ACCEP TED MANUSCRIPT

Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article TEUCRIUM POLIUM INDUCES APOPTOSIS IN PERIPHERAL BLOOD LYMPHOCYTES ISOLATED FROM HUMAN CHRONIC LYMPHOCYTIC LEUKEMIA

TEUCRIUM POLIUM INDUKUJE APOPTOZU LIMFOCITA PERIFERNE KRVI PACIJENATA OBOLELIH OD HRONIČNE LIMFOCITNE LEUKEMIJE

UDC:

DOI: https://doi.org/10.2298/VSP181010005Z
When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.

TEUCRIUM POLIUM INDUCES APOPTOSIS IN PERIPHERAL BLOOD LYMPHOCYTES ISOLATED FROM HUMAN CHRONIC LYMPHOCYTIC LEUKEMIA

TEUCRIUM POLIUM INDUKUJE APOPTOZU LIMFOCITA PERIFERNE KRVI PACIJENATA OBOLELIH OD HRONIČNE LIMFOCITNE LEUKEMIJE

*University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Biochemistry

**University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pharmacology and Toxicology

§University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Histology and embryology

++University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Internal medicine

◊ University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Hygiene and ecology

Corresponding author:

dr Radica Živković Zarić,

Svetozara Markovica 69, 34000 Kragujevac, Serbia

Tel.:+381643191078

e-mail: radica_zivkovic@yahoo.com
Abstract

Background/Aim. Chronic lymphocytic leukemia (CLL) is considered more as a disease of cells accumulation due to the defect in apoptosis rather than deregulated cell’s proliferation. The activation of apoptosis is one of the main molecular mechanisms responsible for the anti-cancer activities of most of the currently studied potential anti-cancer agents, including natural compounds. *Teucrium polium* extracts exhibited strong cytotoxic effects in murine leukemia cell line, RAW 264.7 and human melanoma cell line, C32, but its cytotoxic effects against human leukemia cells were unknown. **Methods.** The viability of human leukemia cell lines (MOLT-4 and JVM-13), CLL lymphocytes isolated from 28 patients (CLL cells), and peripheral blood mononuclear cells (PBMCs) isolated from 16 healthy subjects treated with *Teucrium polium* extracts, was determined by MTT assay. Apoptosis of *Teucrium polium* treated CLL cells was measured by flow cytometry applying Annexin V/7AAD staining. The expressions of active proapoptotic protein Bax, antiapoptotic protein Bcl-2, cytochrome c and the percentage of cells containing cleaved caspase-3 in treated CLL cells was determined by flow cytometry and immunocytochemistry. **Results.** *Teucrium polium* methanol extract (TP) decreased the viability of all tested human leukemia cells but it had no effect on the viability of healthy PBMCs. The citotoxic effect of TP was caused by its induction of CLL cells’ apoptosis. TP disarranged the ratio of the expressions of proapoptotic Bax and antiapoptotic Bcl-2 protein in favor of Bax, consequently inducing apoptosis by cytochrome c mitochondrial release and activation of caspase-3 in treated CLL cells. **Conclusion.** *Teucrium polium* induced selective apoptosis in CLL cells and it affected the expressions of key proteins involved in the regulation of programmed cell death. **Key words:** teucrium polium, in vitro, citotoxicity, cancer, leukemia.

