ACCEPTED MANUSCRIPT

Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article: DENTAL MANAGEMENT OF PATIENTS TAKING ANTIPLATELET, ORAL ANTICOAGULANT AND NOVEL ANTICOAGULANT MEDICATIONS: REVIEW OF THE LITERATURE

STOMATOLOŠKO ZBRINJAVANJE PACIJENATA NA TERAPIJI ANTITROMBOCITNIM, ORALnim ANTIKOAGULANTnim I NOVIM ANTIKOAGULANTnim LEKOVIMA: PREGLED LITERATURE

Authors: Branislav Bajkin*, Siniša Mirković*, Predrag Vučinić*, Biljana Vučković†, Marjan Marjanović‡; Vojnosanitetski pregled (2017); Online First September, 2017.

UDC:

DOI: https://doi.org/10.2298/VSP170719128B

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
Dental management of patients taking antiplatelet, oral anticoagulant and novel anticoagulant medications: review of the literature

Stomatološko zbrinjavanje pacijenata na terapiji antitrombocitnim, oralnim antikoagulantnim i novim antikoagulantnim lekovima: pregled literature

Branislav Bajkin*, Siniša Mirković*, Predrag Vučinić*, BiljanaVučković†, Marjan Marjanović‡

*Dental Clinic of Vojvodina, Faculty of Medicine Novi Sad, University of Novi Sad
†Centre for Laboratory Medicine, Clinical Centre of Vojvodina, Faculty of Medicine Novi Sad, University of Novi Sad
‡Department for Oral Surgery, Faculty of Stomatology Pancevo, University Business Academy Novi Sad, Pancevo, Vojvodina, Serbia

Correspondence to: Branislav V. Bajkin, Dental Clinic of Vojvodina, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 12, 21 000 Novi Sad, Serbia. E-mail: branislav.bajkin@mf.uns.ac.rs

Short title: Anticoagulant therapy and dentistry
Introduction

Antiplatelet and anticoagulant drugs are used widely in long-term prevention and treatment of arterial and venous thrombosis. Oral surgery in patients taking these drugs is always challenging and the risk of bleeding needs to be balanced against the risk of thromboembolic complication in case of treatment cessation.

Recently, a group of drugs, referred to as new oral anticoagulants (NOACs), including direct thrombin inhibitors and factor Xa (FXa) inhibitors, have been in clinical use. These drugs are mostly indicated to prevent a stroke and systemic embolisms in patients with atrial fibrillation, and for prevention of thrombosis after the elective hip and knee surgery \(^1,2\). It is likely that NOACs will be increasingly used in the coming years. It is therefore very important for dentists to be familiar with the drugs’ mechanisms of action, interactions with the drugs commonly prescribed in dentistry, possible bleeding complications and their prevention and treatment.

The aim of this article is to show basic characteristics of antiplatelet, oral anticoagulants and NOACs and, based on the literature review, to present current recommendations regarding dental treatment of patients taking these medications.

Dental treatment of patients taking antiplatelet drugs

Low doses of aspirin, clopidogrel, ticlopidine and dipyridamole are the most frequently administered antiplatelet drugs. The most common indications for a long-term antiplatelet therapy are ischemic cardiovascular and cerebrovascular diseases and peripheral arterial disease \(^3,4\). The mechanisms of action of these drugs are different. Aspirin irreversibly inactivates cyclo-oxygenase, the enzyme necessary for synthesis of thromboxane A\(_2\), which is important for platelet aggregation. Thienopyridines (clopidogrel, ticlopidine and prasugrel) are inhibitors of adenosine-diphosphate receptors. Like aspirin, these drugs affect the activity of platelets during their lifetime (7-10 days). Dipirydamole inhibits the reuptake of adenosine and increases cAMP \(^5\).

The patients taking antithrombotic agents may have prolonged bleeding time, but this test is not reliable enough to predict the bleeding risk after oral surgical procedures. Moreover, despite using antithrombotic agents, the bleeding time may be within the normal range \(^6\). The platelet aggregation test is more sensitive, but it is not in use in everyday
practice. That is the reason why any platelet function test is not commonly recommended to patients taking antiplatelet drugs before a dental surgical procedure.

For fear of prolonged and excessive bleeding, discontinuation of antiplatelet drugs several days before a dental surgery was often recommended in the past. This therapeutic approach can expose patients to the risk of thromboembolism. According to the current recommendations based on numerous researches, there is no need to stop antiplatelet medications before most dental surgical procedures, including tooth extraction.

