putting $X = U = \xi$ and using (10) and (47) we have

$$-(\alpha^2 + \beta^2)\eta(Y)\Pi(\xi, V) + g(Y, V)\Pi(\xi, V) - \eta(V)\Pi(\xi, Y) = 0.$$ (48)

Using (47) in (48), we obtain that $Ric(X, Y) = -2n(\alpha^2 + \beta^2)g(X, Y)$ and $\text{scal} = 2n(2n - 1)(\alpha^2 + \beta^2)$. \square

The pseudo-projective curvature tensor is defined by

$$\Pi(X, Y) = \frac{(2n + 1)}{2n} Ric(X, Y) - \frac{\text{scal}}{2n} g(X, Y).$$ (46)

We have the following

Theorem 3.12. If a trans-para-Sasakian manifold is pseudo-projectively flat, then it is an Einstein manifold and a manifold of scalar curvature $\text{scal} = -2n(2n + 1)(\alpha^2 + \beta^2)$.

Therefore

$$g(R(\xi, Y)\overline{C}(U, V)Z, \xi) - g(\overline{C}(R(\xi, Y)U, V)Z, \xi) - g(\overline{C}(U, R(\xi, Y)V)Z, \xi) - g(\overline{C}(U, V)R(\xi, Y)Z, \xi) = 0.$$
Proof. Suppose that \(\bar{P}(X, Y)Z = 0 \), then from (49), we get

\[
aR(X, Y)Z + b(Ric(Y, Z)X - Ric(X, Z)Y) - \frac{(a + 2nb)scal}{2n(2n + 1)}(g(Y, Z)X - g(X, Z)Y) = 0.
\]

(50)

Taking the inner product on both sides of (50) by \(\xi \), we get

\[
-\frac{(a + 2nb)scal}{2n(2n + 1)}(g(Y, Z)\eta(X) - g(X, Z)\eta(Y)) = 0.
\]

(51)

Putting \(X = \xi \) and using (10) and (17) in (51), we get

\[
-\alpha n(\alpha^2 + \beta^2)(g(Y, Z) - \eta(Y)\eta(Z)) + b(Ric(Y, Z) + 2n(\alpha^2 + \beta^2)\eta(Y)\eta(Z)) + \alpha n(2n + 1)(\alpha^2 + \beta^2) = 0.
\]

(52)

From the identity (52), we obtain that \(Ric(X, Y) = -2n(\alpha^2 + \beta^2)g(Y, Z) \) and \(scal = -2n(2n + 1)(\alpha^2 + \beta^2) \).

\[\square\]

Theorem 3.13. A trans-para-Sasakian manifold is satisfying the relation \(R(X, Y)\bar{P} = 0 \) is an Einstein manifold and a manifold of scalar curvature \(scal = -2n(2n + 1)(\alpha^2 + \beta^2) \).

Proof. From equality (49), we have \(\eta(\bar{P}(X, Y)\xi) = 0 \). Now,

\[
(R(X, Y)\bar{P}(U, V))Z = R(X, Y)\bar{P}(U, V)Z - \bar{P}(R(X, Y)U, V)Z - \bar{P}(U, R(X, Y)V)Z - \bar{P}(U, V)R(X, Y)Z.
\]

By assumption \(R(X, Y)\bar{P} = 0 \), so we have

\[
R(X, Y)\bar{P}(U, V)Z - \bar{P}(R(X, Y)U, V)Z - \bar{P}(U, R(X, Y)V)Z - \bar{P}(U, V)R(X, Y)Z = 0.
\]

(53)

Therefore

\[
g(R(\xi, Y)\bar{P}(U, V)Z, \xi) - g(\bar{P}(R(\xi, Y)U, V)Z, \xi) - g(\bar{P}(U, R(\xi, Y)V)Z, \xi) - g(\bar{P}(U, V)R(\xi, Y)Z, \xi) = 0.
\]

From this, it follows that

\[
-\bar{P}(U, V, Z, Y) + \eta(\xi)\eta(\bar{P}(U, V)Z) - \eta(U)\eta(\bar{P}(Y, V)Z) + \eta(Y, U)\eta(\bar{P}(\xi, V)Z) - \eta(Y)\eta(\bar{P}(U, \xi)Z) + g(Y, V)\eta(\bar{P}(U, \xi)Z) - \eta(Z)\eta(\bar{P}(U, V)Y) = 0.
\]

(54)