Apstrakt

Uvod/Cilj. Hronična limfocitna leukemija (HLL) se pre smatra bolešću akumulacije ćelija usled defekta u njihovoj apoptozi, nego bolešću ćelijske proliferacije. Aktivacija apoptoze je jedan od glavnih molekulskih mehanizama odgovornih za antitumorsku aktivnost većine agenasa koji se sada ispituju, uključujući i agense prirodnog porekla. Ekstrakt *Teucrium polium*-a je pokazao snažne citotoksične efekte na ćelije mišje leukemije RAW 264.7 i ćelije humanog melanoma C32, ali su njegovi citotoksični efekti na ćelije humane leukemije neznati. **Metode.** Vijabilnost ćelija humane leukemije (MOLT-4 i JVM-13), HLL limfocita izolovanih iz krvi 28 pacijenata (HLL ćelije) i mononukleara periferne krvi (PBMCs) izolovanih iz krvi 16 zdravih ispitanika je određena MTT esejom nakon tretmana ispitivanih ćelija metanolskim ekstraktom *Teucrium polium*-a (TP). Apoptoza HLL ćelija tretiranih TP-om merena je protočnom citometrijom korišćenjem Annexin V/7AAD kit-a. Ekspresija aktivnog proapoptotičnog proteina Bax, antiapoptotičnog proteina Bcl-2, citohroma c i procenat ćelija koje sadrže aktivnu kaspazu-3 u tretiranim HLL ćelijama, merena je protočnom citometrijom i imunocitohemijom. **Rezultati.** TP smanjuje vijabilnost svih leukemijskih ćelija, ali ne utiče na vijabilnost mononukleara. TP deluje citotoksično indukujući apoptozu HLL ćelija. TP utiče na odnos ekspresije Bax i Bcl-2 proteina u korist Bax-a, poslije indukujući apoptozu preko citohroma c i aktivacije kaspaze-3 u HLL ćelijama. **Zaključak.** TP selektivno indukuje apoptozu HLL ćelija menjajući ekspresiju ključnih proteina uključenih u proces programirane ćelijske smrti. **Ključne reči:** teucrium polium, in vitro, citotoksičnost, karcinom, leukemija.

Introduction
Chronic lymphocytic leukemia (CLL) originate from the antigen-stimulated mature B lymphocytes that either avoid death through the intercession of external signals or die by apoptosis, only to be replenished by proliferating precursor cells [1]. For that reason, CLL is considered more as a disease of cells accumulation due to the defect in apoptosis rather than deregulated cells proliferation [2]. The activation of apoptosis is one of the main molecular mechanisms responsible for the anti-cancer activities of most of the currently studied potential anti-cancer agents, including natural compounds [3, 4]. Several, novel drugs designed to interfere with the proteins regulating the cell cycle, the apoptotic machinery or leukemic microenvironment, are currently being tested in clinical, in vitro or in vivo trials [5-9].

There are two main cellular death pathways leading to caspase activation and apoptosis: the extrinsic pathway, initiated by "death" receptors and the intrinsic pathway, initiated after cytosolic discharge of mitochondrial derived cytochrome c and the other apoptotic proteins, caused by the mitochondrial outer membrane permeabilization induced by the formation of the proapoptotic proteins oligomerisation pores, such as Bax. Both pathways merge into the activation of caspase 3, the executioner caspase, that ultimately finalizes the apoptosis. The mitochondrial outer membrane permeabilization by pro-apoptotic protein Bax that by following the death signal, translocates from the cytosol to the mitochondrial outer membrane, is suppressed through the actions of cytosolic antiapoptotic proteins such as Bcl-2. Therefore, the changes in cytosolic expressions of Bcl-2 and Bax, play a significant role in the execution of apoptosis [10, 11].

Plants of the genus *Teucrium* were used in traditional medicine because they contained a number of phenolic compounds that exhibit strong biological activity including diterpenoids, monoterpenes, sesquiterpenes, flavonoids and esters of fatty acids [12-14]. *Teucrium polium* extracts exhibited strong cytotoxic effects in murine leukemia cell line, RAW 264.7 and human melanoma cell line, C32 [14]. However, there has not yet been published data demonstrating both the cytotoxic and proapoptotic effects of *Teucrium polium* extracts on chronic lymphocytic leukemia cells.

In the present study, for the first time, we investigated the antitumor activity of *Teucrium polium* methanol extract (TP) against two human leukemic cell lines, MOLT-4 and JVM-13 and peripheral blood lymphocytes isolated from human chronic lymphocytic leukemia patients (CLL lymphocytes). We also determined the cellular pathway responsible for the activation of apoptosis induced by *Teucrium polium* extracts in CLL lymphocytes.