A recently published review of the literature showed that of at least 1283 patients receiving single or dual antiplatelet medications who underwent at least 2343 dental surgical procedures, including at least 2308 simple and surgical tooth extractions in at least 1334 visits, no more than 35 patients (2.7% of patients and 2.6% of visits) had bleeding complications requiring local measures for hemostasis and only 2 patients (0.2%) needed more than local measures to control hemorrhage. On the other hand, there were several reports of thrombotic complications when antiplatelet drugs were stopped due to dental procedures. The author concluded that bleeding is a rare complication after tooth extractions in patients taking antiplatelet medications and, therefore, there is no need to discontinue these drugs for a dental surgery.

Due to different mechanisms of action, a combined use of antiplatelet drugs may have a synergistic effect. The combination of low-dose aspirin and clopidogrel is increasingly used. The most common indication for a dual antiplatelet treatment is prevention of thrombotic complications after percutaneous insertion of a coronary stent. As recommended by the American College of Chest Physicians, a dual antiplatelet therapy should not be interrupted perioperatively within 6 weeks of placement of a metal stent or within 6 months of placement of a drug-eluting stent. Premature discontinuation of a dual antiplatelet therapy is well recognized as a risk factor for stent thrombosis.

Despite its benefits, a dual antiplatelet therapy increases the risk of spontaneous and postoperative bleeding. A small number of studies with a limited number of patients were conducted in order to estimate the risk of bleeding after oral surgical procedures in patients taking dual antiplatelet drugs. However, the results of all these studies suggested that dental extractions can be safely done without interrupting a dual antiplatelet therapy applying only local hemostatic measures.
Dental treatment of patients taking oral anticoagulant drugs

Oral anticoagulants are coumarin derivatives and vitamin K antagonists. These drugs inhibit vitamin K epoxide reductase, an enzyme responsible for the cyclic interconversion of vitamin K. The lack of the active form of vitamin K which is necessary for carboxylation of the glutamic acid residue on coagulation factors II, VII, IX and X results in production of biologically inactive coagulation factors.

The most common indications for oral anticoagulant therapy (OAT) are atrial fibrillation, mechanical prosthetic heart valves, deep vein thrombosis and pulmonary embolism. The International Normalized Ratio (INR) is the test used to monitor the effect of OAT. The therapeutic range of INR values is 2.0 to 3.0 in most cases. For the patients with the highest risk of thromboembolism, for example those with mechanical prosthetic heart valves, higher INR values, up to 3.5 or even 4.0, are recommended.

Acenocoumarol, warfarin and phenprocoumon are the most commonly used oral anticoagulants. All these drugs are used orally and they are rapidly absorbed from the GI tract. They have high bioavailability and circulate mostly bounded to plasma proteins, mainly albumin. They are metabolized by the liver via cytochrome P-450 enzyme system, mostly by hydroxylation, and excreted through urine. Half-lives of these drugs are different (acenocoumarol 8-11 h, warfarin 36-42h, phenprocoumon 5-6 days). Coumarin derivatives have a slow onset of action because their antithrombotic effect requires reduction of vitamin K-dependent coagulation factors in the plasma and depends on half-lives of these factors. Half-lives of vitamin K-dependent factors are different (4-6 hours for FVII, 18-30 hours for FIX, 48 hours for FX and 60-72 hours for FII). Following administration of OAT, it takes usually 2-3 days for the initial effect on the INR value. On the other hand, the effect of these drugs lasts for several days after cessation of OAT. This time is necessary for a complete excretion of the drug from the body and for synthesis of new vitamin K-dependent factors.

The most serious complication of OAT is bleeding. Depending on INR levels and severity of the bleeding complication, several therapeutic approaches are recommended: to reduce or temporarily interrupt OAT, or to introduce vitamin K orally or by slow IV infusion. Life-threatening bleeding could be treated by fresh frozen plasma (FFP), prothrombin complex concentrate (PCC), or recombinant factor VIIa (rVIIa).
Many drugs can increase or decrease the anticoagulant effect of oral anticoagulants. The most commonly used drugs in dentistry which can interact with OAT are: carbamazepine, metronidazole, erythromycin, sulphonamides, tetracycline and miconazole (oral gel). Except carbamazepine, all mentioned drugs increase the effect of OAT \(^{26-28}\). Due to the risk of bleeding, aspirin and other NSAIDs should be avoided. Paracetamol is considered to be the drug of choice for pain relief in patients taking OAT.

Oral surgical procedures in patients taking OAT have been studied a lot. The results of most studies show that dental extractions can be performed safely without discontinuing OAT if INR is within the therapeutic range (INR\(\leq4.0\)), and if appropriate local hemostatic measures are provided \(^{14,29-39}\). The most commonly used local hemostatic agents and measures are: oxidized regenerated cellulose, absorbable gelatin or collagen sponges, fibrin glue, antifibrinolytics applied directly into the wound or in the form of a solution as a mouthwash and wound suturing \(^{40-42}\).

