Complex modulation of fingertip forces during precision grasp and lift after theta burst stimulation over the dorsal premotor cortex

Kompleksna modulacija sila tokom preciznog hvata šake primenom ponavljanje transkranijalne magnetne stimulacije pražnjenjima u teta frekvenciji iznad dorzalnog premotornog korteksa

Dragana Drlijačić†, Sanja Pajić§, Aleksandar Nedeljković*,
Sladjan D. Milanovič‡, Tihomir V. Iliić*†

University of Belgrade, *Faculty of Sport and Physical Education, §Institute for Medical Research, ¶Faculty of Biology, Belgrade, Serbia; †Preschool Teacher Training College, Šabac, Serbia; Military Medical Academy, ‡Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia;

Abstract

Background/Aim. Adaptive control and fingertip force synchronization of precise grasp stability during unimanual manipulation of small objects represents an illustrative example of highly fractionated movements that are foundation of fine motor control. It is assumed that this process is controlled by several motor areas of the frontal lobe, particularly applicable to the primary motor (M-I) and dorsal premotor cortex (PMd). Aiming to examine the role of PMd during fine coordination of fingertip forces we applied theta burst repetitive magnetic stimulation (TBS) to disrupt neural processing in that cortical area. Methods. Using a single-blind, randomized, crossover design, 10 healthy subjects (29 ± 3.9 years) received single sessions of continuous TBS (cTBS600), intermittent TBS (iTBS600), or sham stimulation, separate from one another at least one week, over the PMd region of dominant hemisphere. Precision grasp and lift were assessed by instrumented device, recording grip (G) and load (L) forces simultaneously during three manipulation tasks (ramp-and-hold, oscillation task with the dominant hand (DH) after the iTBS (p = 0.009). On the contrary, the cTBS reduced variable error (VE) for non-dominant hand (NH), p = 0.005. Considering force coordination we found that iTBS worsened variables for NH (G/L ratio, p = 0.017; cross-correlation of the G and L, p = 0.047; Gain, p = 0.047). These results demonstrate the ability of TBS to modulate fingertip forces during precision grasping and lifting, when applied over PMd. These findings support the role of PMd in human motor control and forces generation required to hold small objects stable in our hands.

Key words: motor cortex; transcranial magnetic stimulation; hand strength.

Correspondence to: Tihomir V. Ilić, Military Medical Academy, Department of Neurology, Laboratory for Noninvasive Brain Stimulation, Crnotravska 17, 11 000 Belgrade, Serbia. Phone: +381 11 3609 064. E-mail: tiholic@gmail.com
me, primena cTBS protokola dovela je do smanjenja proučavanja
mesnje greške (VE) za nedominantnu ruku (NH), p = 0.005. Sa aspekte koordinacije sih utvrđeno je da je iTBS protokol do-
veo do pogoršanja rezultata praćenih pokazatelja za nedomi-
nantnu ruku (G/L odnos, p = 0.017; korelacija G i I, p = 0.047; priраст sile p = 0.047). Zatklučak. Rezultati našeg is-
traživanja ukazuju na mogućnost modulacije sih pristiju šake
tokom preciznog hvata i podizanja, ukoliko se TBS primeni
iznad PMd-a. Dobijeni nalazi podržavaju ulogu PMd u mo-
tornoj kontroli i generisanju sila neophodnih za stabilno dr-
žanje malih predmeta kod ljudi.

Ključne reči:
motorna kora; transkranijalna magnetna stimulacija;
ruka, snaga.

Introduction

The development of a skilled and sophisticated grasping technique represents one of the key evolutionary advantages of human beings comparing to subhuman primates. Therefore, grasping is a subject of interest of many researchers, given the importance of precision grasping in the activities of daily life.

In order to evaluate these functions, different manipulandums have been developed, that serve to evaluate complex control over precision grip and coordination of grip and load forces applied to the object.

Hand grip force and their coordination are controlled by the nervous system, so that a number of receptors (visual, me-
chanoreceptors, tactile receptors) passed through somatosensory afferents information about the mechanical characteristics of cases as well as change the path of movement, and through feedback and feed-forward mechanisms which regulate the process. However, in addition to afferent mechanisms of motor control, the precise modulation of grip and load force is provided by the activation of primary and non-primary motor areas. Despite the fact that the primary motor cortex (M-1) and its main output projection, the corticospinal tract, are considered as neural basis of hand dexterity, there are several non-primary motor areas (premotor, supplementary motor, and cingulate motor areas). These parts of the frontal lobe play a role in modulation of the output signal at the levels of the M-1 and spinal cord. Most of the findings related to the role of non-primary motor areas are collected on the basis of cell recordings on monkeys. However, the trains of magnetic pulses, repetitive transcranial magnetic stimulation (rTMS) applied over intact scalp, provide the new tool to investigate modulation of motor output with humans awake, on safe and painless way. Because the effects of rTMS extend beyond the period of stimulation, there is a possibility to modulate cortical plasticity. In the case of creation of so-called virtual lesions of restricted brain areas, trains of TMS pulses temporarily interfere with neural processing while the subject is performing behavioral tasks. Through rTMS, there are different possibilities of modulation functions at the very site of stimulation, but also on other distal sites producing a disinhibition through the synaptic connections.