Methods

Chemicals

Unless stated otherwise, all reagents were from Sigma-Aldrich (St. Louis, MO), and all dishes for culturing cells were from Sarstedt (Numbrecht, Germany).

Preparation of drug solution

Leaves of *Teucrium polium* were collected in the late summer period of 2015. year from the region of Šumarice, Kragujevac, Serbia. The voucher specimen of *Teucrium polium* was confirmed and deposited in Herbarium at the Department of Biology and Ecology, Faculty of
Science, University of Kragujevac. The sampled leaves were air-dried in darkness at room temperature (20ºC).

Air-dried leaves (10g) had been transferred to the dark-coloured flasks. They were mixed with 200ml of methanol and stored at room temperature. After 24h, the extracts were filtered through Whatman No.1 filter paper and residues were again mixed with equal volumes of solvent. After 48h, the process was repeated. Combined supernatants were evaporated to dryness under vacuum at 40ºC using rotary evaporator. The obtained extracts were kept in sterile sample tubes and stored in a refrigerator at 4ºC.

Stock solution of TP was dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich, Germany) at a concentration of 20mM, filtered through a 0.22mm Millipore filter before use, and diluted by a nutrient medium (RPMI 1640) to various working concentrations, so the final concentration of DMSO in culture medium never exceeded 0.5% (v/v).

Patients

The local Ethics Committee accepted the study and prior to the initiation of the study, the written informed consent was obtained from all subjects according to the Declaration of Helsinki. Informed consent was obtained from all individual participants included in the study. CLL was diagnosed by establishing the clinical criteria and it was confirmed by immunophenotypic analysis for the expression of CD5, CD19 and monoclonal immunoglobulin in accordance with updated NCI Working Group Guidelines [15]. The control groups were healthy volunteers without known acute and chronic diseases. Peripheral blood samples from 28 CLL patients and 16 healthy control subjects were included in study.

Cell preparation

All blood samples were obtained in the morning and collected in potassium-EDTA coated blood collection tubes (Terumo). Peripheral blood samples (9 ml) were centrifuged at 400xg for 10 minutes to separate plasma and cells. Peripheral blood mononuclear and polymorphonuclear cells were separated by single step continuous density-gradient centrifugation with Histopaque 1077. The separated mononuclear cells were washed three times with culture medium RPMI 1640 and resuspended in RPMI 1640 supplemented with 10% autologous serum. The monocytes were removed by adhesion on plastic Petri dishes [16].

Cell lines

Human leukemia cell lines MOLT-4 (ATCC® CRL-1582™) and JVM 13 (ATCC® CRL-3003™) were acquired as a gift from professor Sonja Dencic, Department of Biochemistry, Belgrade University School of Medicine, Serbia. Both cell lines were maintained in culture medium consisting of RPMI-1640, supplemented with 10% heat-inactivated fetal bovine serum (FBS).

MTT assay

The viability of cultured cells was determined by assaying the reduction of tetrazolium-bromide (MTT) to formazan [17]. In brief, cells were treated with different concentrations of TP (10µg/ml, 25µg/ml, 50µg/ml, 100µg/ml, 250µg/ml and 500µg/ml) or cultivated in the cell
culture medium containing the appropriate amount of DMSO (control). After 24 and 48 hours of cells incubation at 37°C in the atmosphere containing 5% CO₂, the 96 well plates were centrifuged for five minutes at 400xg, the culture medium was removed, and MTT solution (5mg/ml) was added to the cells. After additional 4h of incubation, the microtiter plates were centrifuged again for five minutes at 400xg, the culture medium with MTT solution was removed and DMSO (150µl/well) was added to dissolve the formazan crystals. Absorbance was measured at 595nm with a multiplate reader (Zenyth 3100, Anthos Labtec Instruments, Austria). The results were presented as relative to the control value (untreated cells).