A recently published review of the literature showed that over 99% of anticoagulated patients who continued OAT had no postoperative bleeding requiring more than local hemostatic measures. In more than 5,431 patients who underwent over 11,381 surgical procedures, bleeding that required more than local hemostasis occurred only in 31 (~0.6% of patients). Many of these patients had higher INR therapeutic levels than currently recommended. On the other hand, among at least 2,673 patients whose OAT was reduced or withdrawn for at least 2,775 visits for dental procedures, there were 22 embolic complications (0.8% of cessations), including 6 fatal events (0.2% of cessations). The authors concluded that the thromboembolic risk in patients whose OAT was interrupted for a dental surgery exceeded the risk of significant bleeding in patients whose anticoagulation is continued \(^{39}\).

A certain number of patients, mostly those with the highest risk for thrombosis, take OAT and aspirin combined. A strict recommendation for the combined OAT-aspirin therapy has been given only to patients with prosthetic heart valves \(^{43-45}\). However, many patients with atrial fibrillation are receiving the combined OAT-antiplatelet therapy as well \(^{46,47}\). The addition of aspirin to OAT seems a rational therapeutic approach for patients receiving OAT in whom cardiovascular prophylaxis is indicated. Despite the advantages of this combined therapy, there is a higher risk of experiencing a spontaneous and prolonged, excessive bleeding during and after surgical procedures \(^{35}\). There is a lack of data regarding
this group of patients who required a dental surgery. The results of the published studies, which comprised a limited number of patients, show that dental extractions can be safely done without interrupting either OAT or antiplatelet therapy if INR is within the therapeutic range, and if proper local hemostatic measures are applied \(^{14,35}\).

Dental treatment of patients taking new oral anticoagulants

In the last few years, new oral anticoagulant drugs, direct thrombin inhibitors and FXa inhibitors, are available for clinical use. Compared to vitamin K antagonists, NOACs have certain advantages: rapid onset and direct mode of action, predictable anticoagulant response, wide therapeutic index, limited drug and food interactions and no need for routine monitoring of their effect \(^{48,49}\).

Direct thrombin inhibitors

Dabigatran-etexilate is a reversible thrombin inhibitor that binds on the thrombin, thus preventing fibrinogen conversion into fibrin. It reversibly inhibits free and clot-bound thrombin. When taken orally, it is rapidly absorbed from the GI tract. After hydrolysis in the plasma, it is converted into an active form with a rapid onset of action and reaches the peak plasma concentration after 0.5-4 hours \(^{50}\). Its terminal half-life is 12-17 hours and up to 27 hours in patients with severe renal dysfunction \(^{48-51}\). 80-85% of the drug is eliminated by the kidneys and the rest via the bile. Administered in the common doses of 150mg or 110 mg twice daily, dabigatran reaches a stable concentration in the plasma 2-3 days after initiation of the therapy. The duration of its effect is about 22 hours.

The RE-LY multicentre study conducted in 2009 assessed the efficacy and bleeding complications of dabigatran compared to warfarin in patients with atrial fibrillation. The results of the study showed that patients taking dabigatran in the dose of 150 mg twice daily had lower rates of stroke and systemic embolism but similar rates of major bleedings. Dabigatran in the dose of 110 mg twice daily showed a similar efficacy in preventing systemic embolism and stroke, but lower rates of major bleedings compared to warfarin \(^{52}\). The drug was approved by the European Medicines Agency, and the Food and Drug Administration (FDA) for the prevention of stroke and systemic embolism in patients with nonvalvular atrial fibrillation, as well as for thromboprophylaxis after the prosthetic hip and knee joint replacement.
A routine coagulation monitoring for patients taking dabigatran is not required. Thrombin clotting time (TT) and ecarin clotting time are the most sensitive test for monitoring the effect of dabigatran. The activated partial thromboplastin time (aPTT) is less sensitive, but widely available and it can be used to check coagulation in case of emergency. Checking INR is not recommended, because this test is insensitive. In case of bleeding in patients taking dabigatran, the treatment option depends on the severity of a bleeding complication. For minor bleedings, it is recommended to postpone the next dose or discontinue the drug. Any discontinuation of the drug should be carefully considered due to the risk of thromboembolism. In case of a moderate and severe bleeding, treatment options include fluid replacement and hemodynamic support, the use of rVIIa factor prothrombin complex concentrates and hemodialysis. Recently FDA approved the use of idarucizumab, monoclonal antibody fragment, for reversal of the effect of dabigatran in urgent surgical procedures or in life threatening bleeding situations.

