Disseminated Rhodococcus equi infection in a patient with Hodgkin lymphoma

Diseminovana Rhodococcus equi infekcija kod bolesnice sa Hočkinovim limfomom

Dragan Mikić*, Zoran Djordjević†, Leposava Sekulović‡, Miroslav Kojić*, Branka Tomanović§

*Clinic for Infectious and Tropical Diseases, †Institute for Radiology, ‡Institute for Microbiology, Military Medical Academy, Belgrade, Serbia; §Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade, Serbia

Abstract

Introduction. Rhodococcus (R) equi is an opportunistic, uncommon human pathogen that causes mainly infection in immunocompromised hosts. The disease is usually presented as subacute pneumonia that is mostly cavitary and sometimes bacteremic. Case report. We reported the extremely rare case of a 43-year-old woman with Hodgkin lymphoma, who developed R. equi pulmonary infection after receiving multiple courses of chemotherapy. Secondary, the patient developed bacteremia, leading to sepsis and dissemination of R. equi infection in many extrapulmonary sites. At admission the patient was febrile, tachypnoic, tachycardic, hypotensive, with facial edema, splenomegaly, positive meningeal signs, left hemiparesis and paraparesis. Laboratory data included erythrocyte sedimentation rate (ESR) > 140 mm/h, C-reactive protein (CRP) 143.0 mg/L, red blood cells (RBC) 2.14 × 10^12/L, white blood cells (WBC) 2.8 × 10^9/L, lactate dehydrogenase (LDH) 706 U/L, serum albumin 26 g/L, sodium 127 mmol/L and potassium 2.7 mmol/L. Blood culture and culture of sputum and empyema were positive for R. equi. Imaging studies demonstrated a large right cavitary pneumonia and abscess, empyema, pericarditis, mediastinal and intra-abdominal lymphadenopathy, brain and psoas abscesses, osteomyelitis and spondylodiscitis. The patient recovered completely after a 12-month treatment with combinations of parenteral and oral antibiotics (meropenem, vancomycin, teicoplanin, ciprofloxacin, rifampicin, macrolides etc), including drainage of abscesses and empyema. Eight years after completion of the treatment the patient was without recurrence of R. equi infection and lymphoma. Conclusion. Since the eradication od R. equi is very difficult, it is very important to make the diagnosis and initiate appropriate antibiotic therapy as soon as possible.

Key words: rhodococcus equi; hodgkin disease; immunologic deficiency syndromes; infection; sepsis; anti-bacterial agents; drug therapy, combination.

Correspondence to: Dragan Mikić, Clinic for Infectious and Tropical Diseases, Military Medical Academy, Crnojevica 17, 11000 Belgrade, Serbia. Phone: +381 63 210 985.
Introduction

Rhodococcus equi is an opportunistic, gram-positive, weak acid-fast aerobic *coccobacillus* that primarily causes zoonotic infections and is usually present in soil and feces of horses. Although natural exposure to *R. equi* is frequent, the first infection by this organism in humans was described in 1967. Overall, a few hundred cases of *R. equi* infections in humans have been reported till now. The disease is typically described in immunocompromised hosts, especially in patients with acquired immunodeficiency syndrome (AIDS), and less than 15% of the patients have hematopoietic and other malignancies. The most often, *R. equi* causes a subacute, cavitary and bacteremic pneumonia which is characterised by frequent relapses and a high mortality rate. Extrapulmonary disease is usually a late manifestation of the initial pulmonary infection.

We reported an extremely rare case of disseminated *R. equi* infection in a patient with Hodgkin lymphoma who was successfully treated with antibiotics and drainage of abscesses. To the best of our knowledge, this is the first documented case of *R. equi* infection in Serbia.

Case Report

A 43-year-old woman was admitted to the Clinic for Infectious and Tropical Diseases of Military Medical Academy, Belgrade due to disseminated *R. equi* infection on April 8, 2004. She became ill on February 2001 with the appearance of fever, malaise and enlarged lymph nodes in the right inguinal region. At that period of time, the patient worked hard as a lawyer, for several months, at a farm near the village she lived in. One year later, a generalized lymphadenopathy occurred and the Hodgkin lymphoma was diagnosed. After 7 cycles of chemotherapy, in October 2002, the patient developed high fever, chills, cough, and severe pain in the right hemithorax. On chest radiography loose shadow in the right lung with pleural effusion was registered. Despite the implementation of various parenteral and peroral antibiotics in a multiple short courses, the progression of acquired pneumonia in the right lung was registered and the permanent deterioration of general condition.