Detection of apoptosis

Apoptosis of CLL lymphocytes was measured using annexin V–fluorescein isothiocyanate (FITC)/7-amino-actinomycin D (7-AAD) Apoptosis Kit (BD Biosciences) according to manufacturer’s instructions. CLL cells had been treated with TP at earlier specified concentrations and the percentage of apoptotic cells were determined by flow-cytometer FC 500 (Beckman Coulter). Data were presented as density plots of Annexin V-FITC and 7AAD stainings.

Assessment of apoptosis mechanism

In order to understand the mechanism of apoptosis induced by Teucrium polium, we analyzed the expressions of the active proapoptotic protein Bax, antiapoptotic protein Bcl-2, cytochrome c and the percentage of cells containing cleaved caspase-3. Lymphocytes from 28 CLL patients had been incubated for 24 hours with 250µg/ml and 500µg/ml TP or with the culture medium alone (control), washed three times with ice cold PBS, and then resuspended, fixed and permeabilized (Fixation and Permeabilization Kit, eBioscience). Four types of stainings were separately performed afterward. Intended for Bcl-2 staining, the permeabilized cells were then incubated with Bcl-2 fluorescein isothiocyanate primary antibody (mhbcl01, Life technologies) for 15 minutes at room temperature. Other three types of staining included incubation of permeabilized lymphocytes for 30 minutes with primary antibodies against Bax (N20,sc-493; Santa Cruz Biotech.Inc), cytochrome c (G7421, Promega) and caspase-3 (#9661, Cell signaling Technology). These cells had been washed and then incubated with the appropriate secondary antibodies for 30 minutes. We used Alexa488 goat anti-mouse IgG (H+L) antibody (A-11001, Life Technologies) for cytochrome c, and goat anti-rabbit IgG FITC (Ab6717-1, Abcam) for Bax and caspase-3 staining. All cells were then washed with PBS and analysed by flow cytometry and/or immunocytochemistry.

Immunocytochemistry

Observation of cells by fluorescent microscope was performed to localize the presence of Bax, Bcl-2, cytochrome c and cleaved caspase 3 in CLL lymphocytes. The images were aquired with a Olympus BX51 at 1000x magnification.

Flow cytometric evaluation

Fluorescence of at least 10000 events per sample had been measured using flow-cytometer FC500 (Beckman Coulter). Fluorescence intensity was standardized using isotype-matched
negative control antibodies. The mean fluorescence intensities of Bax and Bcl-2 (MFIs) were calculated as the ratio of raw mean channel fluorescences to isotype control levels, respectively. Cytochrome c and cleaved caspase-3 levels were evaluated as percentage of cells displaying the fluorescence.

Statistical analysis

All values were expressed as mean ± standard deviation (SD). Each experiment was performed in triplicate and conducted on every sample. Commercial SPSS version 20.0 for Windows was used for statistical analysis. The distributions of data were evaluated for normality using the Shapiro-Wilk test. Statistical evaluation was performed by Student’s t-test for paired observations, or one-way ANOVA depending on data distribution. P values less than 0.05 were considered significant.

Results

Teucrium polium methanol extract decreased viability of human leukemic cells

After 24 hours of incubation of MOLT-4 leukemia cells with 10 µg/ml, 25 µg/ml and 50 µg/ml of *TP*, there was no statistically significant decrease in the viability of the examined cells compared to the viability of untreated MOLT-4 leukemia cells (p>0.05). However, at the *Teucrium polium* extract concentrations of 100µg/ml, 250µg/ml and 500µg/ml, there was a statistically significant reduction in the viability of the MOLT-4 leukemic cells compared to the viability of untreated cells (p<0.05). Specifically, after 24h of incubation of MOLT-4 cells with 100µg/ml, 250µg/ml and 500µg/ml of the *TP*, the viability of MOLT-4 cells was reduced to 63.56±1.27%, 30.32±2.39% and 41.83±1.42%, respectively.

