ANALYSIS OF HUMAN OSTEOLOGICAL MATERIAL FROM THE EASTERN PART OF SITE NO. 37 IN SREMSKA MITROVICA

NATAŠA MILADINOVIĆ-RADMILOVIĆ
The Institute of Archaeology, Belgrade

Abstract. – The direct reason for writing this paper was the new find of skeletons in the medieval necropolis (10th–12th century) discovered as far back 1968 at the Site No. 37 in Sremska Mitrovica (Sirmium). Institute for the protection of cultural monuments in Sremska Mitrovica undertook protective archaeological excavations in the eastern part of the site in 2010, discovering 29 skeletons. Since that archaeological analysis of Belo Brdo communities is still in its infancy and considering that there is not a sufficiently big sample for a more precise monitoring of this population’s inner dynamics, it is considered useful to present results gained by studying these skeletons on Site No. 37. Although the results in many ways match the results gained up until now, there are some paleopathological changes that so far, have not appeared and for which we had no direct confirmation in the osteological material. One of these paleopathological changes is certainly syphilis.

Key words. – medieval Sirmium, Belobrdo culture, syphilis.

SITE No. 37 is located at the corner of Vuk Karadžić and Saint Sava Street in the area of a demolished town prison in Sremska Mitrovica. Protective archaeological excavations were conducted in 1968 and 1969 over the area of 1600 m² (Fig. 1 and 2). On that occasion a section of the northern wing of the Sirmium imperial palace was explored, as well as a Gepidian cultural layer from the 5th century and a part of a medieval necropolis with skeletal burials from 10th–12th century.1 Finds from this necropolis belong to the Belobrdo culture.2

Between 1957 and 2007, graves from 10th–12th century, containing Belo Brdo culture materials were discovered in Sremska Mitrovica, on the total of 11 sites (Fig. 1 and 2). Those are Sites No. 4, 25, 34, 35, 37, 66, 83 and 85, Južni bedem, Mačevska Mitrovica,3 and Site Trasa kanalizacije – Dositejeva Street. Unfortunately, only 82 skeletons were available for anthropological analysis (from Site No. 83 (nine individuals), Site No. 85 (65 individuals), Južni bedem (two individuals),

1 Osteological material of human origin from this site was sent to USA for anthropological expertise in the 1970’s. Unfortunately, the results of these analyses have not yet been delivered to the Museum of Srem in Sremska Mitrovica or Institute of Archaeology in Belgrade. Likewise, they have not been published, as far as the author of this text is informed.

3 Томић 2010, 121, 128, 133–135, Tab. 27.

* This article is the result of the projects: Romanization, urbanization and transformation of urban centres of civil, military and residential character in Roman provinces on the territory of Serbia (No. 177007) and Urbanization Processes and Development of Medieval Society (No. 177021) founded by the Ministry of Education, Science and Technological Development of the Republic of Serbia.
In September 2010, a team from the Institute for the protection of cultural monuments in Sremska Mitrovica undertook protective excavations in the Saint Sava Street. On that occasion a sonde, measuring 4 x 4 m was opened (Figs. 3–6). Eighteen graves and four groups of dislocated bones were discovered (29 skeletons in total). Skeletons were mostly oriented southwest-northeast. The deceased were laid on their backs with arms beside their bodies. A number of iron nails were discovered, leading archaeologists to the conclusion that the deceased had been buried in wooden coffins.6

MATERIAL

Osteological material of human origin from previous excavations on Site No. 37 was, as mentioned, unavailable for analysis, so it was decided to present the analysis of all 29 individuals (Table 1) thus contributing towards creating a general picture of this population.
Of course, a broad archaeological and chronological dating represented a great difficulty in anthropological reconstruction and interpretation (10th–12th century) contributed by, among other things, a large number of finds discovered in the necropolises which were not chronologically sensitive, as was outlined, as well as an insufficient number of skeletons discovered. Therefore, it was impossible to observe the inner dynamics of this population more precisely even when the site i.e. the necropolis is uncovered totally or to a great extent, as opposed to colleagues in our region that have been successfully engaged in this enterprise.7

METHODOLOGICAL FRAMEWORK

The examined degree of skeleton preservation is given in the form of descriptive schemes consisting of five categories proposed by Mikić:8 I – the whole skeleton is well preserved; II – well-preserved, incomplete skeleton; III – moderately preserved skeleton;9 IV – partial preservation of skeletal remains10 and V – poor preservation of skeletal remains.11

In determining sex in children, we put emphasis on the study of morphological elements of the mandible (protrusion of protuberantiae mentalis, the shape of the alveolar part, protuberance in the gonion area) and pelvis (the angle of a greater sciatic notch, the position of the pelvic arch, the curvature of cristae iliacae). The methodology was based on data obtained by Schutkowski during his extensive research.12