There is a risk of prolonged bleeding during and after invasive dental procedures, including dental extractions, in patients taking dabigatran. It is estimated that there is a similar risk of peri-procedural bleeding in patients taking dabigatran and warfarin. There is also the opinion that patients taking dabigatran should be treated similarly to those receiving low-molecular-weight heparins. Up to now there is a lack of well-designed clinical trials that would include a number of patients taking dabigatran who required a dental surgery.

Some authors suggested skip the dose on the morning of the procedure. However, most authors suggested that dabigatran should be continued in case of a minor dental surgery, including simple dental extractions. To minimize the risk of postoperative bleeding, the procedure should be done as long as possible after the last dose of dabigatran trying to avoid the surgery when the drug has a maximal anticoagulant effect. The procedure should be carried out as atraumatic as possible, applying proper local hemostatic measures. Discontinuation of dabigatran, usually 24 hours before the surgery, should be discussed with a patient’s physician and considered only in case of a high risk procedure. Discontinuation of the therapy depends on the risk of postoperative bleeding, the risk of thromboembolism and renal function. Interruption of dabigatran increases the risk of stroke or systemic embolism and if necessary, the drug should be resumed as soon as possible, usually 24-48 hours after the procedure. Paracetamol should be prescribed for
pain relief in the postoperative period. Aspirin and other NSAIDs should be avoided. Drugs that decrease the effect of dabigatran such as rifampicin, dexamethasone and carbamazepine, or increase its effect such as ketoconazole, itraconazole, erythromycin and clarithromycin, should be avoided or prescribed carefully.

Factor Xa inhibitors

Rivaroxaban is a reversible direct inhibitor of FXa that catalyzes activation of prothrombin into thrombin. Rivaroxaban is administered orally, once daily. It has a rapid onset of action and reaches the peak plasma concentration after 2.5-4 hours. Its terminal half-life is 5.7-9.2 hours that can be prolonged up to 12-13 hours in patients >75 years old. About 66% of the drug is excreted in the urine and the rest in the feces. Indications for the use of rivaroxaban include thromboprophylaxis after the prosthetic hip and knee joint replacement. The ROCKET-AF, clinical trial showed that rivaroxaban was noninferior to warfarin for the prevention of stroke and systemic embolism in patients with atrial fibrillation.

The patients taking rivaroxaban have slightly prolonged prothrombin time (PT) and aPTT. The anti-factor Xa assay is considered to be the most accurate test for monitoring the effect of dabigatran, but a routine monitoring of coagulation, similarly to other NOACs, is not required. There is no specific reversal agent for rivaroxaban. In case of a minor bleeding, discontinuation of the drug could be sufficient because duration of the drug effect is short. In case of more serious bleeding complications, rVIIa or prothrombin complex concentrate can be used.

Drugs that are cytochrome P450 inhibitors such as erythromycin, ketoconazole, itraconazole, voriconazol and posaconazole may increase the risk of bleeding by increasing the concentration of rivaroxaban. Opposite to this, drugs that are cytochrome P450 inducers such as rifampicin may decrease the effect of rivaroxaban.

Apixaban is a recently introduced reversible direct inhibitor of FXa with the same therapeutic indications. The results of ARISTOTLE trial showed that apixaban was as effective as warfarin in the prevention of a stroke and embolism in patients with atrial fibrilation with fewer bleeding complications. The drug is administered orally, twice a day. It reaches maximum plasma concentrations in 3 hours. The half-life of the drug is about 12 hours. About 75% of the drug is eliminated in the feces and 25% in the urine.
for rivaroxaban, the anti-factor Xa assay is considered to be the most accurate test for monitoring its effect and there is no specific antidote. In mild cases of bleeding, discontinuation of the drug could be sufficient, while in more serious cases, the rVIIa or prothrombin complex concentrate can be used.

There is insufficient data in the literature about the safety of dental surgical procedures in patients taking FXa inhibitors. However, similar recommendations given for dental treatment of patients taking dabigatran are applicable for patients taking FXa inhibitors.

Conclusion

Based on the results of the studies, there are clear recommendations in the literature that minor oral surgical procedures, including tooth extractions, can be safely performed in patients taking antiplatelet and oral anticoagulant drugs without therapy interruption if proper local hemostatic measures are applied. Similar recommendations have been given for the dental treatment of patients taking NOACs. However, these recommendations are mainly based on the experts’ opinion, rather than on the results of clinical studies. Therefore, further researches of the safety of dental extractions in patients taking NOACs are necessary.
REFERENCES