Contrary, to extensively study the role of M-1 and the corticospinal projection in control of skilled hand movements, the role of premotor cortex in this function is less known. The success of the skilled manipulation of objects with hand depends on setting hand grip before the object is reached, requiring cooperation of visuo-motor and sensory-motor loops, the kind of transformation that takes place within the parieto-frontal connections, including the M-1, but not least ventral premotor cortex (PMv). It has been shown that the function of premotor dorsal cortex (PMd) in monkeys refers to the planning and execution of reaching movements. However, in humans, the contribution of PMd in the execution of complex hand grasp is reflected through connecting sensory information with motor actions, as well as visually guided activities, although many aspects remain essentially unknown.

Transcranial magnetic stimulation represents non-invasive, safe and painless method aimed to activate restricted neuronal population at target point, with purpose of modulating activity of certain cortical area. Depending on the stimulation intensity, the cortical interneurons are commonly activated, and only at higher intensities the pyramidal cells could discharge, too. However, in this way, the excitatory and inhibitory neurons are activated at the same time, and related to the stimulation pattern, the net effect of repetitive TMS could be either inhibitory or facilitatory. However, there is an additional differences between M-1 and PMd, because functional imaging studies have revealed the activation of premotor regions in both hemispheres, contrary to primarily M-1 activation on the contralateral side during a variety of motor tasks, including isolated movements of the distal arm (e.g. opening a drawer and retrieving food with the same hand).

The aim of this study was to determine the role and contribution of PMd during precision grip in healthy subjects assessed by kinetic analysis of various static and dynamic manipulation tasks with both hands after rTMS intervention over dominant PMd.

Methods

Subjects

Ten healthy volunteers (6 males) aged 29 ± 3.9 years, without history of any neurological and psychiatric conditions, neurosurgery, or metal or electronic implants participated in the study. Subjects were screened for potential risk of adverse reactions to TMS by using the adult safety screen questionnaire for transcranial magnetic stimulation. None of the subjects did take any CNS-acting medications.

Nine subjects were right-handed and one was left-handed according to the Edinburgh handedness inventory. Considering hand motor with manipulandum applied in the study, none of the subjects had previous experience.

The experimental protocol was approved and monitored by the local ethics committee according to the Declaration of Helsinki. After an explanation of the treatment procedures, all subjects signed a written informed consent.

Grip-lift tasks

Subjects were seated in a comfortable chair in front of the manipulandum which consisted of the single handle in the form of lever with the grasping surfaces covered by rubber (Figure 1A) and steel stand fixed to the table. A single-axis force transducer (SW-20L, CAS Cor., NY, USA; range 200 N; linearity 0.03%; hysteresis 0.03%) located inside the handle recorded the grip force \((G)\) of the finger and the thumb applied perpendicularly against the opposing grasping surface. Another single-axis transducer (LCM300 FUTEK Advanced Sensor Technology, Inc, CA, USA; range 450 N; non-linearity 0.5%; hysteresis 0.5%), located at the bottom of the handle, recorded the load force \((L)\) exerted tangentially to the grasping surfaces. With its lower part load force transducer is attached to the spherical joint so that the force that transmits to the fixed transducer \(L\) when pulling the handle upwards is always projected in the ideal vertical position. By the spherical joint, the handle could be either externally fixed to the steel stand, or attached to additional weights and be free to move. Additional weights in steps of 100 and 200 g of mass served to adjust the total weight of device to the prescribed \(L_{\text{max}}\).

Within a single session subjects were tested on three manipulation tasks – two “static” (ramp-and-hold and oscillatory task) and one “dynamic” (lifting task)\(^{21}\). Each experimental task was well explained and demonstrated by experimenter. Thereafter, subjects were submitted to a familiarization procedure practicing manipulation tasks unimanually, with three practice trials performed by each hand. After practicing subjects performed four experimental trials and the last three trials were taken for further analysis. The sequence of tasks, as well as the sequence of hands within each task was pseudo-randomized. During testing subjects were focused on the movement task based on \(L\) exertion, since \(G\) was never mentioned throughout the entire experiment. All measurements conducted by same experienced investigator. Figure 1B illustrate horizontal projection of subjects’ body while performing the task \(^{21}\).

