Strong Convergent Iterative Techniques for 2-generalized Hybrid Mappings and Split Equilibrium Problems

Jing Zhaoa, Yunshui Liangb,c, Zhenhai Liub,c,*

aCollege of Sciences, Beibu Gulf University, Qinzhou, Guangxi 535011, P.R. China
bGuangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537000, P.R. China
cCollege of Sciences, Guangxi University for Nationalities, Nanning 530006, Guangxi Province, P.R. China

Abstract. In this paper, we suggest a new iterative scheme for finding a common element of the set of solutions of a split equilibrium problem and the set of fixed points of 2-generalized hybrid mappings in Hilbert spaces. We show that the iteration converges strongly to a common solution of the considered problems. A numerical example is illustrated to verify the validity of the proposed algorithm. The results obtained in this paper extend and improve some known results in the literature.

1. Introduction

Let H_1 and H_2 be real Hilbert spaces with the inner product $\langle \cdot, \cdot \rangle$ and the norm $\| \cdot \|$. $F_1: C_1 \times C_1 \to \mathbb{R}$ and $F_2: C_2 \times C_2 \to \mathbb{R}$ are two equilibrium functions, where C_1 and C_2 are nonempty closed convex subsets of H_1 and H_2, respectively. If $A: H_1 \to H_2$ is a bounded linear operator, then split equilibrium problem (SEP) is defined as follows:

Find $x^* \in C_1$ such that

$$F_1(x^*, x) \geq 0 \quad \forall x \in C_1, \tag{1}$$

and $y^* = Ax^* \in C_2$ such that

$$F_2(y^*, y) \geq 0 \quad \forall y \in C_2. \tag{2}$$

The set of all solutions of this split equilibrium problem is denoted by Ω, i.e,

$$\Omega = \{ z \in C : z \in EP(F_1) \text{ such that } Az \in EP(F_2) \}.$$
where \(EP(F_1) \) and \(EP(F_2) \) denote the sets of all solutions of the equilibrium problems (1) and (2), respectively.

Equilibrium problem has received much attention due to its applications in a large variety of problems arising in physics, optimizations, economics and some others. The split equilibrium problem (1)-(2) constitute a pair of equilibrium problems where is the generalization of split feasibility problems. Some iterative methods have been rapidly established for solving these problems (see [1-10]).

Let \(H \) be a real Hilbert space and \(C \) be a nonempty closed convex subset of \(H \). A mapping \(T : C \to C \) is said to be:

1. nonexpansive if \(\|T(x) - T(y)\| \leq \|x - y\|, \forall x, y \in C \);
2. quasi-nonexpansive if \(\|T(x) - p\| \leq \|x - p\| \) for all \(x \in C \) and \(p \in F(T) \), where \(F(T) \) denotes the set of fixed points of \(T \);
3. nonspreading if
 \[
 2\|T(x) - T(y)\|^2 \leq \|T(x) - y\|^2 + \|T(y) - x\|^2, \forall x, y \in C;
 \]
4. firmly nonexpansive if
 \[
 \|Tx - Ty\|^2 \leq \langle Tx - Ty, x - y \rangle, \forall x, y \in C;
 \]

It is obvious that the above inequality is equivalent to

\[
\|Tx - Ty\|^2 \leq \|x - y\|^2 - \|(I - T)x - (I - T)y\|^2, \forall x, y \in C;
\]

5. \(\alpha \)-inverse strongly monotone if there exists \(\alpha > 0 \) such that
 \[
 (x - y, Tx - Ty) \geq \alpha\|Tx - Ty\|^2, \forall x, y \in C;
 \]
6. hybrid if
 \[
 3\|T(x) - T(y)\|^2 \leq \|x - y\|^2 + \|Tx - y\|^2 + \|Ty - x\|^2, \forall x, y \in C;
 \]
7. \((\alpha, \beta)\)-generalized hybrid if there exist \(\alpha, \beta \in \mathbb{R} \) such that
 \[
 \alpha\|T(x) - T(y)\|^2 + (1 - \alpha)\|x - Ty\|^2 \leq \beta\|Tx - Ty\|^2 + (1 - \beta)\|x - y\|^2, \forall x, y \in C;
 \]
8. 2-generalized hybrid mapping if there exist \(\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R} \) such that for all \(x, y \in C \)
 \[
 \alpha_1\|T^2x - Ty\|^2 + \alpha_2\|Tx - Ty\|^2 + (1 - \alpha_1 - \alpha_2)\|x - Ty\|^2 \leq \beta_1\|T^2x - y\|^2 + \beta_2\|Tx - y\|^2 + (1 - \beta_1 - \beta_2)\|x - y\|^2,
 \]
such a mapping is called a \((\alpha_1, \alpha_2, \beta_1, \beta_2)\)-generalized hybrid mapping.

It is also easy to see that
a. \((1, 0)\)-generalized hybrid mapping is nonexpansive.
B. \((2, 1)\)-generalized hybrid mapping is nonspreading.
C. \((3, 2, 1/2)\)-generalized hybrid mapping is hybrid.
D. \((0, \alpha_2, 0, \beta_2)\)-generalized hybrid mapping is \((\alpha_2, \beta_2)\)-generalized hybrid.
E. 2-generalized hybrid mapping is quasi-nonexpansive.