After 48 hours of incubation with 100µg/ml of *TP*, the viability of the MOLT-4 cells was 71.41±2.39% (p<0.05). Also, at concentrations of 250µg/ml and 500µg/ml after 48h of treatment, *TP* significantly decreased viability of MOLT-4 cells to 14.41±1.14% and 13.92±0.94%, respectively (p<0.05) (Figure 1).

![Fig. 1 — Effects of *Teucrium polium* methanol extract on viability of MOLT-4 cells.](image-url)
After 24 hours incubation of JVM-13 cells with 10µg/ml, 25µg/ml, 50µg/ml, 100µg/ml and 250µg/ml of TP there was no statistically significant decrease in JVM-13 cells’ viability compared to the viability of untreated JVM-13 cells (p>0.05). However, 24h of incubation of JVM-13 cells with 500µg/ml of TP reduced the viability of these cells to 36.24±1.52% compared to the untreated JVM-13 cells.

Nevertheless, a statistically significant decrease in JVM-13 cells’ viability compared to untreated cells was noticed after 48h of cells incubation with 100µg/ml, 250µg/ml and 500µg/ml TP to 84.96±3.53%, 59.85±8.98% and 11.31±1.35%, respectively (p<0.05)(Figure 2).

![Fig. 2 – Effects of *Teucrium polium* methanol extract on viability of JVM-13 cells.](image)

Afterwards, we analyzed the effect of TP on viability of CLL cells and peripheral blood mononuclear cells (PBMCs). After 24 hours, 250µg/ml and 500µg/ml of TP statistically significantly decreased viability of treated CLL cells to 76.85±7.25% for the TP concentration of 250µg/ml and to 50.27±9.25% for 500µg/ml of TP compared to the control group of untreated CLL lymphocytes (p<0.05).

Also, after 48 hours, 250µg/ml and 500µg/ml of TP statistically significantly decreased viability of treated CLL cells to 65.63±8.13% for the TP concentration of 250µg/ml and to 40.39±6.67% for 500 µg/ml of TP compared to the control group of untreated CLL lymphocytes (p<0.05).

After cultivation of healthy PBMCs for 24 and 48 hours with TP at the concentrations ranging from 10µg/ml to 500µg/ml, there were no statistically significant changes in the viability of PBMCs relative to a control group of PBMCs that were not exposed to TPs (p>0.05) (Figure 3).
Fig. 3 – Effects of *Teucrium polium* methanol extract on viability of CLL cells and peripheral blood mononuclear cells (PBMCs).

Teucrium polium methanol extract induced apoptosis of CLL cells

Considering that our previous results showed that *TP* demonstrated the cytotoxic effect on human leukemia cells, especially on CLL cells, our next goal was to examine the type of cell death induced by *TP* in CLL cells. The type of cell death was determined by Annexin V/7AAD staining.

Results obtained by Annexin V/7AAD staining after 24 hours of incubation of CLL cells with 500µg/ml of *TP*, displayed significant increase of percentage of total apoptotic cells of about 50% compared to the untreated cells (p<0.05, Fig.4). Nevertheless, results obtained after 48 hours of incubation of CLL cells with 250µg/ml and 500µg/ml of *TP*, also showed significant increase of percentage of total apoptotic cells of 50% and 70%, respectively compared to the untreated cells (p<0.05, Fig.4).

Fig. 4 – *Teucrium polium* methanol extract induces apoptosis of CLL cells.

Teucrium polium methanol extract induced apoptosis in peripheral blood lymphocytes isolated from human CLL patients via mitochondrial apoptotic pathway
To investigate whether TP activated the mitochondrial apoptotic pathway, CLL cells had been either treated with 500µg/ml TP or cultivated in complete medium (control) for 24 hours and the localisation of cytochrome c had been analyzed by fluorescent microscopy.