While performing ramp-and-hold task (R&H-T), manipulandum was externally fixed to the steel stand. Subjects were asked to match a prescribed \(L_{\text{max}}\) profile by pulling up device corresponding to a gradual increase and, thereafter, a steady \(L\) exertion against an externally fixed device. Both, the prescribed \(L_{\text{max}}\), as well as the current value of \(L\) were displayed on a computer monitor placed in front of the seated subject. The profile had the following three phases: zero \(L\) (duration 1 s), gradually increasing \(L\) (3 s), and constant \(L\) (3 s) (Figure 2A). The initiation of each phase and the termination of the last one were indicated by four consecutive computer-generated auditory beeps.

In the oscillatory task (Osc-T) of subjects were expected to correspond to a rapidly changing \(L\) against externally fixed device. They were instructed to exert a sinusoidal \(L\) on the computer monitor, by pulling the device vertically (upward-downward) in a way that \(L\) minima and maxima corresponded to 0 N and the individually prescribed \(L_{\text{max}}\) (Figure 2B). The computer monitor displayed those horizontal lines depicting the prescribed minima and the maxima, as well as the current value of \(L\). Frequency of oscillatory variations (1.33 Hz) was set by a metronome, while duration of the trials was 8 s.

Fig. 1 – (A) Schematic illustration of experimental manipulandum for the assessment of grip and load performance and force coordination. The circles illustrate the position of the tips of the fingers and the thumb of subject’s hand applying a precise grasp against the manipulandum. Letters A and B denote grip and load force transducers – load force transducers records grip force \((G)\) and load force \((L)\), respectively. S indices spherical joint, and W – additional weight or, alternatively, fixation of the manipulandum to the steel stand; (B) Position of subject during the task performance - top view.

Fig. 2 – Grip and load force exerted against the manipulandum in the: A) ramp-and-hold task (R&H-T), oscillation task (Osc-T) and lifting task (Lift-T) obtained from a healthy subject.
In the lifting task (Lift-T), based on individually prescribed \(L_{\text{max}} \), manipulandum was attached with additional weights served to adjust the total weight of device to the prescribed \(L_{\text{max}} \). The subjects were instructed to prepare their hand for grasping the device by opening their fingers near the grasping area without touching it. Upon the first computer-generated beep, subject grasped the device, lifted it approximately 3 cm above the table, and held steady until the second beep (3 s later) and, thereafter, place it back on the table and release (Figure 2C).

Transcranial magnetic stimulation

The subjects were seated in a reclining chair that allowed them to keep their arms and hands relaxed during TMS and recording of motor evoked potentials (MEPs).

Single Pulse TMS

Magnetic stimulation was delivered by a 70-mm figure-eight coil and a Magstim Rapid² (Magstim Co., Whitland, UK) stimulator for TMS and a Bistim module (Magstim) for single pulse TMS. MEPs were recorded from the thenar muscle (abductor pollicis brevis – APB) using surface electrodes and (Medelec Synergy, VIASYS Healthcare, UK) with a band pass of 20 to 2,000 Hz. Resting motor threshold (RMT) was determined in the contralateral APB muscle, determined with TMS delivered to the optimal scalp site for induction of MEPs in target muscle, according to international standards. The coil was placed tangentially to the scalp, with the handle pointing 45° posterolaterally.

Thirty magnetic pulses were delivered successively (inter-trial interval of 5 ± 1.2 sec), at the intensity optimal to evoke MEPs of 1 mV amplitude (measured from peak to peak). The intensity was approximately between 120-130 % RMT. The time points of MEP measurements were immediately before (PRE) and after (POST) intervention.

Repetitive TMS

Theta burst stimulation (TBS) was performed according to current safety recommendations, using original protocols with triplets of very short bursts at 50 Hz repeated at 0.2 sec (5 Hz – the range of EEG theta frequency band) for a total of 600 pulses. Therefore, cTBS600 protocol lasted for 40 s, while iTBS600 protocol includes 10 burst of triplets who were applied every 10 seconds (with pause of 8 s) causing the delivery of 600 pulse over a period of 190 s. Sham TBS was delivered using a matching coil produced by Magstim that delivers only 5% of the stimulator output, but with similar clicking sound produced mechanically by the sham coil with each TMS pulse.

TBS was applied at subthreshold level (80% of RMT), over the PMd of the dominant hemisphere. The stimulation point on the scalp was determined in accordance with the PMd localization at the specific location situated about 2 cm rostral to the representation of hand muscles in the primary motor cortex (half of the distance between Cz and Fz and 15% of the distance from tragus to tragus to the left).