In [11], Hojo et al. give two examples of 2-generalized hybrid mappings which are not generalized hybrid mapping.

Recently, the existence of fixed points and the convergence theorems of hybrid mappings have been studied by many authors (see [12-20]).

Very recently, Alizadeh and Moradlou [21-23] have obtained some weak convergence theorems for 2-generalized hybrid mapping and equilibrium problems.

Motivated by the above works, in this paper we introduce and consider a new iterative algorithm for a common element of the sets of solutions of the split equilibrium problems and common fixed points of 2-generalized hybrid mapping in Hilbert spaces. Under suitable conditions, some strong convergence for the sequences generated by the algorithm to a common solution of the problems is proved. The results presented in the paper extend and improve the corresponding results announced by Alizadeh and Moradlou [21], and some others.
2. Preliminaries and lemmas

In this section, we give some definitions and preliminaries which will be used in the sequel.

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. The operator P_C denotes the metric projection from H onto C. It is a fact that P_C is a firmly nonexpansive mapping from H onto C. Further, for any $x \in H$, $z = P_Cx$ if and only if $(x - z, z - y) \geq 0$, $\forall y \in C$.

Lemma 2.1 ([24]). Let H be a real Hilbert space and $T: H \to H$ be a nonexpansive mapping. Then for all $(x, y) \in H \times F(T)$, we have

$$\langle x - T(x), y - T(x) \rangle \leq \frac{1}{2}\|x - T(x)\|^2.$$

Lemma 2.2 (Demiclosedness principle). Let T be a nonexpansive mapping on a closed convex subset C of a real Hilbert space H. Then $I - T$ is demiclosed at any point $y \in H$, that is, if $x_n \to x$ and $x_n - Tx_n \rightharpoonup y \in H$, then $x - Tx = y$.

To obtain our main results, we need the following assumptions.

Assumption 2.3 ([25, 26]). Let $F: C \times C \to \mathbb{R}$ be an equilibrium function satisfying the following assumptions:

1. $F(x, x) = 0$, $\forall x \in C$;
2. F is monotone, i.e., $F(x, y) + F(y, x) \leq 0$, $\forall x, y \in C$;
3. F is hemicontinuous with respect to the first variable, i.e., for each $x, y, z \in C$, $\limsup F(tz + (1-t)x, y) \leq F(x, y)$;
4. for each $x \in C$, the function $y \mapsto F(x, y)$ is convex and lower semi-continuous.

Lemma 2.4 ([27]). Let C be a nonempty closed convex subset of a real Hilbert space H and $F: C \times C \to \mathbb{R}$ be an equilibrium function which satisfies the Assumption 2.3. Then for all $r > 0$, the resolvent of the equilibrium function $T^F_r : H \to C$ defined by

$$T^F_r(x) = \{z \in C : F(z, y) + \frac{1}{r}(y - z, z - x) \geq 0, \forall y \in C\}, \forall x \in H,$$

is well defined and satisfies the following conditions:

1. $T^F_r(x)$ is nonempty and single-valued for each $x \in H$;
2. T^F_r is firmly nonexpansive, i.e., for any $x, y \in H$,

$$\|T^F_r(x) - T^F_r(y)\|^2 \leq \langle T^F_r(x) - T^F_r(y), x - y \rangle;$$
3. $F(T^F_r) = EP(F)$;
4. the set $EP(F)$ is closed and convex;
5. for $r, s > 0$ and for all $x, y \in H$, one has

$$\|T^F_r(x) - T^F_s(y)\|^2 \leq \|x - y\|^2 + |1 - \frac{r}{s}|\|T^F_r(x) - x\|^2.$$

Lemma 2.5 ([28]). Let H be a a real Hilbert space. For all $x, y \in H$, $\|ax + (1 - a)y\|^2 = a\|x\|^2 + (1 - a)\|y\|^2 - a(1 - a)\|x - y\|^2$, $\forall a \in \mathbb{R}$.

Now, we give a new iterative scheme as follows:

Let C_1 be a nonempty closed convex subset of a real Hilbert space H_1 and $S : C_1 \to C_1$ is a 2-generalized hybrid mapping.

For an initial point $x_0 \in C_1$, let $x_1 = P_{C_1}x_0$ and $D_1 = C_1$. Then

$$\begin{align*}
\alpha_n &= T^F_r[I - \gamma A^*(I - T^F_r)A]x_n, \\
\beta_n &= (1 - \frac{\beta_n}{\alpha_n})u_n + \frac{\beta_n}{\alpha_n} \sum_{k=0}^{n-1} S^k u_n, \\
y_n &= (1 - \alpha_n)u_n + \frac{\alpha_n}{\beta_n} \sum_{k=0}^{n-1} S^k v_n, \\
D_{n+1} &= \{x \in D_n : \|y_n - x\| \leq \|x_n - x\|\}, \\
x_{n+1} &= P_{D_{n+1}}x_0, \forall n \geq 1.
\end{align*}$$

(4)

For this iterative scheme, we will discuss its strong convergence and also prove that its limit point belongs to $F(S) \cap \Omega$, where $F(S)$ is a set of fixed points of S.