Let \(\{\xi_i\} \), \(i = 1, ..., 2n + 1 \) be an orthonormal basis. Then summing up for \(1 \leq i \leq 2n + 1 \) of the relation (54) for \(Y = U = \xi \) yields

\[
\bar{P}(\xi_i, V, Z, \xi) - 2n\eta(\bar{P}(\xi, V)Z) + \eta(Z)\eta(\bar{P}(\xi_i, V)\xi) = 0.
\]

(55)

Taking the trace of the identity, we obtain

\[
-\bar{P}(\xi_i, V, Z, \xi) + 2n\bar{P}(\xi, V, Z, \xi) + \eta(Z)\bar{P}(\xi, \xi, \xi, \xi) = 0.
\]

(56)

From identity (56), we get

\[
aRic(V, Z) = -2n(\alpha^2 + \beta^2)g(V, Z) + (b.scal + 2n(2n + 1)b(\alpha^2 + \beta^2))\eta(V)\eta(Z).
\]

(57)

Taking \(Z = \xi \) in (57) and using (17) we obtain

\[
scal = -2n(2n + 1)(\alpha^2 + \beta^2) \text{ and } Ric(V, Z) = -2n(\alpha^2 + \beta^2)g(V, Z).
\]

(58)

\[\square\]
The PC-Bochner curvature tensor on M is defined by [9]

$$B(X, Y, Z, W) = R(X, Y, Z, W) + \frac{1}{2n + 4} (Ric(X, Z)g(Y, W) - Ric(Y, Z)g(X, W) + \text{Ric}(Y, W)g(X, Z) - \text{Ric}(X, W)g(Y, Z) + \text{Ric}(\varphi X, Z)g(Y, \varphi W) - \text{Ric}(\varphi Y, Z)g(X, \varphi W) - \text{Ric}(\varphi X, W)g(Y, \varphi Z) - \text{Ric}(\varphi Y, W)g(X, \varphi Z) + 2\text{Ric}(\varphi X, Y)g(Z, \varphi W) + 2\text{Ric}(\varphi Z, W)g(X, \varphi Y) - \text{Ric}(X, Z)\eta(Y)\eta(W) + \text{Ric}(Y, Z)\eta(X)\eta(W) - \text{Ric}(X, W)\eta(Y)\eta(Z) + \text{Ric}(\varphi Z, W)g(X, \varphi Y) - \text{Ric}(X, Z)\eta(Y)\eta(W) + \text{Ric}(Y, Z)\eta(X)\eta(W) - \text{Ric}(X, W)\eta(Y)\eta(Z)) + \frac{k - 4}{2n + 4} (g(X, Z)g(Y, W) - g(Y, Z)g(X, W)) - \frac{k + 2n}{2n + 4} (g(Y, \varphi W)g(X, \varphi Z) - g(X, \varphi W)g(Y, \varphi Z) + 2g(X, \varphi Y)g(Z, \varphi W)) - \frac{k}{2n + 4} (g(X, Z)\eta(Y)\eta(W) - g(Y, \varphi W)g(X, \varphi Z) - g(Y, W)\eta(X)\eta(Z) - g(X, W)\eta(Y)\eta(Z)),
$$

where $k = -\frac{\alpha^2 + \beta^2}{2n + 4}$.

Using the PC-Bochner curvature tensor we have

Theorem 3.14. If a trans-para-Sasakian manifold is paracontact conformally flat, then $\alpha^2 + \beta^2 = 1$.

Proof. Suppose that the manifold is paracontact conformally flat. Then the condition $B(X, Y)Z = 0$ holds. Putting $X = Z = \xi$ and using (11), we obtain

$$ (\alpha^2 + \beta^2 - 1)(Y - \eta(Y)\xi) = 0. \quad (59) $$

Since $Y - \eta(Y)\xi = \varphi^2 Y \neq 0$, we have $\alpha^2 + \beta^2 - 1 = 0$. □

Theorem 3.15. If a trans-para-Sasakian manifold satisfies the condition $B(\xi, Y)\text{Ric} = 0$, then it is either an Einstein manifold with scalar curvature scal = $-2n(2n + 1)(\alpha^2 + \beta^2)$ or $\alpha^2 + \beta^2 = 1$.

Proof. Suppose that the condition $B(\xi, Y)\text{Ric}(Z, V) = 0$ holds. This condition implies that

$$ \text{Ric}(B(\xi, Y)Z, V) + \text{Ric}(Z, B(\xi, Y)V) = 0. \quad (60) $$

Putting $V = \xi$ and using (11), we obtain

$$ (\alpha^2 + \beta^2 - 1)(\text{Ric}(Y, Z) + 2n(\alpha^2 + \beta^2)g(Y, Z)) = 0. \quad (61) $$

□

References