Experimental design

All recordings were conducted in the Laboratory for non-invasive brain stimulation, Military Medical Academy (MMA) in Belgrade. Experiment was carried out in three individual sessions for each individual subject, each separated not shorter than one week. After an evaluation of the excitability of the motor cortex, surface electromiography (EMG) electrodes were removed, and the place where they had been placed was labeled by the marker. Subjects then carried out the hands manipulative tasks (Figure 3).

Before starting the test fingertips were cleaned with alcohol. Since previous results of Jaric et al. have shown that prolonged tasks require \(L \) below 15% of the maximum \(G \) to avoid fatigue, maximum \(G \) exerted by tips of all 5 fingers of each hand was recorded separately. Ten percent of the maximum \(G \) of the weaker hand was prescribed as the maximum \(L_{\text{max}} \) in each of the experimental tasks and was participant specific (range 5.17 N).

After the baseline evaluation, TBS protocols or sham were applied in pseudo-randomized order. Following interventions, all baseline procedure were repeated immediately in the same way.

Data processing

A custom made LabView application (National Instruments, Austin, TX, USA) was used for the data acquisition and processing of data obtained from the grip-and-lift tasks. The signals from both transducers were A/D converted and recorded at the sampling rate of 200 Hz. The raw force data were low-pass filtered at 10 Hz with a fourth order (zero-phase lag) Butterworth filter. In the R&H-T the ramp
The lift phase (the initiation of lifting), starts when L reaches 8% of L\textsubscript{max} and ends with reaching L\textsubscript{max} and the hold phase (interval of 2 s, after the period of 0.25 s when L reaches L\textsubscript{max}) in the Lift-T, were also analyzed separately.

Based on directly measured variables (G and L) obtained using LabView application, derived variables were calculated. To assess hand function, two groups of dependent variables were selected. The ability of subject to exert the required pattern of L was assessed by task performance variables (describing how successful subject were regarding performing the instructed task), while the ability of subject to exert the required pattern of L was assessed by root mean square error (RMSE) of L in the R&H-T and coefficient of variation (CV) of L in the Lift-T. Constant error (CE), calculated as a difference of peaks of L and required level of force, and variable error (VE), assessed by standard peak deviations of L, were selected as an indices of task performance in the Osc-T.

Force coordination variables describing to what extent G and L were coordinating and assessed the relationship between the temporal profiles of G and L. G-L scaling, assessed by grip-to-load ratio (G/L ratio) evaluated the magnitude of G with respect to the magnitude of L assuming that lower ratio was index of better coordination. It was calculated from the steady holding phases of the R&H-T and the Lift-T, as well as from the averaged G and L of the Osc-T. As an index of G-L coupling, the cross-correlation of the G and L (r) of the R&H-T and the Osc-T were used. Note that maximum correlation coefficient, based on previous studies, should indicate higher force coordination. G-L modulation was assessed from G-L diagrams (the slope and intercept were interpreted as Gain and Offset, respectively) of the Osc-T. Higher force coordination was expected to be revealed by high Gain and low Offset of G.

Statistical analysis

For the assessment of normality of distribution the Shapiro-Wilk test was used. To assess the effects of intervention protocols (Sham vs iTBS vs iTBS) on the global excitability of the motor cortex, the results obtained before (PRE) and after intervention (POST) are normalized (PRE/POST) and ANOVA for repeated measures and after intervention (POST) are normalized (POST/PRE) of the motor cortex, the results obtained before (PRE) were performed. The level of statistical significance was set (Mdn = 1.00) vs iTBS (Mdn = 1.15) vs iTBS (1.02), x2(1) = 0.60, p = 0.741 and NH [Sham (Mdn = 1.17) vs cTBS (Mdn = 1.07) vs iTBS (0.96), x2(1) = 0.60, p = 0.741]. Coefficient of variation of L, indicator of task performance in the Lift-T, also remained unchanged [DH, Sham (99.58 ± 7.79) and cTBS\textsubscript{600} (87.34 ± 19.54) stimulation (F(2,14) = 10.80, p < 0.05) (Figure 4). Statistical significance was achieved only for iTBS intervention, that MEP amplitude was increased.

![Fig. 4 – Histogram showing normalized data (mean and standard deviation) for three experimental protocols obtained from changes of motor evoked potentials (MEP) amplitudes, after motor cortex stimulation. Data are averaged across the subjects.](image)

The effects of interventions on motor cortex excitability

The evaluation of motor cortex excitability was performed through comparison of resting motor threshold (F(2,14) = 0.41, p = 0.575) and MEP modulation (starting from baseline value of 1 mV). Normalized data for MEP modulation have shown significant differences between iTBS\textsubscript{600} (137.28 ± 27.76) vs Sham (99.58 ± 7.79) and cTBS\textsubscript{600} (87.34 ± 19.54) stimulation (F(2,14) = 10.80, p < 0.05) (Figure 4). Statistical significance was achieved only for iTBS intervention, that MEP amplitude was increased.