3. The main results

In this section, we show some strong convergence theorems for finding a common element of the solution set of split equilibrium problems and the set of fixed points of 2-generalized hybrid mapping in a Hilbert space.

Throughout this section we need the following assumptions:
(A1) $C_1 \subset H_1$ and $C_2 \subset H_2$ are nonempty closed convex subsets of the real Hilbert spaces H_1 and H_2, respectively.
(A2) $A : H_1 \to H_2$ is a bounded linear mapping.
(A3) $S : C_1 \to C_1$ is a 2-generalized hybrid mapping.
(A4) $F_1 : C_1 \times C_1 \to R$, $F_2 : C_2 \times C_2 \to R$ are two equilibrium functions such that Assumption 2.3 holds.
(A5) $T_n : H_1 \to C_1$, $T_n^2 : H_2 \to C_2$ are the resolvent of the equilibrium functions F_1 and F_2, respectively.
We also need the following lemma.

Lemma 3.1 ([26]). Assume that the assumptions (A1–A5) are satisfied and $r_n \in (r, +\infty)$ with $r > 0$, $\gamma \in (0, \frac{1}{L})$, where L is the spectral radius of A^*A. Then $A^*(I - T_n^2)A$ is a $\frac{1}{2}$-inverse strongly monotone mapping and $I - \gamma A^*(I - T_n^2)A$ is a nonexpansive mapping.

Theorem 3.2. Assume that the assumptions (A1 – A5) are satisfied and $0 < \alpha < \alpha_1, \beta_1 < \beta < 1$, $r > r_n < \infty$, for $a, \beta \in (0, 1)$, $r > 0$, $\gamma \in (0, \frac{1}{L})$, where L is the spectral radius of A^*A. In addition, if $\Theta = F(S) \cap \Omega \neq \emptyset$, then for any $x_0 \in C_1$, the sequence $\{x_n\}$ defined by (4) converges strongly to some point $p \in \Theta$.

Proof. We shall divide the proof into five steps.

Step (1): $\Theta \subset D_n$, $\forall n \geq 1$.

Obviously, $\Theta \subset D_1 = C_1$. By induction, assume that $\Theta \subset D_n$ for some $n \geq 1$. We only need to show that $\Theta \subset D_{n+1}$. For any $p \in \Theta$, we have $p = T_n^2 p$ and $(I - \gamma A^*(I - T_n^2)A)p = p$ from Lemma 2.4. The Lemma 3.1 results in

$$
\|u_n - p\| = \|T_n^2(I - \gamma A^*(I - T_n^2)A)x_n - T_n^2(I - \gamma A^*(I - T_n^2)A)p\|
\leq \|(I - \gamma A^*(I - T_n^2)A)x_n - (I - \gamma A^*(I - T_n^2)A)p\|
\leq \|x_n - p\|.
$$

(5)

Since $p \in F(S)$ and S is quasi-nonexpansive, we get

$$
\|Sv_n - p\| \leq \|v_n - p\|
= \|(1 - \beta_n)u_n + \frac{\beta_n}{n} \sum_{k=0}^{n-1} S^k u_n - p\|
\leq (1 - \beta_n)\|u_n - p\| + \frac{\beta_n}{n} \sum_{k=0}^{n-1} \|S^k u_n - p\|
\leq (1 - \beta_n)\|u_n - p\| + \frac{\beta_n}{n} \sum_{k=0}^{n-1} \|S u_n - p\|
\leq (1 - \beta_n)\|u_n - p\| + \frac{\beta_n}{n} \sum_{k=0}^{n-1} \|S u_n - p\|
\leq \|u_n - p\|.
$$

(6)
Combining (4), (5), (6) and Lemma 2.5, we obtain

\[
\|y_n - p\|^2 = \|(1 - \alpha_n)u_n + \frac{\alpha_n}{n} \sum_{k=0}^{n-1} s^k v_n - p\|^2
\]

\[
= \|(1 - \alpha_n)(u_n - p) + \alpha_n\left(\frac{1}{n} \sum_{k=0}^{n-1} s^k v_n - p\right)\|^2
\]

\[
= (1 - \alpha_n)\|u_n - p\|^2 + \alpha_n\left[\frac{1}{n} \sum_{k=0}^{n-1} (s^k v_n - p)\right]^2 - \alpha_n(1 - \alpha_n)\|u_n - s\|_2^2
\]

\[
\leq (1 - \alpha_n)\|u_n - p\|^2 + \alpha_n\|v_n - p\|^2 - \alpha_n(1 - \alpha_n)\|u_n - s\|_2^2
\]

\[
\leq (1 - \alpha_n)\|u_n - p\|^2 + \alpha_n\|v_n - p\|^2 - \alpha_n(1 - \alpha_n)\|u_n - \frac{1}{n} \sum_{k=0}^{n-1} s^k v_n\|^2
\]

\[
\leq \|u_n - p\|^2 - \alpha_n(1 - \alpha_n)\|u_n - \frac{1}{n} \sum_{k=0}^{n-1} s^k v_n\|^2
\]

\[
\leq \|x_n - p\|^2,
\]

which implies that \(p \in D_{n+1}\). Therefore, \(\Theta \subset D_{n+1}\).