For sex determination on skeletal materials of adult individuals we adopted for a combination of morphological and metrical methods. Specific attention was being paid on morphological elements of the scull (glabella, planum nuchale, processus mastoideus, processus zygomaticus, arcus supraciliaris, protuberantia occipitalis externa, os zygomaticum, tubera frontale et parietale, inclination of os frontale, margo supraorbitalis and shape of orbitae) and the pelvis (sulcus praearcularis, incisura ischiadica s. ischialis major, arcus pubis s. pubicus et angulus subpubicus, arc compose, the appearance of os coxae, corpus ossis ischi, foramen obturatum, crista iliaca, fossa iliaca, pelvis major; pelvis minor; subpubic region: ventral arch, subpubic concavity and medial appearance of the ischio-pubic branch), whereas the method of operation was adopted from a group of European anthropologists,13 Buikstra and Ubelaker.14 Morphological elements were also analyzed on the mandible (the overall appearance of mandible (corpus mandibulae, ramus mandibulae and angulus mandibulae), mentum, angle mandibulae and margo inferior), based on criteria defined by Ferembach and his associates,15 and metrical elements relevant for sex determination in skeletons.16 Indices, calculated on the basis of gained metric elements, were shown in tables for each grave individually. Teeth were measured for mesio-distal and vestibulo-lingual diameters using a method approved by Hillson.17 According to these diameters difference in teeth size was monitored mostly on canines; should they be missing from osteological material, other teeth would suffice (molars, premolars and incisors).18 Morphological and metric elements were observed during analysis of other postcranial bones as well. Morphological elements that caught the most of our attention were degrees of development of: tuberositas deltoidea, tuberositas radii and margo interosseus (of the radius), tuberositas ulnae and margo interosseus (of the ulna), linea aspera and tuberositas tibiae. Bone appearance, body curvature and facies auricularis were morphological elements observed in sacrum.19 Metric elements played a more

4 All photographs of humane osteological material were taken by N. Miladinovic-Radmilovic. Postproduction and electronic processing of situation plans from the field documentation of the Institute for the Protection of Cultural Monuments from Sremska Mitrovica and map making were done by M. Radmilovic.

6 The data was taken from the field documentation of the Institute for the Protection of Cultural Monuments in Sremska Mitrovica.

7 Vodanovic, Brkić, Demo i Šlaus 2003; Vodanovic, Brkić i Demo 2004; Bedić i Novak 2010.

8 Mikić 1978, 9.

9 Medium preservation refers to the situation where an entire skeleton is present inside the grave, but the bones are brittle and brake during excavation.

10 Partial preservation refers to the situation where the grave contains only parts of a skeleton that are very brittle and difficult to lift, pack and transport.

11 Poor preservation refers to the situation where the remains of a skeleton exist only in traces and are virtually impossible to lift completely.

12 Schutkowski 1993.

19 Mikić 1978, 18, 19; Bass 1995, 114.
Fig. 3. Sonde 1, position of graves 1, 2, 3, 4, 5 and 620

Fig. 4. Sonde 1, position of graves 8, 9, 10, 11, 12, 13 and 1421

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3}
\caption{Sonde 1, position of graves 1, 2, 3, 4, 5 and 6}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4}
\caption{Sonde 1, position of graves 8, 9, 10, 11, 12, 13 and 14}
\end{figure}

Fig. 5. Sonde 1, position of graves 8, 9, 10, 11, 12, 13 and 1422

Fig. 6. Sonde 1, position of graves 12, 13, 15, 16, 17 and 1823

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig5}
\caption{Sonde 1, position of graves 8, 9, 10, 11, 12, 13 and 14}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig6}
\caption{Sonde 1, position of graves 12, 13, 15, 16, 17 and 18}
\end{figure}
significant role in sex determination based on postcranial skeleton, and they were given additional attention. Indices calculated on the basis of gained metric elements were shown in tables for each grave individually, and for left and right side separately.

Individual age estimation in children was based on degree of formation and teeth eruption (Ubelaker scheme);24 degree of ossification of the epiphysis-diaphysis connections (Table with time scales (years) during which epiphysis-diaphysis connections ossify);25 length of long bones (tables (with time scales shown in years and months) defined by Bass26 and Ferembach with associates).27

Individual age in adults was established upon:

- degree of obliteration of local skull sutures (Vallois’ scheme);28
- changes in maxilla and mandible teeth (changes in occlusal surface on the dental material was compared with the numerical classification of attrition of the upper (occlusal) surface of molars in relation to age which was defined by Brothwell29 and changes on occlusal surface of all teeth in relation to age defined by Lovejoy;30
- morphological changes in sternal ends of ribs (metamorphoses of depth, joint cavities, shape, edges and ridge configuration were examined, together with overall state of bone, based on ten (0–8) phases of progression covering the period from 18 to over 70 years);31
- morphological changes on the medial end of the clavicle (morphological changes of the clavicle documented by Scheuer and Black were observed).32

They established five (1–5) phases of progression covering periods lasting from 14 to 29 years);33 morphological changes in pubic symphysis joint surface (Todd’s method was used in which the metamorphosis of the pubic symphysis surface is divided in ten chronological phases during aging, starting with age 18 and leading up to age 50 and over);34

Sacrilic region (individual age of adult individuals was determined upon models defined by Lovejoy and his associates.35 They classified the changes in this region in eight stages, from late adolescence to old age phase, with most attention directed to observation of position, edge lipping and porosity of the bone in this region).