Chemotherapy was discontinued in March 2003. In order to maintain intra-abdominal lymphadenopathy radiotherapy was performed. In the following period, in addition to high temperature and expectoration of the purulent sputum, a pain in the left hip occurred. Computed tomography showed the presence of a large abscess and pneumonia in the right lung, pleural effusion on the right side and paraaortic lymphadenopathy of more than 2 cm. Magnetic resonance imaging registered progressive spondylodiscitis L2/L3 and psoas abscess at the left side (Figure 1).

During July, 2003 pathohistological examination of the material obtained by biopsy of the right pulmonary infiltration showed pulmonary malacoplakia. In late 2003 blood culture and cultures of the sputum and pleural empyema were positive on *R. equi*. Prolonged use of parenteral antibiotics according to the antibiogram with blood transfusions, human albumin and other replacement therapy resulted in improvement of the patient’s general condition, normalization of body temperature and marked regression of the right pulmonary infiltration. However, on February 2004 the patient developed to allergic reaction to vancomycin and soon after, hemolytic anemia occured. By the end of March, new relapse was registred. According to high fever, dizziness, headache, nausea, vomiting, cough, expectoration of purulent sputum, hemoptysis and chest pain, a positive meningeal signs were detected. Computerized tomography (CT) scan showed large nodular lesion with cavitation in right lung. This lesion was in a close contact with the vena cava superior, pericard and right hilus. An oval lesion 10 cm in diameter has also been registered in the basal region of the chest, that was in contact with right chest wall and destruction of left ribs 9 and 10 (Figure 2). A lumbar puncture was not performed because of the presence of lumbar spine abscess collection. At that time the patient was addmitted to the...
Clinic for Infectious and Tropical Diseases of Military Medical Academy, Belgrade.

At admission the patient was in a very bad general condition, febrile (38.5°C), asthenic, hardly moving, with facial edema, tachypnoic, tachicardic and hypotensive. In the physical findings silent breathing in the lower parts of the right lung, splenomegaly, positive meningeal signs, left side hemiparesis and paraparesis were registered.

Laboratory data included ESR > 140 mm/h, fibrinogen 5.8 g/L, CRP 143.0 mg/L, RBC 2.14 \times 10^{12}/L, Hb 66 g/L, WBC 2.8 \times 10^9/L, neutrophils 84.7%, platelets (PLT) 542 \times 10^9/L, bilirubin 25 \mu mol/L, serum protein 54 g/L, serum albumin 26 g/L, gamma GT 80 U/L, LDH 706 U/L, sodium 127 mmol/L, potassium 2.7 mmol/L, iron 5 mmol/L, cholesterol 3.4 mmol/L, \gamma globulin 19.8%. Direct and indirect Coombs tests were positive. Serological analyses to hepatitis B and C, and human immunodeficiency viruses were negative.

Blood culture and sputum and empyema cultures were positive for \textit{R. equi}. \textit{R. equi} was sensitive to macrolides, rifampicin, fluoroquinolons, glicopeptids, carbapenems, amikacin and amoxicilin-clavulaxate, but resistant to cefalosporins, piperacillin-tazobactam, clindamycin, amoxicillin and gentamicin.

Infiltration connected with right hilus and nodular lesion in posterobasal region of the right lung, diameter of 9 cm, were registered on chest radiography examination. Radiography of LS spine showed pathologic fracture of L2 corpus with a wedge-shaped deformation (Figure 3).

Pericardial effusion of 1.4 cm was registered on echocardiography and splenomegaly of 16 cm on the abdominal ultrasound. CT scan of the brain showed hypodense zones 4 mm in diameter in crus posterior of the right capsula interna and left olive, which did not change their characteristics after intravenous addmission of the contrast.