Step (II): The sequence \(\{x_n\}\) is a Cauchy sequence.

According to (4) and the Step (I), it is obvious that \(D_n\) is nonempty closed and convex subset of \(C_1\). Since \(\Theta \subset D_{n+1} \subset D_n\), for all \(n \geq 1\), we obtain from \(x_{n+1} = P_{D_{n+1}}x_0\) that

\[
\|x_{n+1} - x_0\| = \|P_{D_{n+1}}x_0 - x_0\| \leq \|p - x_0\|, \forall p \in \Theta,
\]

which implies that \(\{x_n\}\) is bounded. By \(x_n = P_{D_{n+1}}x_0\), we have

\[
\langle x_0 - x_n, x_n - x_{n+1} \rangle \geq 0.
\]

Therefore,

\[
0 \leq \langle x_0 - x_n, x_n - x_{n+1} \rangle \leq -\|x_n - x_0\|^2 + \|x_{n+1} - x_0\||x_n - x_n||x_0 - x_n||.
\]

Hence,

\[
\|x_n - x_0\| \leq \|x_{n+1} - x_0\|, \forall n \geq 1,
\]

which implies that \(\lim_{n \to \infty} \|x_n - x_0\|\) exists. For any \(n > m \geq 1\), \(x_m = P_{D_m}x_0\), we also have

\[
\|x_n - x_0\|^2 = \|x_n - x_m + x_m - x_0\|^2
\]

\[
= \|x_n - x_m\|^2 + \|x_m - x_0\|^2 + 2\langle x_n - x_m, x_m - x_0 \rangle
\]

\[
\geq \|x_n - x_m\|^2 + \|x_m - x_0\|^2.
\]

Therefore, we get

\[
\|x_n - x_m\|^2 \leq \|x_n - x_0\|^2 - \|x_m - x_0\|^2 \to 0 \quad \text{as } n, m \to \infty.
\]

Hence \(\{x_n\}\) is a Cauchy sequence. We may assume that

\[
x_n \to x', \quad \text{as } n \to \infty.
\]

Step (III): \(\lim_{n \to \infty} \|u_n - \frac{1}{n} \sum_{k=0}^{n-1} s^k u_n\| = 0\).
Since \(x_{n+1} \in D_{n+1} \subseteq D_n \), by the definition of \(D_{n+1} \), we have

\[
\|y_n - x_{n+1}\| \leq \|x_n - x_{n+1}\|.
\]

It follows from (8) that

\[
\lim_{n \to \infty} \|y_n - x_{n+1}\| = \lim_{n \to \infty} \|x_n - x_{n+1}\| = 0. \tag{10}
\]

Therefore, we obtain from (8) and (10)

\[
\|y_n - x_n\| \leq \|y_n - x_{n+1}\| + \|x_{n+1} - x_n\| \to 0 \quad \text{as} \quad n \to \infty. \tag{11}
\]

Further, from (7), we have

\[
\|y_n - p\|^2 \leq \|u_n - p\|^2 - \alpha_n(1 - \alpha_n)\|u_n - \frac{1}{n} \sum_{k=0}^{n-1} S^k v_n\|^2. \tag{12}
\]

Therefore,

\[
\alpha_n(1 - \alpha_n)\|u_n - \frac{1}{n} \sum_{k=0}^{n-1} S^k v_n\|^2 \leq \|u_n - p\|^2 - \|y_n - p\|^2,
\]

\[
\leq \|x_n - p\|^2 - \|y_n - p\|^2,
\]

\[
\leq \|x_n - y_n\| \|(x_n - p) + (y_n - p)\|.
\]

By \(0 < \alpha < \alpha_n < \beta < 1 \) and (11), we have

\[
\|u_n - \frac{1}{n} \sum_{k=0}^{n-1} S^k v_n\| \to 0, \quad \text{as} \quad n \to \infty. \tag{13}
\]