The effects of interventions on the task performance variables

Our results do not reveal any effects of the interventions on modulation of grip performance and force coordination in the R&H-T and the Lift-T tasks. The performance of R&H-T, assessed by RMSE, was not affected by the intervention, both for DH [Sham (Mdn = 1.05) vs cTBS (Mdn = 1.15) vs iTBS (1.02), x2(1) = 0.60, p = 0.741] and NH [Sham (Mdn = 1.17) vs cTBS (Mdn = 1.07) vs iTBS (0.96), x2(1) = 0.60, p = 0.741]. Coefficient of variation of L, indicator of task performance in the Lift-T, also remained unchanged [DH, Sham (Mdn = 1.00) vs cTBS (Mdn = 0.65) vs iTBS (Mdn = 0.69), x2(1) = 0.20, p = 0.905; NH, Sham (Mdn = 0.87) vs cTBS (Mdn = 0.94) vs iTBS (Mdn = 0.66), x2(1) = 0.60, p = 0.670].
<table>
<thead>
<tr>
<th>Task</th>
<th>Task performance</th>
<th>SHAM Mdn (int)</th>
<th>cTBS Mdn (int)</th>
<th>iTBS Mdn (int)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&H-T</td>
<td>RMSE DH</td>
<td>2.3 (1.2–3.8)</td>
<td>3.3 (1.4–4.8)</td>
<td>2.9 (1.5–4.6)</td>
<td>0.202</td>
</tr>
<tr>
<td></td>
<td>NH</td>
<td>2.6 (1.7–4.2)</td>
<td>2.8 (2.1–3.5)</td>
<td>2.7 (1.85–3.4)</td>
<td>0.273</td>
</tr>
<tr>
<td>CE</td>
<td>DH</td>
<td>2.01 (0.82–6.32)</td>
<td>2.70 (0.34–6.24)</td>
<td>2.22 (0.39–9.57)</td>
<td>0.497</td>
</tr>
<tr>
<td></td>
<td>NH</td>
<td>2.40 (1.15–6.02)</td>
<td>3.56 (0.30–10.65)</td>
<td>2.62 (0.53–11.97)</td>
<td>0.273</td>
</tr>
<tr>
<td>Osc-T</td>
<td>VE DH</td>
<td>6.72 (5.03–11.38)</td>
<td>6.30 (5.03–8.33)</td>
<td>6.80 (4.78–9.70)</td>
<td>0.326</td>
</tr>
<tr>
<td></td>
<td>NH</td>
<td>5.76 (4.12–11.66)</td>
<td>7.44 (5.13–9.90)</td>
<td>7.14 (5.36–11.88)</td>
<td>0.497</td>
</tr>
<tr>
<td>Lift-T</td>
<td>CV DH</td>
<td>3.81 (0.33–2.24)</td>
<td>0.89 (0.53–3.83)</td>
<td>1.01 (0.22–1.62)</td>
<td>0.505</td>
</tr>
<tr>
<td></td>
<td>NH</td>
<td>1.01 (0.25–1.66)</td>
<td>0.91 (0.60–1.80)</td>
<td>0.96 (0.28–2.93)</td>
<td>0.670</td>
</tr>
<tr>
<td>Force coordination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&H-T</td>
<td>G/L ratio DH</td>
<td>1.03 (0.77–1.14)</td>
<td>0.95 (0.59–1.21)</td>
<td>1.01 (0.72–1.24)</td>
<td>0.407</td>
</tr>
<tr>
<td></td>
<td>NH</td>
<td>0.93 (0.68–1.42)</td>
<td>0.89 (0.44–1.73)</td>
<td>0.93 (0.39–1.42)</td>
<td>0.505</td>
</tr>
<tr>
<td>Osc-T</td>
<td>r DH</td>
<td>0.995 (0.992–0.998)</td>
<td>0.995 (0.992–0.997)</td>
<td>0.996 (0.996–0.998)</td>
<td>0.497</td>
</tr>
<tr>
<td></td>
<td>NH</td>
<td>0.996 (0.995–0.998)</td>
<td>0.995 (0.991–0.998)</td>
<td>0.996 (0.994–0.998)</td>
<td>0.505</td>
</tr>
<tr>
<td>Lift-T</td>
<td>Gain DH</td>
<td>1.18 (0.73–1.29)</td>
<td>1.00 (0.60–1.35)</td>
<td>0.96 (0.73–1.42)</td>
<td>0.497</td>
</tr>
<tr>
<td></td>
<td>NH</td>
<td>1.01 (0.74–1.27)</td>
<td>1.01 (0.56–1.49)</td>
<td>0.95 (0.46–1.38)</td>
<td>0.670</td>
</tr>
<tr>
<td>Osc-T</td>
<td>G/L ratio NH</td>
<td>0.980 (0.967–0.993)</td>
<td>0.981 (0.966–0.992)</td>
<td>0.982 (0.972–0.991)</td>
<td>0.741</td>
</tr>
<tr>
<td></td>
<td>r NH</td>
<td>0.986 (0.963–0.994)</td>
<td>0.986 (0.963–0.992)</td>
<td>0.986 (0.974–0.993)</td>
<td>0.407</td>
</tr>
<tr>
<td>Lift-T</td>
<td>Gain DH</td>
<td>0.96 (0.82–1.26)</td>
<td>1.05 (0.87–1.36)</td>
<td>1.07 (0.69–1.41)</td>
<td>0.497</td>
</tr>
<tr>
<td></td>
<td>NH</td>
<td>1.08 (0.79–1.37)</td>
<td>1.09 (0.86–1.82)</td>
<td>1.07 (0.82–2.28)</td>
<td>0.407</td>
</tr>
<tr>
<td>Osc-T</td>
<td>Offset DH</td>
<td>-3.46 (-1.39–0.36)</td>
<td>-0.56 (-2.12–0.72)</td>
<td>-0.21 (-1.38–0.54)</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>NH</td>
<td>-3.20 (-1.54–0.64)</td>
<td>-0.18 (-2.97–0.68)</td>
<td>-0.28 (-0.79–0.39)</td>
<td>0.895</td>
</tr>
<tr>
<td>Lift-T</td>
<td>G/L ratio NH</td>
<td>1.03 (0.94–1.15)</td>
<td>1.02 (0.77–1.35)</td>
<td>0.94 (0.79–1.23)</td>
<td>0.082</td>
</tr>
</tbody>
</table>