![Fig. 5 – Teucrium polium methanol extract induced Bax translocation, decrease of cellular Bcl-2 protein level, release of cytochrome c to cytosol and caspase-3 activation.](image)

CLL lymphocytes were incubated for 24h with RPMI (control) or 500 µg/ml *Teucrium polium* methanol extract. In a group of control cells, (A) Bax was localized in the cytosol, while in treated lymphocytes (B) Bax became organelle membrane-associated, and especially, mitochondrial membrane associated. Treated lymphocytes (D) displayed a reduced amount of fluorescence intensity compared to control group (C) suggesting decreased amount of antiapoptotic protein Bcl-2. *Teucrium polium* methanol extract also stimulated cytochrome c release to cytosol (F) compared to the untreated cells (E). Besides, the number of cleaved caspase-3 positive cells showed a trend of increase in a group of CLL lymphocytes treated with 500 µg/ml *Teucrium polium* methanol extract (H) compared to the control group of lymphocytes (G).
In parallel, we examined the localisation of active Bax proapoptotic protein and the fluorescence intensity representing the total expression of Bcl-2 antiapoptotic protein, along with presence of cleaved (activated) caspase-3 in treated and control cells. Our results showed that *Teucrium polium* extract induced the activation and translocation of Bax from cytosol to mitochondria, decreased the expression of cellular Bcl-2 protein, and induced the release of cytochrome c from mitochondria to cytosol and caspase-3 cleavage (Fig. 5).

Additionally, in order to quantify these apoptotic changes induced by *TP* in CLL cells, we analysed the expression levels of Bax, Bcl-2 and cytochrome c by flow cytometry. Furthermore, we identified the amount of cells displaying cleaved caspase-3, to verify that the apoptotic pathway induced by *Teucrium polium* extract in CLL cells was caspase dependent. The expression of active-Bax and cytosolic concentrations of cytochrome c were significantly increased, while the cytosolic expression of Bcl-2 was significantly decreased in treated CLL lymphocytes compared to the untreated cells. Furthermore, the percentage of cells containing cleaved caspase-3 had been significantly increased (Fig. 6).
Fig. 6 – *Teucrium polium* methanol extract increased active Bax concentration and decreased cytosolic Bcl-2 concentration in treated CLL lymphocytes, consequently inducing apoptosis by cytochrome c mitochondrial release and activation of caspase-3.

Lymphocytes of CLL patients were incubated in RPMI (Control) or 500 μg/ml *Teucrium polium* methanol extract for 24h and stained with antibodies specific to Bax, Bcl-2, cytochrome c and cleaved caspase-3. Cells were analysed using single-colour flow cytometry. (A) Representative histograms that show Bax and Bcl-2 MFIs and percentage of cells displaying fluorescence for cytochrome c and cleaved caspase-3 are presented. (B) Percentage of MFIs suppression or increase compared to untreated cells was calculated by formula (TP-C)*100/C where TP and C are MFIs of cells treated with *Teucrium polium* methanol extract or control cells, respectively. (C) Cytochrome c translocation was determined by selective permeabilisation of plasma membrane followed by flow cytometry. The percentage of cells with low fluorescence (100%-%of cells displaying fluorescence), where cytochrome c was translocated during apoptosis, is displayed. (D) The percentage of cells displaying fluorescence for cleaved caspase-3. *p<0.05 compared to the untreated cells.

All these findings showed that TP disarranged the ratio of the expressions of proapoptotic Bax and antiapoptotic Bcl-2 protein in favor of Bax, consequently inducing apoptosis by cytochrome c mitochondrial release and activation of caspase-3.

Discussion

The results of our study showed for the first time that a methanol extract of *Teucrium polium* reduced the viability of MOLT-4 and JVM-13 cells, and of CLL cells isolated from CLL patients after 24 hours and 48 hours of cells incubation. A very important result of our study is the absence of changes in cells’ viability of treated PBMCs compared to the untreated PBMCs, after 24 and 48 hours of cultivation of these cells with methanol extract of *Teucrium polium*. Although diverse mechanisms of action might contribute to the anti-cancer effects of TP, we have shown that inhibition of Bcl-2 protein expression and activation of Bax are directly involved in *Teucrium polium*-induced CLL cells’ apoptosis.