Furthermore, \(p \in \Theta \) ensures \(p = T_{r_n}^p p \) and \(p = (I - \gamma A'(I - T_{r_n}^{F_p})A)p \). Therefore, we have from Lemma 3.1 and (3)

\[
\|u_n - p\|^2 = \|T_{r_n}^{F_p}[(I - \gamma A'(I - T_{r_n}^{F_p})A)x_n - T_{r_n}^{F_p}[(I - \gamma A'(I - T_{r_n}^{F_p})A)p]\|^2
\]

\[
\leq \|[(I - \gamma A'(I - T_{r_n}^{F_p})A)x_n - [(I - \gamma A'(I - T_{r_n}^{F_p})A)p]^2
\]

\[
-[(I - T_{r_n}^{F_p})[(I - \gamma A'(I - T_{r_n}^{F_p})A)x_n - (I - T_{r_n}^{F_p})[(I - \gamma A'(I - T_{r_n}^{F_p})A)p]^2
\]

\[
= \|x_n - p\|^2 + \gamma^2 \|x_n - p, A'(I - T_{r_n}^{F_p})Ax_n - A'(I - T_{r_n}^{F_p})Ap\|^2
\]

\[
+ \gamma^2 \|A'(I - T_{r_n}^{F_p})Ax_n - A'(I - T_{r_n}^{F_p})Ap\|^2
\]

\[
-[(I - T_{r_n}^{F_p})[(I - \gamma A'(I - T_{r_n}^{F_p})A)x_n - (I - T_{r_n}^{F_p})[(I - \gamma A'(I - T_{r_n}^{F_p})A)p]^2
\]

\[
\leq \|x_n - p\|^2 + \gamma^2 \|x_n - p, A'(I - T_{r_n}^{F_p})Ax_n - A'(I - T_{r_n}^{F_p})Ap\|^2 - [(I - T_{r_n}^{F_p})[(I - \gamma A'(I - T_{r_n}^{F_p})A)x_n\|^2. \tag{14}
\]

From (12) and (14), we get

\[
\gamma \left(\frac{2}{L} - \gamma \right) \|A'(I - T_{r_n}^{F_p})Ax_n\|^2 + \|[(I - T_{r_n}^{F_p})[(I - \gamma A'(I - T_{r_n}^{F_p})A)x_n\|^2
\]

\[
\leq \|x_n - p\|^2 + \|u_n - p\|^2
\]

\[
\leq \|x_n - y_n\| \|(x_n - p) + (y_n - p)\|.
\]

By \(\gamma \in (0, \frac{1}{L}) \), using (11), we have

\[
\lim_{n \to \infty} \|A'(I - T_{r_n}^{F_p})Ax_n\| = 0, \quad \lim_{n \to \infty} \|[(I - T_{r_n}^{F_p})[(I - \gamma A'(I - T_{r_n}^{F_p})A)x_n\| = 0. \tag{16}
\]
Since $T_{r_k}^f$ is firmly nonexpansive, so we have
\[
\|u_n - p\|^2 = \|T_{r_k}^f[I - \gamma A^*(I - T_{r_k}^f)A]x_n - T_{r_k}^f p\|^2 \\
\leq \|I - \gamma A^*(I - T_{r_k}^f)A\|\|x_n - p\|^2 \\
= \|x_n - p\|^2 + \gamma^2 \|A^*(I - T_{r_k}^f)A\|\|x_n - x_n^*\|^2 + 2\gamma \langle p - x_n, A^*(I - T_{r_k}^f)Ax_n \rangle \\
= \|x_n - p\|^2 + \gamma^2 \|A^*(I - T_{r_k}^f)A\|\|x_n - x_n^*\|^2 + 2\gamma \langle p - Ax_n, (I - T_{r_k}^f)Ax_n \rangle,
\]
and
\[
\gamma^2 \|A^*(I - T_{r_k}^f)Ax_n\|^2 = \gamma^2 (\|I - T_{r_k}^f)Ax_n, AA^*(I - T_{r_k}^f)Ax_n) \\
\leq L\gamma^2 \|I - T_{r_k}^f)Ax_n\|^2.
\]
We also have from Lemma 2.1
\[
2\gamma \langle p - Ax_n, (I - T_{r_k}^f)Ax_n \rangle = 2\gamma \langle p - T_{r_k}^fAx_n - (Ax_n - T_{r_k}^fAx_n), (I - T_{r_k}^f)Ax_n \rangle \\
= 2\gamma (\|p - T_{r_k}^fAx_n\|^2 - \|Ax_n - T_{r_k}^fAx_n\|^2) \\
\leq 2\gamma \|p\|^2 - \|Ax_n - T_{r_k}^fAx_n\|^2,
\]
which implies from (12) that
\[
-\gamma (L\gamma - 1)\|I - T_{r_k}^f)Ax_n\|^2 \leq \|x_n - p\|^2 - \|u_n - p\|^2 \\
\leq \|x_n - p\|^2 - \|y_n - p\|^2 \\
\leq \|x_n - y_n\| (\|x_n - p\| + \|y_n - p\|).
\]
Due to $\gamma \in (0, \frac{1}{L})$ and (11), we have
\[
\lim_{n \to \infty} \|I - T_{r_k}^f)Ax_n\| = 0. \tag{17}
\]
Hence, we obtain from (16)
\[
\|u_n - x_n\| = \|T_{r_k}^f[I - \gamma A^*(I - T_{r_k}^f)A]x_n - x_n\| \\
\leq \|T_{r_k}^f[I - \gamma A^*(I - T_{r_k}^f)A]x_n - I - \gamma A^*(I - T_{r_k}^f)A]x_n\| + \|I - \gamma A^*(I - T_{r_k}^f)A]x_n - x_n\| \\
= \|I - T_{r_k}^f\| \|I - \gamma A^*(I - T_{r_k}^f)A]x_n\| + \|A^*(I - T_{r_k}^f)A]x_n\| \to 0, \quad \text{as } n \to \infty. \tag{18}
\]
Using (4) and Lemma 2.5, we have
\[
\|v_n - p\|^2 = \|(1 - \beta_n)u_n + \frac{\beta_n}{n} \sum_{k=0}^{n-1} S^k u_n - p\|^2 \\
= \|(1 - \beta_n)(u_n - p) + \beta_n (\frac{1}{n} \sum_{k=0}^{n-1} S^k u_n - p)\|^2 \\
= (1 - \beta_n)\|u_n - p\|^2 + \beta_n \|\frac{1}{n} \sum_{k=0}^{n-1} (S^k u_n - p)\|^2 - \beta_n (1 - \beta_n)\|u_n - \frac{1}{n} \sum_{k=0}^{n-1} S^k u_n\|^2
\]
\[
\|y_n - p\|^2 = \|(1 - \alpha_n)y_n + \frac{\alpha_n}{n} \sum_{k=0}^{n-1} S^k v_n - p\|^2
\]