Twenty-six epigenetic variations on the cranium and eleven on the postcranial skeleton were observed.35

Stature in children and juvenile (juvenilis I) individuals was calculated using a formula defined by Maresh,36 whereas for juvenile (juvenilis II) and adult individuals Trotter and Gleser’s formulas were used.37

HUMAN OSTEOLOGICAL MATERIAL FROM EASTERN PART OF SITE NO. 37

Grave 1

Skeletal remains of a female (?) child aged 18 (?) months were discovered in the grave (Figs. 3, 7a and 7b; Tables 1 and 2).38

Paleopathological changes that can be observed on the cranial part of the skeleton are porotic hyperostosis and traces of tuberculosis on the ribs. Postcranial bones exhibit some sort of dysplasia (achondroplasia?). Namely, thickening of the cortex and noticeable enlargement of mediolateral diameter is perceived in the region of long-bones’ diaphysis and metaphysis (Figs. 7a and 7b). Severe body curvature is solely observed in the left fibula. Deeper lesions are perceived on the anterior and posterior side of the iliac part of the left pelvic area, as well as on all muscle attachment points and long postcranial bones.

Grave 2

The grave contained remains of a male child individual, aged four and a half,39 and a child individual,
Fig. 7. Grave 1, dysplasia (achondroplasia?): a) of the left humerus; b) of the left femur

Сл. 7. Гроб 1, дисплазија (ачондроплазија?): а) левој хумерус; б) левој фемура

Fig. 8. Grave 2: a) cribra femora; b) traces of tuberculosis on ribs

Сл. 8. Гроб 2: а) cribra femora; б) тракс о туберкулози на ребра
of undetermined sex, aged around 30 months (Figs. 3, 8a and 8b; Tables 1 and 2).40

Perceived paleopathological changes in the older individual are porotic hyperostosis (on parietal bones) *cribra femora* near the upper end of the left and right femur on the anterior side (measuring 1 x 2 cm) and a trace of tuberculosis on the one preserved rib (Figs. 8a and 8b).

A noticeable epigenetic characteristic on *norma frontalis* are *sulci frontales* (one on the left side), and on *norma lateralis* – two *foramen zygomaticofaciale* (on the left zygomatic bone). *Trochanter tertius* was noticed on the right femur of the postcranial skeleton.

No paleopathological changes were noticed in the younger child. *Tuberositas radii* is somewhat more prominent than usual.

Grave 3

The grave contained skeletal remains of a child of undetermined sex and age,41 and an adult individual of undetermined sex and age (Fig. 3; Table 1).42

No paleopathological changes were noticed in these individuals.

Grave 4

The grave contained skeletal remains of a child of undetermined sex, aged three and a half (Fig. 3; Tables 1 and 2).43

No paleopathological changes were noticed. The appearance of *suturae metopicae* on *norma frontalis* is a perceived epigenetic characteristic.

Grave 5

The grave contained skeletal remains of a female child aged 2 years ± 8 months,44 and an adult individual of undetermined sex and age (Fig. 3; Tables 1 and 2).45

Perceived paleopathological changes in the child individual are *cribra femora* near the upper end of the right and left femur on the anterior side (1cm in diameter), resorption of cortical tissue at the muscle attachment point *m. triceps brachii* – *Caput laterale* (right humerus), *m. biceps brachii* (right and left radius), *m. iliopsoas* and at the point of attachment of all muscles along *linea aspera* (right and left femur), dislocation of the left ankle and a possible middle ear inflammation accompanied by an infection.

Epigenetic characteristics noticed on *norma lateralis* are two *foramen zygomaticofaciale* on the right zygomatic bone.

No paleopathological changes were noticed in the adult individual.

Grave 6

The grave contained skeletal remains of a male (?) child aged 3 years ± 12 months (Figs. 3, 9a and 9b; Table 1).46

Perceived paleopathological changes are *cribra orbitalia* on orbital roofs and porotic hyperostosis on *lamina externa* on all preserved cranial bones except the occipital bone (Fig. 9a). Changes similar to those caused by metabolic processes (scurvy or rickets) were noticed on *lamia interna* of the occipital and left parietal bone. Likewise, there is a possible ear inflammation accompanied by an infection, similar to individual from grave 5 (Fig. 9b).

Grave 847

The grave contained skeletal remains of a female child, aged three,48 and an adult or a juvenile individual of unknown sex and age (Figs. 4, 5 and 10; Tables 1 and 2).49

Perceived paleopathological changes in the child are ellipsoidal bony protuberance on one rib fragment (measuring 0.8 x 0.5 cm), deeper lesions in the upper third of the body of the left humerus on the anterior side (the affected bone area measures 1 x 2.5 cm; Fig. 10) and *cribra femora* near the upper ends of the femur (0.7 cm in diameter).