The results of our research demonstrating the antitumor effects of methanol extract of *Teucrium polium* in human leukemic cells correlated with the results of previous studies showing the cytotoxic effects of *Teucrium polium* extracts on cell lines of prostate, colon, lung, and skin tumors [12, 14, 18, 19]. In these tumor cell lines, as well as in leukemic cells used in our study, TP decreased the viability of examined cells. Stankovic et al. have demonstrated that the IC₅₀ values of the TP after 72 hours of cells incubation were between 100μg/ml and 200μg/ml that were in correlation with the results of our research. Particularly, the concentration of the TP required to reduce the viability of HeLa cervical adenocarcinoma cells to 50% after 72 hours was 148.02±4.99 μg/ml, for Fem-x human melanoma cells was 199.79±0.30 μg/ml, and for K562 cells chronic myelogenous leukemia's cells, the concentration was 116.75±24.40 μg/ml [20].

Species of plants of the genus *Teucrium*, are very rich in phenols and flavonoids, which are the carriers of the strong biological activity of various extracts of this plant. Extracts of *Teucrium polium* had recently been subjected to the increasing number of in vitro studies in which their anticancer potential was tested. The results obtained using the HCT-116 cell line clearly indicated that a methanol extract of *Teucrium polium* reduced the viability of these cells by the induction of apoptosis. In a study of Stankovic et al., it was shown that after 24 hours of HCT-116 cells’ incubation with 250μg/ml of TP, apoptosis occurred in 85% of the total cell population. Our findings were also consistent with the results of a study of Stankovic et al, since we have shown that a TP induced apoptosis in CLL cells [12]. Hence, in our research the percentage of apoptotic CLL cells after 48 hours of incubation in the presence of 250μg/ml
Teucrium polium extract was about 46%. Therefore, results from our study suggest that a TP reduced the viability of CLL cells by inducing apoptosis.

Permeabilization of outer mitochondrial membrane allows apoptotic molecules such as cytochrome c to be released into the cytoplasm that consequently induce the activation of caspases and subsequently execution of apoptosis. Permeabilization of outer mitochondrial membrane is mainly regulated by Bcl-2 family of proteins, such as proapoptotic protein Bax and antiapoptotic protein Bcl-2 [21]. The results of our study for the first time demonstrated that a methanol extract of Teucrium polium induced selective mitochondrial apoptosis of CLL cells, by activating proapoptotic protein Bax and reducing the cytosolic expression of antiapoptotic protein Bcl-2, that led to the mitochondrial release of cytochrome c into the cytosol and the activation of caspase-3. The results of various studies that have been published to date were only confirming that a methanol extract of Teucrium polium could induce apoptosis in some cell lines, but to date there have not yet been accurately investigated the potential cellular mechanisms involved in this process [12]. The results of some previous studies emphasized the antioxidant capacity of methanol extract of Teucrium polium, but these studies have not yet been performed on tumor cell lines [12, 21]. It was shown that the methanol extracts of other plants of the genus Teucrium, such as Teucrium chamaedris, Teucrium montanum, Teucrium arduini and Teucrium scordium, could have an antioxidant activity [12].

Conclusions

TP affected key proteins involved in the regulation of programmed cell death of CLL cells. It selectively induced mitochondrial apoptosis in peripheral blood lymphocytes isolated from human CLL and it had no citotoxic and apoptotic effect on peripheral blood mononuclear cells of heathy subjects. In order to precisely define the molecular component, one or more of them, carrying the biological activity of methanol extract of Teucrium polium, it is necessary to perform additional research. The results of our experiments therefore represent a promising start for the future studies in the investigation of the cytotoxic and apoptotic effects of specific components of TP in human leukemia cells.

Funding

This study was conducted as a part of the project of Ministry of Education, Science and Technological Development of the Republic of Serbia, III41010.

Conflict of interest

The authors declare no conflict of interest.

REFERENCES