\[
= \|(1 - \alpha_n)(u_n - p) + \frac{\alpha_n}{n} \sum_{k=0}^{n-1} S^k v_n - p\|^2
\]

\[
= (1 - \alpha_n)\|u_n - p\|^2 + \frac{\alpha_n}{n} \sum_{k=0}^{n-1} \|S^k v_n - p\|^2 - \alpha_n(1 - \alpha_n)\|u_n - \frac{1}{n} \sum_{k=0}^{n-1} S^k v_n\|^2
\]

\[
\leq (1 - \alpha_n)\|u_n - p\|^2 + \frac{\alpha_n}{n} \sum_{k=0}^{n-1} \|S^k v_n - p\|^2 - \alpha_n(1 - \alpha_n)\|u_n - \frac{1}{n} \sum_{k=0}^{n-1} S^k v_n\|^2
\]

\[
\leq (1 - \alpha_n)\|u_n - p\|^2 + \alpha_n\|v_n - p\|^2 - \alpha_n(1 - \alpha_n)\|u_n - \frac{1}{n} \sum_{k=0}^{n-1} S^k v_n\|^2
\]

\[
\leq (1 - \alpha_n)\|u_n - p\|^2 + \alpha_n\|v_n - p\|^2 - \alpha_n(1 - \alpha_n)\|u_n - \frac{1}{n} \sum_{k=0}^{n-1} S^k v_n\|^2
\]

\[
\leq (1 - \alpha_n)\|u_n - p\|^2 - \alpha_n(1 - \beta_n)\|u_n - \frac{1}{n} \sum_{k=0}^{n-1} S^k u_n\|^2
\]

\[
\leq \|x_n - p\|^2 - \alpha_n(1 - \beta_n)\|x_n - \frac{1}{n} \sum_{k=0}^{n-1} S^k u_n\|^2,
\]

(20)

which implies from (20) and \(0 < \alpha < \alpha_n < \beta < 1\) that

\[
\alpha_n(1 - \beta_n)\|u_n - \frac{1}{n} \sum_{k=0}^{n-1} S^k u_n\|^2 \leq \alpha_n(1 - \beta_n)\|u_n - \frac{1}{n} \sum_{k=0}^{n-1} S^k u_n\|^2
\]

\[
\leq \|x_n - p\|^2 - \|y_n - p\|^2
\]

\[
\leq (\|x_n - p\|^2 + \|y_n - p\|)(\|x_n - y_n\|).
\]

(21)

In virtue of \(0 < \alpha < \beta_n < \beta < 1\), (9), (11) and (21), we get

\[
\lim_{n \to \infty} \|u_n - \frac{1}{n} \sum_{k=0}^{n-1} S^k u_n\| = 0.
\]

(22)

Step (IV): \(x^* \in \Theta = F(S) \cap \Omega\), where \(x^*\) is the limit in (3.5).

To do so, we firstly show that \(x^* \in \Omega\).
By the boundedness of A and (9), we get $Ax_n \to Ax$. Then we have from Lemma 2.4 and (17)

$$
\|T_{r_n}^F Ax_n - T_{r_n}^F Ax\| \leq \left| 1 - \frac{r}{r_n} \right| \|T_{r_n}^F Ax_n - Ax_n\| \to 0, \quad \text{as } n \to \infty
$$

and

$$
\|T_{r_n}^F Ax_n - Ax_n\| \leq \|T_{r_n}^F Ax_n - T_{r_n}^F Ax\| + \|T_{r_n}^F Ax - Ax\| \to 0, \quad \text{as } n \to \infty.
$$

Since $T_{r_n}^F$ is nonexpansive, we easily get from Lemma 2.2 and Lemma 2.4

$$
T_{r_n}^F Ax' = Ax', \quad \text{i.e., } Ax' \in F(T_{r_n}^F) = EP(F_2).
$$

Let $w_n = (I - \gamma A'(I - T_{r_n}^F)A)x_n$. By (16) we have

$$
\|w_n - x_n\| = \|y A'(I - T_{r_n}^F)Ax_n\| \to 0, \quad \text{as } n \to \infty.
$$