Immediately after addmission the therapy with meropenem and rifampicin started. After 7 days ciprofloxacina and amikacin were added. After 14 days amikacin was excluded and teicoplanin was added (Table 1). During the first month the patient received immunoglobulins, human albumin, fresh
frozen plasma, cryoprecipitate, filtered erythrocytes and symptomatic therapy which led to normalization of the temperature, improvement of general condition and laboratory values. At control chest CT, regression of lung changes was noticed. In the region of the middle lobe, retrosternally and paracardially, a zone of consolidation of the lung parenchima with cavitation of 5×3 cm was registred. Up to the back thoracic wall in the right posterobasal region, incapsulated liquid collection of 6×7 cm in diameter was noticed. There was a large number of lymph nodes of about 2 cm in diameter in mediastinum, paratracheally and up to the arcus aortae (Figure 4).

A combined antibiotic treatment was continued also including meropenem, ciprofloxacin, vancomycin, rifampicin, trimethoprim-sulfamethoxazole and lincomycin. By the end of August 2004, drainage of abscess collection diameter of 10 cm in the left psoas was performed (Figure 5). A parenteral antibiотical therapy was continiued for six months more and than was changed with peroral antibiotics (rifampicin, azithromycin, roxithromycin, eritromycin, linkomycin, clarithromycin, ciprofloxacin, trimethoprim-sulfamethoxazole) up to 12 months. At discharge from the Clinic, on February 1, 2005, the patient was in good general condition with lumbar pain and normal laboratory values.

Table 1

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Dosage</th>
<th>Application</th>
<th>Therapy duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meropenem</td>
<td>1 gr / 8 h / daily</td>
<td>iv infusion</td>
<td>April 4 – May 5</td>
</tr>
<tr>
<td>Ciprofloksacin</td>
<td>200 mg / 12 h / daily</td>
<td>iv infusion</td>
<td>April 15 – Maj 8</td>
</tr>
<tr>
<td>Amikacin</td>
<td>1 gr / 24 h /daily</td>
<td>iv</td>
<td>April 15 – April 29</td>
</tr>
<tr>
<td>Teikoplanin</td>
<td>400 mg / 24 h /daily</td>
<td>iv infusion</td>
<td>April 29 – May 15</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>600 mg / daily</td>
<td>per os</td>
<td>April 4 – May 12</td>
</tr>
</tbody>
</table>

Fig. 4 – Computed tomography of the chest in the presented patient with disseminated *R. equi* infection after a month of combined antibiotic therapy.

Fig. 5 – Computed tomography and radiography of lumbar spine show a psoas abscess in the presented patient.
Four months later, MRI of the lumbar spine showed cured spondylodiscitis L2/L3 with kyphosis deformity. There were no signs of paravertebral infection (Figure 6).

Five months after therapy cessation, CT scan showed scared lesions in basal paracardial regions of the right lung and incapsulated liquid collection 4 cm in diameter in the posterobasal region of the same lung. Mediastinal lymph nodes were not enlarged (Figure 7).

Eight years after treatment cessation the patient was without recurrence of *R. equi* infection and lymphoma. Meanwhile, fluid collection in the right lung was completely and spontaneously regressed (Figure 8).

Discussion

R. equi is an opportunistic pathogen well described in veterinary science as a causative agent of pneumonia and sepsis in domestic animals, and a leading cause of chronic pneumonia in foals less than six months of age. However, its role in the etiology of human diseases is much less known. Human *R. equi* infection was described in 1967 for the first time in a patient with autoimmune hepatitis, who suffered from cavitary pneumonia after immunosuppressive treatment. In the next 15 years only 12 cases of this illness have been reported. After that, the frequency of *R. equi* in-
Infection begins to increase along with the increasing number of immunocompromised hosts, particularly the number of AIDS patients 4, 19–21. *R. equi* has been isolated from almost each specimen and tissue of domestic and wild animals. It has been isolated from soil on 50%–90% farms on each continent, except Antarctic. Concentration of *R. equi* is especially high in feces of horses. From that reason direct and indirect contact with domestic animals could have an important role in development of human *R. equi* infection. The infection occurs through inhalation, ingestion and inoculation 1, 2, 22–24. We assume that the presented patient acquired *R. equi* infection most probably by inhalation, working at the farm of horses. However, we are not sure when the infection actually occurred.

Like the other authors, we assume that regional lymphadenitis was caused by dissemination of *R. equi* infection from the primary focus 20, 25. However, we are not absolutely sure what was the role of *R. equi* infection in the development of mediastinal and intra-abdominal lymphadenopathy in the presented patient. Namely, chemotherapy of Hodgkin lymphoma was interrupted when the patient had significant mediastinal and intra-abdominal lymphadenopathy, and this lymphadenopathy just withdrew after a long-term of a combined antibacterial therapy. This indicates that the most likely cause of lymphadenitis was *R. equi*.