40 Degree of bone preservation: II category (a well preserved incomplete postcranial skeleton).
41 Degree of bone preservation: II category (a well preserved incomplete cranial skeleton).
42 Degree of bone preservation: II category (a well preserved incomplete postcranial skeleton).
43 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).
44 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).
45 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).
46 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).
47 In a so-called grave 7 only animal skeletal remains were discovered. It should be mentioned that in graves 1, 4, 5, 8, 9, 10, 12, 16 and 17, as well as among dislocated bones I–III numerous animal bone fragments were found, most likely offerings.
48 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).
49 Degree of bone preservation: II category (a well preserved incomplete postcranial skeleton).
No paleopathological changes were noticed in the adult individual.

Grave 9
The grave contained skeletal remains of a child individual, of unknown sex and age (Figs. 4 and 5; Table 1).50 Cribra orbitalia was a paleopathologic find noticed on the left orbit roof.

Grave 10
The grave contained skeletal remains of a male adult individual, of unknown age (Figs. 4 and 5; Tables 1 and 8).51 Perceived paleopathological changes are irregularly fused fracture of the II metatarsal bone (in the upper half of the body), injury to the right tibia (on the middle of margo anterior, a bony protuberance 1 x 0.5 cm in size can be noticed, and an infection on the lower end on the

50 Degree of bone preservation: II category (a well preserved incomplete cranial skeleton).

51 Degree of bone preservation: II category (a well preserved incomplete postcranial skeleton).
medial and posterior side), osteoarthritis and the dislocation of both ankles (may have occurred as a result of difficulties in movement due to the injury to the right tibia) and the possible emergence of the so-called bunion.

Grave 11

The grave contained skeletal remains of a male child aged two and a half (Figs. 4 and 5; Tables 1 and 2).52

Perceived paleopathological changes are middle ear inflammation and **cribra femora** near the upper ends on the anterior side of both femurs (1.5 and 1 cm in diameter).

Noticable epigenetic characteristic on **norma occipitalis** are **ossa suturae lambdoideae** (one on the left side 1.3 x 1 cm in size).

Grave 12

The grave contained skeletal remains of a female, adult individual, aged between 33–46 (Figs. 4–6, 11 and 12; Tables 1, 3–8).53

Noticeable paleopathological changes are a mild form of osteoarthritis (on the condyles of the mandible, on several thoracic vertebrae on the upper end of the right ulna and on right tibia’s tuberositas), aneurism (? on the medial end of the right clavicle (1.5 cm in diameter) and bony outgrowths (0.5 and 0.2 cm in diameter) on the right tibia’s **facies medialis**.

Dental analysis showed the presence of the following teeth: 16, 18, 26, 31, 32, 33, 34, 35, 37, 38, 43 and 44. Teeth 17, 25, 28, 36, 46 and 47 (Figs. 11 and 12) were lost antemortem, teeth 15, 14, 24, 27 (?), 41, 42 and 45 postmortem. Abrasion of the 1st degree (in enamel) was discovered in teeth 16, 35 and 44 (2nd degree (exposed dentin) on 34, and 3rd degree (to the bottom of the fissure) on teeth 31, 32, 33 and 43). Periodontal disease and calculus were highly prominent (due to a large presence of calculus, the possible appearance of hypoplasia was unobservable). Teeth rotation was the only present anomaly concerning mandible and dental arch). Caries was present in teeth: 17 (mesial, caries 0.7 cm in diameter), 26 (the so-called gross-gross caries), 38 (occlusal, caries in the shape of dot) and 48 (occlusal, caries in the shape of dot). Occlusion could not be determined.

Epigenetical characteristics noticeable on **norma frontalis** are **sulci frontales** (two on the left side) and **linea nuchae suprema** (very prominent) on **norma occipitalis**. On the postcranial part of the skeleton, **trochanter tertius** was noticed on the right femur beside **foramen processus transversi bipartitum** (C6).

Markers of occupational stress in the form of hypertrophy (cortical defect) were present on the muscle attachment points of the right and left clavicle (**m. deltoideus**), right scapula (**m. triceps brachii – Caput longum, m. subscapularis, m. infraspinatus, m. teres minor, m. teres major**), left scapula (**m. triceps brachii – Caput longum, m. subscapularis, m. infraspinatus, m. teres minor, m. teres major, m. deltoideus, m. biceps brachii – Caput longum, m. biceps brachii – Caput breve, m. serratus anterior, m. rhomboideus minor, m. rhomboideus major**), right humerus (**m. brachioradialis, m. extensor carpi radialis longus, m. extensor carpi radialis brevis, m. extensor digitorum, m. extensor digiti minimi, m. extensor carpi ulnaris, m. supinator, m. pronator teres**), left humerus (**m. brachioradialis, m. extensor carpi radialis longus, m. extensor carpi radialis brevis, m. extensor digitorum, m. extensor digiti minimi, m. extensor carpi ulnaris, m. supinator, m. pronator teres, m. supraspinatus, m. subscapularis, m. latissimus dorsi, m. pectoralis major, m. teres major, m. deltoideus, m. coracobrachialis, m. brachialis**), right radius (**m. adductor pollicis longus**,54 **m. biceps brachii**), left radius (**m. adductor pollicis longus, m. biceps brachii**), right ulna (**m. supinator, m. brachialis, m. pronator teres, m. flexor digitorum superficialis, m. triceps brachii; olecranon was slightly seperated), left ulna (**m. supinator, m. brachialis, m. pronator teres, m. flexor digitorum superficialis**), both femurs (all attachment points are prominent along **lineae asperae** and near the lower end on the posterior side) and both fibulae (**m. flexor hallucis longus**). Markers of occupational stress in the form of hypertrophy (cortical defect) were present on attachment points of right clavicle’s ligaments (**lig. trapezoideum, lig. conoideum** and left clavicle (**lig. trapezoideum, lig. conoideum, lig. costoclavulare**).

