ULOGA I ZNAČAJ POLINEZASIČENIH MASNIH KISELINA U IŠHRANI KOD PREVENCIJE I LEĆENJA ATEROSKLEROZE

ROLE AND SIGNIFICANCE OF POLYUNSATURATED FATTY ACIDS IN NUTRITION IN PREVENTION AND TREATMENT OF ATHEROSCLEROSIS

Vanja Ristić i Gordana Ristić

Sažetak - Ključni faktor rizika za nastanak ateroskleroze predstavljaju hiperlipoproteinemijske, a najveći uticaj na regresiju ateroskleroze ima smanjenje nivoa ukupnog i LDL-cholesterola u krvi. Mnoge studije su pokazale hipoholesterolemičan efekat lipolinalne kiseline. Naša ispitivanja su pokazale veliki procenat normalizacije hodelesterola (73%) i LDL-cholesterola (86%) kod osoba sa raznim tipovima hiperlipoproteinemijske koje su uzimale LeanVita, u kojoj je lipolinalna kiseline zastupljena sa 60%. Pored lipolinalne i α-linolenske kiseline je esencijalna masna kiseline. Glavni izvori lipolinalne kiseline su sjenke biljaka, a α-linolenske zeleni delovi biljaka. Njihovi metaboliti, arahidonska kiseline i eikosapentaenska kiseline, su prekursori eikosanoida koji su snažni regulatori celijske funkcije i kao takvi vrlo značajni u fiziologiji i patofiziologiji kardiovaskularnog sistema. Pošto su arahidonska i eikosapentaenska kiseline u kompenziciji za iste simbole, odnos n-6 i n-3 polinezasičenih masnih kiseline u ishrani je jako bitan. Riha i ribe ulje su u izvor eikosapentaenske i dokosaheksaenske kiseline. Rafinisanje i prerada biljnih ulja menjaju prirodu polinezasičenih masnih kiseline i nastali derivati pokazuju nereguljastu svojstva.

Ključne reči: Nezasićene masne kiseline + terapijska primena; Arterioskleroza + etiologija + prevenzija i kontrola + terapija. Ishrana; Eikosanoidi; Hipolipidemija

Vrste polinezasičenih masnih kiselina

Polinezasičene masne kiseline (PUFA) imaju posebno mesto među mastima u ishrani, jer su neophodne za normalan rast, razvoj i funkcionisanje organizma [1].

U organizmu sisea zastupljene su četiri familije PUFA (n-9, n-7, n-6 i n-3), od kojih su n-6 i n-3 esencijalne.

Linolna kiselina (18:2, n-6) je prekurzor n-6 PUFA, α-linolenska (18:3, n-3) n-3. Ove dve familije PUFA imaju različite nutritivne-metaboličke poteze, tako da ne postoji mogućnost konverzije jednih u druge [2]. Linolna kiselina metabolise do arahidonske kiselina (20:4, n-3)(AA), a ponekad samo do dihomogama-linolenske (20:3, n-3)(DGILA). α-linolenska metabolise do eikosapentaenske (20:5, n-3)(EPA) i dokosaheksaenske (22:6, n-3)(DHA), ali se taj proces odvija vrlo sporo i ometan je u slučaju istovremenog unosa veće količine linolne kiseline, zbog kompeticije za isti enzimski sistem de-saturaza i elongaza [3]. AA i DGILA kao n-6, i EPA kao n-3 PUFA učestvuju preko cikkooksiganogenog i lipoksigenganog metaboletskog puta u biosintezi eikosanoida - prostaglandina (prostaciklina i trombokasana) i leukostrijena [4], koji su snažni regulatori celijskih funkcija i kao takvi vrlo značajni u fiziologiji i patofiziologiji kardiovaskularnog sistema [5], a samim tim i u patogenezi ateroskleroze [6,7].

Od toga koje PUFA (n-6 ili n-3) preovladavaju u ishrani zavisice i koja vrsta eikosanoida će se sintetizati, pošto se i ovde radi o kompeticiji za iste enzimske sisteme. Ove dve vrste eikosanoida imaju suprotna i komplementarna dejstva na nivo čelije i

Adresa autora: Dr pharm. sc. Vanja Ristić, viši naucičar saradnik, Institut za medicinska istraživanja, 11000 Beograd, Ul. Tadeuša Košćuška 1, E-mail: vanja@imibg.ac.yu

Scheme 1. Metabolizam PUFA

Scheme 1. Metabolism of PUFA
PUFA - polinezacijske masne kiseline
AA - arahidonska kiseline
DGLA - dihomogama-linolska kiseline
EPA - eikosapentaenska kiseline
DHA - dokovskicaensa kiseline
LTB - leukotrijeni
PGI - prostaglandini
TXA - trombokani
HLP - hiperlipoproteinemije
LDL - lipoproteini male gustine
HDL - lipoproteini velike gustine
PPAR/RXR - peroxisome proliferator activated receptor retinoid X receptor

Slika 1. Bicistiteza prostaglandina i leukotrijena konverzijom iz a) n-6 i b) n-3.