SHAM – sham simulation; R&H-T – ramp and hold task; Osc-T – oscillation task; Lift-T – lifting task; RMSE – root mean square error; CE – constant error; VE – variable error; CV – coefficient of variation; G/L ratio – grip-to-load ratio; DH – dominant hand; NH – non-dominant hand; r – cross correlation of the G and L; p – probability; Mdn – median; CTBS – continuous theta burst stimulation; iTBS – intermittent theta burst stimulation.
In the Osc-T the ability of subjects to exert required pattern of L was assessed by absolute CE and VE (Figure 5A–B). Our results have shown better task performance regarding to CE for DH vs NH after iTBS protocol ($z = -2.60, \ p = 0.009$) with a large difference between hands ($r = 0.58$). Median of the results for both hands decreased after the iTBS, but note that differences between PRE and POST was larger for DH (from Mdn = -2.22 pre-intervention, to Mdn = 1.28 after intervention) relative to NH (Mdn = 2.61, PRE vs Mdn = 2.23, POST). Between different TBS protocols were no significance differences either for DH [Sham (Mdn = 1.08) vs cTBS (Mdn = 0.85) vs iTBS (Mdn = 0.95), $\chi^2(2) = 1.40, \ p = 0.497$], as well as for NH [Sham (Mdn = 1.03) vs cTBS (Mdn = 0.95) vs iTBS (Mdn = 0.98), $\chi^2(2) = 0.60, \ p = 0.741$].

<table>
<thead>
<tr>
<th></th>
<th>DH</th>
<th>NH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iTBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 5 – Task performance variables in oscillation task.](image)

A) Constant error (CE) and variable error (VE) values for dominant (DH) and non-dominant hand (NH) are averaged across the subjects for each of three experimental protocols (Sham, continuous theta burst stimulation – cTBS and intermittent theta burst stimulation – iTBS). The box plots represent the 25th and 75th percentile of the distribution and the middle line represents the median. $^{*}p < 0.01$ and $^{*}p < 0.05$ between the groups (DH vs NH). Note that iTBS improved the CE when the task was performed with DH, while cTBS improved the VE if the task was performed with NH.

Results of Wilcoxon’s test for VE (the standard deviations of peaks of L) revealed better task performance for NH after the cTBS ($z = -2.80, \ p = 0.005$) with a large effect size ($r = 0.63$). Contrary, for DH there were no differences between values of VE pre- and post- the cTBS intervention ($z = -0.56, \ p = 0.575$). The only significant differences have shown for better task performances for NH relative to DH ($z = -2.09, \ p = 0.037, r = 0.47$). Using the Friedman’s test on normalized set of data aiming to detect potential differences between protocols, we found no significant differences between Sham, cTBS and iTBS for DH ($\chi^2(2) = 4.20, \ p = 0.122$), while results for NH revealed different effects of intervention [Sham (Mdn = 0.81) vs cTBS (Mdn = 0.81) vs iTBS (Mdn = 0.97), $\chi^2(2) = 6.20, \ p = 0.045$]. Additional Wilcoxon’s tests with Bonferroni correction for multiple comparisons revealed significant differences between cTBS and iTBS ($z = -2.40, \ p < 0.05$) with a large effect size ($r = 0.54$) in a form of worse task performance for NH using iTBS protocol.