Specific observations: the emergence of batrocran; **foramen mandibulae** is larger (1 cm in diameter); con-dyle is extremely large in size (3.3 x 2.25 cm); **facies articularis tuberculi costae** is disk-shaped (1.3 cm in diameter) with a perforation in the middle.

52 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).

53 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).

54 There is a bony protuberance 1 x 2 cm in size on the attachment point of this muscle.
Fig. 11. Grave 12: skull projections

Сл. 11. Гроб 12: лобаљске пројекције
Grave 13

The grave contained skeletal remains of a male adult individual aged around 25 (Figs. 4–6, 13a and 13b; Tables 1, 3–8). Noticiable paleopathological changes are *cribra orbitalia* (on orbit roofs; Fig. 13a) Schmorl’s defect on thoracic vertebrae, dislocation of both knees, *osteochondritis dissecans* near the upper end of the right femur on the anterior side (2.5 x 0.2 cm in size) and an osteoma on the right side of the mandible, close to the mentum, below the tooth 43 (0.5 cm in diameter).

Dental analysis showed the presence of the following teeth in the mandible (Fig. 13b): 32, 33, 34, 38, 41, 42, 43, 44 and 45. Teeth 36, 46 and 47 were lost antemortem, teeth 31, 35 and 37 postmortem. Abrasion of the 1st degree (in enamel) was discovered in teeth 32, 41 and 42. Periodontal disease was highly prominent, and the calculus varied from medium to highly prominent, and hypoplasia was slightly prominent. Cysts were noticed on the buccal side of teeth 36 (1.1 cm in diameter) and 37 (1.3 cm in diameter). A mild inward dislocation of teeth 32 and 42 is the only anomaly concerning mandible and dental arch. No caries was noticed. Occlusion could not be determined.

Noticeable epigenetic characteristics on *norma lateralis* are three foramen-*zygomaticofaciale* on the left zygomatic bone.

Markers of occupational stress in the form of hypertrophy (cortical defect) were present on the muscle attachment points of the right scapula (*m. deltoideus*), left scapula (*m. triceps brachii – Caput longum, m. subscapularis, m. infraspinatus, m. teres minor, m. teres major*), left humerus (*m. brachioradialis, m. extensor carpi radialis longus, m. extensor carpi radialis brevis*), both radiuses (*m. biceps brachii*), both ulnae (*m. supinator, m. brachialis, m. pronator teres, m. flexor digitorum superficialis, m. triceps brachii*), both femurs (all muscle attachment points are prominent in the upper third of *lineae asperae* at the lower end on the posterior side) and both tibias (*m. sartorius, m. gracilis, m. semitendinosus*).

55 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).
Grave 14

Skeletal remains of a juvenile individual, of unknown sex, aged between 13–16 (Figs. 4 and 5; Table 1).56
No paleopathological changes were noticed.

Epigenetical characteristics noticeable on norma verticalis are foramina parietalia (one on each of parietal bones) and ossa suturae lambdoideae on norma occipitalis (one on the right side, 0.5 x 0.7 in size, and one on the left side, fairly decomposed).

Grave 15

The grave contained skeletal remains of a male, adult individual, aged between 20–24,57 and a child, of unknown sex and age (Fig. 6; Tables 1 and 5).58

The only paleopathological change noticed in the adult individual, is one similar to cribra on lamina interna on the frontal bone.

Teeth analysis revealed teeth 41, 43, 45, 46 and 47 present in the mandible. 42 and 44 were lost postmortem. Abrasion of the 1st degree (in enamel) as perceived in teeth 41 and 43. Periodontal disease was mild to moderate, calculus was moderate, and hypoplasia was mild. Hypodontia on tooth 48 was the only jaw and dental arch related anomaly. Caries was noticed in teeth 46 (occlusal, caries shaped as two dots) and 47 (occlusal, caries shaped as a dot, 0.1 cm in diameter). Occlusion could not be determined.

Epigenetical characteristics noticeable on norma frontalis are sulci frontales (one on the left parietal bone) and ossa suturae lambdoideae on norma occipitalis (one on the right side, 0.7 x 2 cm in size, and linea nuchae suprema (very prominent).