Fig. 1. Biosynthesis of prostaglandins and leukotrienes by conversion from a) n-6 and b) n-3.

Uticaj PUFA na lipoproteinski metabolizam

Ključni faktor rizika za nastanak ateroskleroze predstavljaju hiperlipoproteinemije (HLP), a najveći uticaj na regresiju ateroskleroze ima sniženje nivoa ukupnog, LDL-olesterola i triglicerida, kao i povećanje HDL-olesterola u krv.

Mnoge studije, u svetu i kod nas, pokazale su da linolina kiseline snižava nivo ukupnog i LDL-olesterola, ali one i HDL-olesterola što je očigledno neopolžijan efekat [10,11]. U nekim slučajevima γ-linolska kiseline (ulje noćurka) pokazala se efikasnija od linolina kiseline kada se radi o hipo-olesterolemičkom efektu. n-3 PUFA ispoljavaju povoljno dejstvo na trigliceride (ubrzanim otklanjanjem postprądijalnih hilo- i inhibicijom sinteze triglicerida u jetri), a na nivo ukupnog i HDL-olesterola samo kod osoba sa dominantnom hipotrigliceridemijom. Međutim, njihov hipotrigliceridemski efekat može da bude praćen porastom LDL-olesterola i apo B-100, kod osoba s kombinovanom HLP [12].

Naša ispitivanja su pokazala veliki procenat normalizacije pojedinih lipidnih parametara (66% za trigliceride, 73% za ukupan olesterol, 86% za LDL i 59% za HDL olesterol) kod osoba sa raznim tipovima HLP koje su uzmale svakodnevno 6 meseci LeciVitu, prirodni napitak napravljen na bazi sojinog lecitina, u kom je linolina kiseline zastupljena 60%. Na kraju studije procenat smanjenja triglicerida iznosio je 35%, olesterola 18%, LDL-olesterola 32%, aterogenih indeksa (UH/HDLLDL/HDL) 31% odnosno 38%, dok je povećanje HDL-olesterola bilo 10% u odnosu na vrednosti na početku studije. Važno je napomenuti da je pacijenti za to vreme bio predložen i određen režim ishrane.

Hipoteza da PUFA učestvuju u genskoj ekspresiji, odnosno da moduliraju transkripciju i stabilnost mRNA, kako u lipogenom tako i u nelipogenom tkivu [13], za sada nam daje odgovor i objašnjenje,
za regulaciju gore pomenutih poremećaja kao i za protektivnu ulogu PUFA.

PUFA iz hrane ili oslobađene iz membranskih fosfolipida vezuju se za PPAR/RXR (peroxisome proliferator activated receptor/retinoid X receptor) heterodinere i aktiviraju ili supresuju transcription gena preko interakcije sa PPRE (peroxisome proliferator responsive element). PUFA se takođe nezavisno vezuje i za navodni BP (binding protein) i supresuje transcription lipogenih gena posredstvom PUFA-RE (PUFA-response elements).

Mesto i uloga PUFA u pravilnoj ishrani

Savremenom ishranu se najčešće karakteriše pomanjenjem n-3 PUFA, i kombinovanim viškom zasićenih, n-6 PUFA i trans-masnih kiselina [14]. Literatura obiluje brojnim podacima o aterogenom dejstvu zasićenih i trans-masnih kiselina, dok višak n-6 PUFA podložan je stvaranju lipidnih peroksidasa, čije je dejstvo aterogeno i kancerogeno [15].

Razlozi ovakve neadekvatne ishrane su upotreba velikih količina biljnih ulja, margarina i hrane životinjskog porekla. U savremenoj ishrani se relativno malo koristi zelena lisnato povrće, jezgrasti plodovi i plodovi mora - ribe, rakovi, školjke kao glavni izvori n-3 PUFA. Takođe veliki problem ishrane danas je primena modernih agrikulturnih i industrijskih meru u proizvodnji hrane, koje su poremetile prirodni balans n-6 i n-3 PUFA u hrani [16]. Primenja ovih meri znatno je povećala sadržaj n-6 a smanjila sadržaj n-3 PUFA u namirnicama.