The effects of interventions on the force coordination variables

TBS interventions did not affect the coordination of G and L in the R&H-T and the Lift-T. The adjustment of G and L forces during precision grip (assessed by G/L ratio) was not affected in the R&H-T [DH, Sham (Mdn = 0.93) vs cTBS (Mdn = 0.96) vs iTBS (Mdn = 1.00), $\chi^2(2) = 0.20, \ p = 0.905$; NH, Sham (Mdn = 1.03) vs cTBS (Mdn = 1.14) vs iTBS (Mdn = 1.05), $\chi^2(2) = 0.20, \ p = 0.905$], nor in the Lift-T [DH, Sham (Mdn = 0.94) vs cTBS (Mdn = 0.99) vs iTBS (Mdn = 1.09), $\chi^2(2) = 4.20, \ p = 0.122$; NH, Sham (Mdn = 1.00) vs cTBS (Mdn = 1.01) vs iTBS (Mdn = 1.10), $\chi^2(2) = 2.60, \ p = 0.273$]. The force coupling between G and L (assessed by r) in the R&H-T [DH, Sham (Mdn = 1.00) vs cTBS (Mdn = 1.00) vs iTBS (Mdn = 1.001), $\chi^2(2) = 0.60, \ p = 0.741$; NH, Sham (Mdn = 1.00) vs cTBS (Mdn = 1.000 vs iTBS (Mdn = 1.000), $\chi^2(2) = 4.20, \ p = 122$] was unchanged, too.

The results obtained by assessing force coordination variables in the Osc-T (Figure 6A–C) showed impairment of G-L scaling for NH at iTBS protocol, comparing results before (Mdn = 1.02, $\chi^2(2) = 0.273$) with DH (Mdn = 0.93) vs cTBS (Mdn = 0.96) vs iTBS (Mdn = 1.00), $\chi^2(2) = 0.20, \ p = 0.905$), with a large effect of intervention ($r = 0.63$). Contrary to those findings, no differences were shown, when task was performed with DH [Sham (z = -1.27, $p = 0.670$; NH, z = -0.56, $p = 0.57$). Using the Friedman’s test for repeated measure did not reveal different effects of interventions on a G-L scaling either for DH or for NH (DH, $\chi^2(2) = 0.80, \ p = 0.670$; NH, $\chi^2(2) = 2.40, \ p = 0.301$).

Analyzing the data about G and L coordination through force coupling we found the similar impairment for different effects of interventions on G-L scaling for DH [Sham (z = -1.99, $p = 0.047$) (Figure 6B), while at the other two protocols (Sham and cTBS), as well as for DH at all three experimental protocols (Sham, cTBS and iTBS) were not significantly changed by interventions. However, between-group comparison of post-interventional data has shown significant differences for NH ($\chi^2(2) = 13.40, \ p = 0.001$). Additional post-hoc tests with Bonferroni correction showed differences between cTBS and iTBS ($z = -2.80, \ p < 0.05$), with a large effect of intervention ($r = 0.63$).

Fig. 6 – Force coordination variables, for non-dominant hand (NH), in oscillation task, before and after interventions. A) Grip-to-load ratio (G/L ratio), B) cross-correlation of the G and L (r), and C) gain of G, data are averaged across the subjects for each of three experimental protocols (Sham, continuous theta burst stimulation – cTBS and intermittent theta burst stimulation – iTBS). The box plots represent the 25th and 75th percentile of the distribution and the middle line represents the median. Note that iTBS worsened most of the coordination variables for NH.

Examination of median results for r, showed lower G-L coupling POST for NH at iTBS (Mdn = 0.980), relative to cTBS (Mdn = 0.988). Friedman’s test used on relativized set of data (POST/PRE) revealed absence of the effects of intervention for DH ($\chi^2(2) = 0.60, p = 0.741$; NH, $\chi^2(2) = 5.00, p = 0.082$), as well as within-group effects [POST/PRE; DH ($\chi^2(2) = 1.40, p = 0.497$), NH – $\chi^2(2) = 2.60, p = 0.273$].

Considering the Offset, we did not find any within-group, either between-group differences (DH, $\chi^2(2) = 0.67, p = 0.717$; NH, $\chi^2(2) = 0.67, p = 0.717$).