We also have from (16)

$$
\|T_{r_n}^F w_n - T_{r_n}^F w\| \leq \left| 1 - \frac{r}{r_n} \right| \|T_{r_n}^F w_n - w_n\| \to 0, \quad \text{as } n \to \infty.
$$

Therefore,

$$
\|T_{r_n}^F w_n - w\| \leq \|T_{r_n}^F w_n - T_{r_n}^F w\| + \|T_{r_n}^F w_n - w_n\| \to 0, \quad \text{as } n \to \infty.
$$

Since $T_{r_n}^F$ is nonexpansive, we get from Lemma 2.2 and Lemma 2.4

$$
T_{r_n}^F x' = x', \quad \text{i.e., } x' \in F(T_{r_n}^F) = EP(F_1).
$$

Therefore, $x' \in \Omega$.

Now, we prove that $x' \in F(S)$.

By means of (18) and (22), we easily get from $x_n \to x'$

$$
\frac{1}{n} \sum_{k=0}^{n-1} S^k u_n \to x', \quad \text{as } n \to \infty.
$$

(23)

Since S is a 2-generalized hybrid mapping, there exist $a_1, a_2, b_1, b_2 \in R$ such that for all $x, y \in C_1$

$$
a_1\|S^2x - y\|^2 + a_2\|Sx -Sy\|^2 \geq \left(a_1 - a_2 \right)\|x -Sy\|^2
$$

$$
+ b_2\|Sx - y\|^2 + (1 - a_1 - a_2)\|x - y\|^2.
$$

Since $F(S) \neq \emptyset$, then S is quasi-nonexpansive. So $\|S^ku_n - p\| \leq \|u_n - p\| \leq \|x_n - p\|$, which implies that $\{S^ku_n\}$ is bounded. Since S is a 2-generalized hybrid mapping, we have for all $y \in C_1$ and $k = 0, 2, 3, ..., n - 1$

$$
0 \leq b_1\|S^{k+2}x_n - y\|^2 + b_2\|S^{k+1}x_n - y\|^2 + (1 - b_1 - b_2)\|S^kx_n - y\|^2
$$

$$
- a_1\|S^{k+2}x_n - Sy\|^2 - a_2\|S^{k+1}x_n - Sy\|^2 - (1 - a_1 - a_2)\|S^kx_n - Sy\|^2
$$

$$
= b_1\|S^{k+2}x_n - Sy\|^2 + 2\|S^{k+2}x_n - Sy, Sy - y\| + \|Sy - y\|^2 + b_2\|S^{k+1}x_n - Sy\|^2
$$

$$
+ 2\|S^{k+1}x_n - Sy, Sy - y\| + \|Sy - y\|^2 + (1 - b_1 - b_2)\|S^kx_n - Sy\|^2
$$

$$
+ 2\|S^kx_n - Sy, Sy - y\| + \|Sy - y\|^2 - a_1\|S^{k+2}x_n - Sy\|^2 - a_2\|S^{k+1}x_n - Sy\|^2
$$

$$
- (1 - a_1 - a_2)\|S^kx_n - Sy\|^2
$$

$$
= \|Sy - y\|^2 + 2\|S^{k+2}x_n + b_2\|S^{k+1}x_n + (1 - b_1 - b_2)S^kx_n - Sy, Sy - y\|
$$

$$
+ (b_1 - a_1)\|S^{k+2}x_n - Sy\|^2 - \|S^kx_n - Sy\|^2 + (b_2 - a_2)\|S^{k+1}x_n - Sy\|^2 - \|S^kx_n - Sy\|^2.
$$

$$
\|Sy - y\|^2 + 2\|S^{k+2}x_n - Sy, Sy - y\| + 2\|S^{k+2}x_n - S^kx_n + b_2\|S^{k+1}x_n - S^kx_n, Sy - y\|
$$

$$
+ (b_1 - a_1)\|S^{k+2}x_n - Sy\|^2 - \|S^kx_n - Sy\|^2 + (b_2 - a_2)\|S^{k+1}x_n - Sy\|^2 - \|S^kx_n - Sy\|^2.
$$
Summing these inequalities from \(k = 0, 1, \ldots, n - 1 \) and diving by \(n \), we have by denoting \(z_n = \frac{1}{n} \sum_{k=0}^{n-1} S^k u_n \), for all \(n \geq 1 \)

\[
0 \leq \|S y - y\|^2 + 2(z_n - S y, S y - y) + 2 \frac{1}{n}(\beta_1(S^{n+1} x_n - S^n x_n - S x_n - x_n) + \beta_2(S^n x_n - x_n), S y - y)
\]

\[
+ (\beta_1 - \alpha_1) \frac{1}{n} \left(||S^{n+1} x_n - S y||^2 + ||S^n x_n - S y||^2 - ||S x_n - S y||^2 - ||x_n - S y||^2 \right)
\]

\[
+ (\beta_2 - \alpha_2) \frac{1}{n} \left(||S^n x_n - S y||^2 - ||x_n - S y||^2 \right).
\]

From (23) and the boundedness of \(\{S^u u_n\} \), we have

\[
0 \leq \|S y - y\|^2 + 2(x^* - S y, S y - y).
\]

Denote \(y = x^* \), we have

\[
0 \leq \|S x^* - x^*\|^2 + 2(x^* - S x^*, S x^* - x^*) = -\|S x^* - x^*\|^2.
\]

Hence \(x^* \in F(S) \). This shows that \(x^* \in \Theta \). □

4. Numerical Example

In this section, a numerical example will be illustrated to verify the validity of the proposed algorithm in Section 3.