Markers of occupational stress in the form of hypertrophy (cortical defect) were present on the muscle attachments of the left scapula (m. deltoideus, m. triceps brachii – Caput longum, m. biceps brachii – Caput breve, m. triceps brachii – Caput longum, m. infraspinatus, m. subscapularis, m. teres minor, m. teres major), right clavicle (m. trapezius, m. deltoideus, m. pectoralis major, m. sternocleidomastoideus, m. subclavius), manubrium (m. pectoralis major), left ulna (m. extensor pollicis brevis, m. abductor pollicis longus, m. supinator, m. brachialis, m. pronator teres, m. flexor digitorum superficialis, m. triceps brachii), left radius (m. pronator teres, m. extensor pollicis brevis, m. abductor pollicis longus, m. biceps brachii; all attachment points on the lower end on the posterior side), right and left humerus (all attachment points), right and left femur (m. iliopsoas, m. vastus lateralis, m. adductor magnus; all attachment points on the posterior side (except on the left femur gastrocnemius – Caput medialis because that part of bone is missing and nothing can be claimed with certainty)). Markers of occupational stress in the form of hypertrophy (cortical defect) were present on the ligament attachment points of the right clavicle (lig. trapezoideum, lig. conoideum, lig. costoclavicular). Manubrium is asymmetric (as if the right side of the body was laterally stretched and shortened).

Paleopathological changes noticed in the adult individual are syphilis (caries sicca) on the frontal bone (Plate I/1 and 2),62 injuries accompanied by a subperiosteal hematoma and the infection of both tibias (on the anterior side) and the left fibula (Plate I/5 and 6), osteoarthritis (on the ends of both humeruses, on the upper ends us ulnas, on tuberositas of both tibias and on the left talus) and traces of Schmorl’s defect on two lumbar vertebrae.

Markers of occupational stress in the form of hypertrophy (cortical defect) were present on the muscle attachment points of both scapulas (m. pectoralis minor, m. biceps brachii – Caput longum, m. biceps brachii – Caput breve, m. triceps brachii – Caput longum, m. infraspinatus, m. subscapularis, m. teres minor, m. teres major), right clavicle (m. trapezius, m. deltoideus, m. pectoralis major, m. sternocleidomastoideus, m. subclavius), manubrium (m. pectoralis major), left ulna (m. extensor pollicis brevis, m. abductor pollicis longus, m. supinator, m. brachialis, m. pronator teres, m. flexor digitorum superficialis, m. triceps brachii), left radius (m. pronator teres, m. extensor pollicis brevis, m. abductor pollicis longus, m. biceps brachii; all attachment points on the lower end on the posterior side), right and left humerus (all attachment points), right and left femur (m. iliopsoas, m. vastus lateralis, m. adductor magnus; all attachment points on the posterior side (except on the left femur gastrocnemius – Caput medialis because that part of bone is missing and nothing can be claimed with certainty)). Markers of occupational stress in the form of hypertrophy (cortical defect) were present on the muscle attachments of the left scapula (m. deltoideus, m. triceps brachii – Caput longum, m. teres minor, m. teres major).

Grave 16

The grave contained skeletal remains of a male, adult individual aged around 25,59 a female (?) juvenile individual, aged between 16–20,60 and a child individual, of unknown sex aged 3 (Fig. 6; Plate I; Tables 1, 2, 3, 7 and 8).61

Specific observations: tuberculum conoideum is extremely prominent (!) on the left side.

No paleopathological changes were noticed in the child individual.

56 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).
57 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).
58 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).
59 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).
60 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).
61 Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).
62 This is the first material confirmation of the appearance of syphilis in Sirmium between 1st –16th century.
(Plate I/3). Olecranon of the left ulna was slightly separated. Two so-called „squatting facets“ were noticed on the left tibia (Plate I/4).

Epigenetic characteristics noticed on norma frontalis are openings and notches in the supraorbital region, and linea nuchae suprema (very prominent) on norma occipitalis. Trochanter tertius on both femurs is the only epigenetic characteristic on the postcranial part of the skeleton.

Osteoarthritis on calcaneus’s tuber calcanei is a paleopathological change noticed in the juvenile individual.

No paleopathological changes were noticed in the child individual.

Grave 17

This grave contained skeletal remains of a male, adult individual aged around 65 (Figs. 6, 15a and 15b; Tables 1, 3 and 7).63

Perceived paleopathological changes are irregularly fused fissures (or a fracture?) of left scapula’s angulus inferior, left ulna (lower half of the body) and left radius (lower half of the body); osteoarthritis (on vertebrae, ribs, pelvic bones and ends of the left humerus, left ulna and left radius), traces of Schmoll’s defect (on a preserved fragment of a vertebra), osteoporosis (on a preserved fragment of a vertebra and on innominate bones) and infective osteomyelitis (ischiatric parts of innominate bones and on the upper end of the left femur) (Figs. 15a and 15b).