Discussion

In the present study we demonstrate that application of facilitatory and inhibitory TBS protocols over the dominant PMdn lead to bi-directional and complex modulation of grip performance and coordination when unimanual tasks were performed in healthy individuals. To our knowledge, this is the first experiment designed specifically to address effects of rTMS intervention on precision grasp including both hemispheres. This is especially important if one bears in mind that previous study has revealed the inhibitory effects of low-frequency rTMS (1 Hz) on MEP amplitudes, as well as differences in cerebral blood flow in multiple brain regions, including motor regions in the frontal cortex as well as more associative regions in the parietal and prefrontal cortices, when it applied over the PMd. However, beyond these basic parameters of cortical excitability, virtual lesions produced by low frequency rTMS over M-1 and PMd of the dominant hemisphere lead to disturbances of anticipatory scaling of force for pinch grip. Results of that study have shown that virtual lesion of M-1 causes disruption of scaling force based on information from a previous attempt, while lesion of PMd disturbs scaling based on arbitrary visual cues. These findings, actually confirm the prominent role of PMd in coupling arbitrary sensory cues to motor acts.

In our study, we were using unimanual tasks that were primarily focused on scaling grip and load forces, but also included a visuomotor coordination. However, changes after TBS intervention were detected in only one of three manipulative tasks, the oscillatory task, interfering with the ability of subject to reach the required L peaks (task performance...
variables), but also with the ability of grip and load forces coupling (force coordination variables).

Namely, the application of iTBS600 or cTBS600 over the M-1 in healthy individuals produced a relatively simple effect in terms of increased or decreased global motor system output, respectively. In our study, however, most of the changes are registered after the iTBS600 protocol and, as already indicated. As regards the task performance variables, during the oscillatory task, it was shown that application of iTBS600 over dominant PMd induce the significant increase of tracking accuracy task, expressed as reduction of CE when task was performed with DH, while precision to follow prescribed peaks was disturbed for the NH performance. The effects of cTBS600 protocols were significant only as improved task performance with NH.

In accordance with the contemporary viewpoint, cortical activity which reflects the performance of unimanual voluntary movements (or bimanual with a pronounced asymmetry), is distributed across both hemisphere 37. Furthermore, communication between the hemispheres is carried out through transcallosal fibers, which transmit both, inhibitory and excitatory signals, although the prevailing opinion is that the inhibitory effects are stronger 38. However, it is important to note that in addition to the most important interhemispheric communication between two homologous M-1 areas, a couple of non-primary motor areas are also included in the interhemispheric inhibitory network, but with a significantly less impact 39, 40.

 Pronounced indirect changes, as we noted in our experiment, can be attributed to changes in the level of interhemispheric inhibition. Namely, according to the hypothesis of interhemispheric competition, two hemispheres behave as opposing systems, so that modulation of cortical excitability can change tonic transcallosal inhibition that is present under normal circumstances 41, 42.

If we apply this model of hemispheric rivalry to our experiment, it would mean that the facilitatory rTMS protocol (iTBS) over dominant PMd, in addition to increase of cortical excitability at the site of stimulation, leads to strengthening of interhemispheric inhibition directed against the homologous area of non-dominant hemisphere which is not under stimulation. By contrast, the use of inhibitory protocol (cTBS) over the dominant hemisphere should result in the weakening of interhemispheric inhibition transmitted via transcallosal fibers, so this would facilitate and improve precise grasping and object lifting in oscillatory task force.

Previous studies have shown that the application of iTBS in healthy subjects, leads to post-interventional reduction of MEP amplitudes over contralateral hemisphere 41. In this case, it is assumed that the iTBS changes transcallosal input and amplifies interhemispheric tonic inhibition, leading to reduced excitability of non-stimulated hemisphere. In contrast, the study in which cTBS was applied over the M-1, showed the weakening of tonic interhemispheric inhibition and subsequent increase of cortical excitability over the hemisphere that was not stimulated 42. This sequence of events might suggest that amplification of the motor output of the ipsilateral hand could interfere with the precise force gradation or magnification of the error.

Conclusion

This study further explores the relevant parameters involved in precise hand grip, mediated by PMd, including the effects on contralateral and ipsilateral hand. In this way, these results expand the knowledge arising from animal experiments and neuroimaging studies in humans, confirming the pivotal role of the PMd activation for the scaling of forces.

Acknowledgement

The work was supported by grants from the Ministry of Defense of the Republic of Serbia (Project MFVMA/07/16-18) and the Ministry of Education and Science of the Republic of Serbia (Project No. 41014)

References

Received on November 20, 2015.
Revised on December 08, 2015.
Accepted on December 10, 2015.
Online First September, 2016.