U cilju prevenicije, a i regresije ateroskleroze većina autoriteta iz ove oblasti zastupa mišljenje da bi konzumiranje masti u iznosu od 20% u dnevnom energetskom unosu bio optimal. Od toga 6% treba da čine zasićene, 7% mono-nezasićene masti, 7% PUFA, od čega oko 4% n-6 a oko 3% n-3 PUFA [2]. Uspostavljanju esencijalne ravnovesje u unosu n-6 i n-3 PUFA, treba postaviti posebnu pažnju. Odnos n-6:n-3 PUFA u savremenoj ishrani je jako veliki u odnosu na ishranu kakva je bila u prošlosti. Išhrana ljudi u mezolitu je imala odnos n-6:n-3 od 1:4:1 [17], dok su ispitivanja savremene ishrane u Evropi pokazala da se taj odnos kreće od 15:20:1 [18]. Semeke biljaka su uglavnom glavni prirodni izvor linolne kiseline, a zeleni delovi biljaka (hloroplast) 7-linolenske kiseline. Fitoplankton i alge su izvori EPA i DHA, koji su na početku lanca ishrane u moru. Zato morska riba (posebno takažana plava riba) i ribljje ulje predstavljaju glavni izvor ovih kiselina u ishrani ljudi. Od poznatih prirodnih izvora, konopljino ulje je jedino semeno ulje koje u potpunosti zadovoljava naše potrebe u esencijalnim masnim kiselinama. Ovo ulje sadrži 19% α-linolenske kiseline, 57% linolne i 2% γ-linolenske kiseline. Drugi načini da bi se obezbedila dovoljna količina esencijalnih masnih kiselina je kombinovanje semenki, odnosno semeni ulja ili ribljeg ulja. Sunčokret i susam su dobri izvori n-6, dok bunđevino seme obezbeđuje solidne količine kako n-6 tako i n-3 PUFA. Linenec seme uglavnom sadrži α-linolenovu kiselinu. Bitno je da se semenke koriste sive, a ulja iz ovih semenki da se dobijaju procesom hladnog ceđenja. Dnevno je potrebno uneti 8-17 g semenki ili ulja koja sadrže n-3, i 10-17 g semeni ili ulja koja sadrže n-6 PUFA. Naravno, da je pre svega potrebno voditi računa o individualnim potrebama.

Raširenje i prerada biljnih ulja (hidrogenizacija, prženje) menjaju prirodu PUFA i nastali derivati pokazuju aterogenu svojstva. Zato su preporuke da se koriste isključivo hladno ceđena ulja iz semenki, koja treba da se čuvaju na odgovarajući način. Takođe treba istaći da se prženje kao način pripreme hrane treba maksimalno izbegavati.

Literatura


**Summary**

**Introduction**

Hyperlipoproteinemia is a key factor in development of atherosclerosis, whereas regression of atherosclerosis mostly depends on decreasing the plasma level of total and LDL-cholesterol. Many studies have reported the hypocholesterolemic effect of linoleic acid.

**Types of polyunsaturated fatty acids (PUFA)**

Linoleic and α-linolenic acids are essential fatty acids. The main sources of linoleic acid are vegetable seeds and of α-linolenic acid - green parts of plants. α-linolenic acid is converted to eicosapentaenoic and docosahexaenoic acid. Linoleic acid is converted into arachidonic acid competing with eicosapentaenoic acid in the starting point for synthesis of eicosanoids, which are strong regulators of cell functions and as such, very important in physiology and pathophysiology of cardiovascular system. Eicosanoids derived from eicosapentaenoic acid have different biological properties in regard to those derived from arachidonic acid, i.e. their global effects result in decreased vasoconstriction, platelet aggregation and leukocyte toxicity.

**Role and significant of PUFA**

The n-6 to n-3 ratio of polyunsaturated fatty acids in the food is very important, and an optimal ratio 4 to 1 in diet is a major issue. Traditional western diets present absolute or relative deficiency of n-3 polyunsaturated fatty acids, and a ratio 15-20 to 1. In our diet fish and fish oil are sources of eicosapentaenoic and docosahexaenoic acid. Refined and processed vegetable oils change the nature of polyunsaturated fatty acids and obtained derivatives have atherogenic properties.

**Key words:** Fatty Acids, Unsaturated + therapeutic use; Arteriosclerosis + etiology + prevention and control + therapy; Nutrition: Eicosanoids; Antilipemic Agents