Markers of occupational stress in the form of hyper trophy (cortical defect) were present on the muscle

63 Degree of bone preservation: II category (a well preserved incomplete postcranial skeleton).
attachment points of ribs (Mm. levatores costarum), left ulna (all attachment points except m. triceps brachii mediale because that part of bone is missing and could not be observed), left radius (all muscle attachment points) and the left humerus (m. latissimus dorsi, m. pectoralis major, m. teres major, m. deltoideus, m. coracobrachialis, m. brachialis, m. flexor carpi ulnaris, m. anconeus, m. brachioradialis, m. extensor carpi radialis longus, m. extensor carpi radialis brevis, m. extensor digitorum, m. extensor digiti minimi, m. extensor carpi ulnaris, m. supinator, m. pronator teres, m. flexor carpi radialis, m. palmaris longus, m. flexor digitorum superficialis, m. triceps brachii – Caput laterale, m. triceps brachii – Caput mediale).

Trochanter tertius on the left femur is the only perceived epigenetic characteristic.

Grave 18

The grave contained skeletal remains of a male, adult individual, aged between 35–45 (Figs. 6, 15a and 15b; Tables 1 and 6).64

Perceived paleopathological changes were fused rib fissures, spondylarthrosis (II–III degree) on L4, osteoarthritis on T8–T12 and traces of Schmorl’s defect on T8–T12 and L1–L3 (measuring from 0.5 x 0.5 cm to 0.5 x 2 cm) (Fig. 15a).

Markers of occupational stress in the form of hypertrophy (cortical defect) were visible on the muscle attachment points of the left scapula (m. infraspinatus, m. subscaularis, m. teres minor, m. teres major), right clavicle (m. trapezius, m. deltoideus, m. pectoralis major, m. sternocleidomastoideus, m. subclavus), 12 ribs (Mm. levatores costarum), left ulna (m. supinator, m. brachialis, m. pronator teres, m. flexor digitorum superficialis, m. triceps brachii), left radius (m. biceps brachii), right humerus (m. supraspinatus, m. subscapularis, m. latissimus dorsi, m. pectoralis major, m. teres major, m. infraspinatus, m. teres minor) and left humerus (m. flexor carpi ulnaris, m. anconeus, m. brachioradialis, m. extensor carpi radialis longus, m. extensor carpi radialis brevis, m. extensor digitorum, m. extensor digiti minimi, m. extensor carpi ulnaris, m. supinator, m. pronator teres, m. flexor carpi radialis, m. palmaris longus, m. flexor digitorum superficialis).

Markers of occupational stress in the form of hypertrophy (cortical defect) were visible on the ligament attachment points of the right clavicle (lig. trapezoideum, lig. conoideum, lig. costoclavicular) (Fig. 15b).

Dislocated bones I

The bones belong to a male, adult individual, aged between 55–65 (Tables 1 and 7).65

64 Degree of bone preservation: II category (a well preserved incomplete postcranial skeleton).

65 Degree of bone preservation: II category (a well preserved incomplete postcranial skeleton).
No paleopathological changes were noticed. Markers of occupational stress in the form of hypertrophy (cortical defect) were visible on the muscle attachment points of the right humerus (m. pectoralis major, m. latissimus dorsi, m. teres major, m. deltoideus, m. coracobrachialis, m. brachioradialis, m. extensor carpi radialis longus, m. etensor carpi radialis brevis, m. pronator teres, m. flexor carpi radialis, m. palmaris longus, m. flexor carpi ulnaris, m. flexor digitorum superficialis).

Table 1. Sex and age structure of individuals buried on east part of the Site No. 37

<table>
<thead>
<tr>
<th>INDIVIDUAL AGE</th>
<th>MALE</th>
<th>FEMALE</th>
<th>UNDETERMINED SEX</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>fetus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NB – 0,5 years</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0,5 – 1 years</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,5 – 2 years</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>2,5 – 3 years</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3,5 – 4 years</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4,5 – 5 years</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5,5 – 6 years</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6,5 – 7 years</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7,5 – 8 years</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8,5 – 9 years</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9,5 – 10 years</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10,5 – 11 years</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11,5 – 12 years</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12,5 – 13 years</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13,5 – 14,5 years</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UNKNOWN AGE</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL NUMBER OF CHILDREN</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>JUVENILIS I (15-18 years)</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>JUVENILIS II (19-22 years)</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ADULTUS I (23-30 years)</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ADULTUS II (31-40 years)</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>MATURUS I (41-50 years)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MATURUS II (51-60 years)</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SENILIS I (61-70 years)</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SENILIS II (71 and more)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UNKNOWN AGE</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL NUMBER OF JUVENILES AND ADULTS</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>TOTAL NUMBER OF INDIVIDUALS</td>
<td>13</td>
<td>6</td>
<td>11</td>
<td>29</td>
</tr>
</tbody>
</table>
The bones belong to a female, juvenile individual, aged around 18, and a child, of unknown sex and age (Tables 1, 3 and 8).

Perceived paleopathological changes in the juvenile individual are fusion of the right tibia and right fibula (exophytes merging with the right fibula are noticed on the right tibia, which is unfortunately not preserved in material) and the disorder in the right knee joint formation.