The most important factor in the development of *R. equi* infection is impaired cellular immunity. This is confirmed by the results of the study conducted in HIV positive persons, which showed that *R. equi* infection is more common in patients with blood CD4 + lymphocytes count less than 100/mm³. For that reason the disease is more frequent in the patients with AIDS and on immunosuppressive therapy after solid organ or bone marrow transplantation, but very rare in healthy immunocompetent persons 6, 7, 8, 20, 26, 27. This explains why there was continuous impairment of lung inflammatory process in the presented patient and why the dissemination of *R. equi* infection appeared. However, the delayed diagnosis and inadequate antibiotic therapy has also contributed to the frequent relapses and dissemination of the disease. Namely, bacteremia, relapses and dissemination of the infection also registered after chemotherapy cessation makers the diagnosis. According to data from the literature, relapses, bacteremia and visceral dissemination of *R. equi* infection rarely occurs in HIV negative persons in contrast to the patients with AIDS 4, 14, 16, 27–30.

Clinical manifestations of *R. equi* infection may be different, but the disease is usually manifested with respiratory symptoms and signs. The most frequent form of *R. equi* infection is chronic, progressive, granulomatous and necrotizing inflammation which is cavitary in 2/3 of the patients. The other manifestations of respiratory infection are nodular infiltrates which can be complicated by lung abscesses, empyema, pleural effusion and spontaneous pneumothorax 6, 7, 8, 20, 27. Extrapulmonary *R. equi* infection can be primary and secondary, and usually is a late manifestation of initial lung infection as was the case in our patient. It is a multisystemic or local disease, usually presented as sepsis, fever of unknown origin, cerebral abscess, meningitis, pericarditis, osteomyelitis, subcutaneous abscess, regional lymphadenitis, mastoiditis, or wound infection 18, 25, 27, 31–36. Because of the delayed diagnosis and treatment, frequent bacteriemies and dissemination of *R. equi* infection, almost all of these manifestations were seen in our patient. However, we should not forget that in such cases disease progression is registered in about 10% of patients, despite adequate therapy 4, 20, 27.

Optimal treatment regimen and optimal duration of antibiotic therapy in patients with *R. equi* infection are not exactly defined. Combined antibiotic treatment is the cornerstone of the therapy for *R. equi* infection, but surgical incision and drainage of abscess formation can also be useful. Treatment of severe forms of the disease should start with combined parenteral antibiotics and after clinical and laboratory improvement should switch to a combined peroral antibiotic therapy, we also applied 37–43. Because of high incidence of bacteremia and large bacterial inoculum it is necessary to apply adequate combination of antibacterial drugs with bactericidal activity, with simultaneous application of lipophilic antibiotics with good intracellular penetration. It is believed that antibiotics combination which includes carbapenems (meropenem, imipenem), glycopeptides (vancomycin, teicoplanin), macrolides and rifampicin can be optimal 4, 20, 27, 37–43. That was the way we started and continued antibiotic treatment for exactly one year, that resulted in a complete success. Some authors recommend combinations with two or even more antibiotics with intracellular activity, while the others put accent on the bactericidal antimicrobial agents, especially during the initial phase of treatment 37–42. We appreciated the views of both authors and conducted the treatment with four antimicrobial drugs, guided by antibiogram, in a long period of time. After careful consideration, we anticipated that there was no allergic reaction to vancomycin in our patient, actually it was “red woman” phenomenon, so we continued the treatment with glycopeptides successfully. At the same time great attention was paid to the volume replacement therapy and to the fact that drainage of large abscess collection in those with *R. equi* infection should be done whenever possible.

Conclusion

Human *R. equi* infection is a very rare disease usually affecting those with severe immunodeficiencies. The delayed diagnosis is very frequent, despite the advances in knowledge about the causative agent. The most important step in making diagnosis is a clinical suspicion of the disease and after that, microbiological analyses from the adequate specimens. Since it is almost impossible to eradicate *R. equi*, it is very important to make a diagnosis and start therapy as soon as possible. Antimicrobial therapy is based on a combination of antibacterial drugs with bactericidal activity and drugs with good intracellular penetration and applied for a long period of time.