Example 4.1. Consider the following split equilibrium problem driven by 2-generalized hybrid mapping \(S \): find \(x \in \mathbb{R} \) such that

\[
\begin{align*}
F_1(x, \bar{x}) & \geq 0, \forall \bar{x} \in C_1, \\
y & = A x \in C_2, \\
F_2(y, \bar{y}) & \geq 0, \forall \bar{y} \in C_2, \\
x & \in F(S),
\end{align*}
\]

(24)

where

\[
\begin{align*}
H_1 = H_2 &= \mathbb{R}, \\
C_1 &= [-3, 0], \\
C_2 &= [0, +\infty), \\
F_1(u, v) &= (u - 1)(v - u), \forall u, v \in C_1, \\
F_2(x, y) &= (x + 15)(y - x), \forall x, y \in C_2, \\
A x &= 3 x, \forall x \in \mathbb{R}, \\
S x &= \frac{1}{3} x, \forall x \in C_1.
\end{align*}
\]

By choosing

\[
\begin{align*}
\alpha_n &= \frac{1}{2} + \frac{1}{3n}, \\
\beta_n &= \frac{1}{3} - \frac{1}{6n}, \\
r &= 4, \\
\gamma &= \frac{1}{9}.
\end{align*}
\]

It is easy to check that \(F_1 \) and \(F_2 \) satisfy all conditions in Lemma 3.1, i.e. Assumption 2.3. Analogously to the Theorem 3.2, we abide by the following processes to obtain the solution of (24).
\[
\begin{align*}
 u_n &= \frac{1}{25} x_n, \\
 v_n &= \left(\frac{2}{3} + \frac{1}{6n}\right) u_n + \left(\frac{1}{n} + \frac{1}{-6n}\right) \sum_{k=0}^{n-1} \frac{1}{3^k} u_n, \\
 y_n &= \left(\frac{1}{2} - \frac{1}{3n}\right) u_n + \left(\frac{1}{n} + \frac{1}{2} + \frac{1}{-3n}\right) \sum_{k=0}^{n-1} \frac{1}{3^k} v_n.
\end{align*}
\]

It is easy to get that \(0 \in F(0) \cap \Omega\).
Moreover, numerical results in Table 1 for \(\{x_n\}\) also is demonstrated as follows.

Table 1:

<table>
<thead>
<tr>
<th>n</th>
<th>(x_0 = -2)</th>
<th>(n)</th>
<th>(x_0 = -1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.0000</td>
<td>1</td>
<td>1.0000</td>
</tr>
<tr>
<td>2</td>
<td>-2.0400</td>
<td>2</td>
<td>-5.2000 \times 10^{-1}</td>
</tr>
<tr>
<td>3</td>
<td>-5.3541</td>
<td>3</td>
<td>-2.6770 \times 10^{-1}</td>
</tr>
<tr>
<td>4</td>
<td>-2.7456 \times 10^{-1}</td>
<td>4</td>
<td>-1.3728 \times 10^{-1}</td>
</tr>
<tr>
<td>5</td>
<td>-1.4054 \times 10^{-1}</td>
<td>5</td>
<td>-7.0270 \times 10^{-2}</td>
</tr>
<tr>
<td>6</td>
<td>-7.1863 \times 10^{-2}</td>
<td>6</td>
<td>-3.5932 \times 10^{-2}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>98</td>
<td>-9.1955 \times 10^{-29}</td>
<td>98</td>
<td>-4.5978 \times 10^{-29}</td>
</tr>
<tr>
<td>99</td>
<td>-4.6901 \times 10^{-29}</td>
<td>99</td>
<td>-2.3450 \times 10^{-29}</td>
</tr>
<tr>
<td>100</td>
<td>-2.3921 \times 10^{-29}</td>
<td>100</td>
<td>-1.1960 \times 10^{-29}</td>
</tr>
</tbody>
</table>

See table 1 for the values \(x_0 = -2\) or \(x_0 = -1\), we obtain \(x_n \to 0\), as \(n \to \infty\).

See Figure 1 and Figure 2 for the values \(x_0 = x_1 = -1\) and \(x_0 = x_1 = -2\). The computations associated with example were performed using MATLAB software.

![Figure 1](image1.png)

Figure 1: A plot of \(x_n, n = 0, 1, 2, \cdots, 100\), for Example 4.1
References