Markers of occupational stress in the form of hypertrophy (cortical defect) were visible on the muscle attachment points of the right femur (m. gluteus maximus, m. pectineus, m. adductor brevis, m. vastus lateralis, m. adductor magnus, m. vastus medialis, m. vastus intermedius, m. adductor longus, m. biceps femoris – Caput breve, m. gastrocnemius – Caput mediale, m. adductor magnus, m. plantaris, m. gastrocnemius – Caput laterale, m. popliteus) and in the form of „squatting facets” on the right tibia (2).

No paleopathological changes were noticed in the child.

66 Degree of bone preservation: II category (a well preserved incomplete postcranial skeleton).
Table 4. Indices on the cranial skeleton

<table>
<thead>
<tr>
<th>CRANIAL SKELETON</th>
<th>GRAVE 12</th>
<th>GRAVE 13</th>
<th>Mean Porion–Height Index</th>
<th>Fronto–Parietal Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary cranial measures</td>
<td></td>
<td></td>
<td>84.27 brachycranic</td>
<td>92.39 ultra brachycranic</td>
</tr>
<tr>
<td>Cranial Index</td>
<td>84.27</td>
<td>92.39</td>
<td>71.95 medium</td>
<td>73.86 high</td>
</tr>
<tr>
<td></td>
<td>62.67</td>
<td>59.49</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>71.95</td>
<td>73.86</td>
<td>62.67 stenometopic</td>
<td>59.49 stenometopic</td>
</tr>
</tbody>
</table>

Table 5. Indices on the cranial skeleton

<table>
<thead>
<tr>
<th>CRANIAL SKELETON</th>
<th>GRAVE 12</th>
<th>GRAVE 13</th>
<th>GRAVE 15 (I)</th>
<th>DISLOCATED BONES IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Orbits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbital Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.04 mesoconchy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandible</td>
<td>85.83</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mandibular Index</td>
<td>85.83</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mandibular Robustness Index</td>
<td>43.63</td>
<td>30</td>
<td>40.62</td>
<td>32.14</td>
</tr>
<tr>
<td>Mandibular Branch Index</td>
<td>47.54</td>
<td>47.37</td>
<td>-</td>
<td>46.87</td>
</tr>
<tr>
<td>Fronto–mandibular Index</td>
<td>95.43</td>
<td>mesomandibular</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 6. Indices on the postcranial skeleton

<table>
<thead>
<tr>
<th>POSTCRANIAL SKELETON</th>
<th>GRAVE 12</th>
<th>GRAVE 13</th>
<th>GRAVE 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacrum</td>
<td>-</td>
<td>100.44</td>
<td>-</td>
</tr>
<tr>
<td>Sacral Index</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Clavicle</td>
<td></td>
<td>-</td>
<td>32.13</td>
</tr>
<tr>
<td>Claviculohumeral Index</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Robustness Index</td>
<td></td>
<td>-</td>
<td>23.08</td>
</tr>
</tbody>
</table>
Table 7. Indices on the postcranial skeleton

<table>
<thead>
<tr>
<th>POSTCRANIAL SKELETON</th>
<th>GRAVE 12</th>
<th>GRAVE 13</th>
<th>GRAVE 16 (I)</th>
<th>GRAVE 17</th>
<th>DISLOCA-TED BONES I</th>
<th>DISLOCATED BONES IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humerus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robusticity Index</td>
<td>17.81</td>
<td>19.23</td>
<td>18.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-Section Index</td>
<td>80.95</td>
<td>85.71</td>
<td>80.43</td>
<td>78</td>
<td>76</td>
<td>77.78</td>
</tr>
<tr>
<td>Radiohumeral Index</td>
<td>72.81</td>
<td>75.32</td>
<td>71.22</td>
<td>80.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Length–Thickness Index</td>
<td>16.16</td>
<td>19.96</td>
<td>16.95</td>
<td>18.72</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cross-Section Index</td>
<td>4.8</td>
<td>5.54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>The Length–Breadth Index</td>
<td>13.54</td>
<td>15.08</td>
<td>14.34</td>
<td>16.17</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ulna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caliber Index</td>
<td>15.35</td>
<td>16.74</td>
<td>-</td>
<td>16.52</td>
<td>16.95</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 8. Indices on the postcranial skeleton

<table>
<thead>
<tr>
<th>POSTCRANIAL SKELETON</th>
<th>GRAVE 10</th>
<th>GRAVE 12</th>
<th>GRAVE 13</th>
<th>GRAVE 16 (I)</th>
<th>DISLOCA-TED BONES (II) I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robusticity Index</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13.49</td>
<td>-</td>
</tr>
<tr>
<td>Pilastric Index</td>
<td>-</td>
<td>98.21</td>
<td>107.69</td>
<td>108.63</td>
<td>94.34</td>
</tr>
<tr>
<td>Platymeric Index</td>
<td>-</td>
<td>77.27 platymeric</td>
<td>84.37 platymeric</td>
<td>97.57 eurymeric</td>
<td>96.87 eurymeric</td>
</tr>
<tr>
<td>Tibia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Length–Breadth Index</td>
<td>-</td>
<td>-</td>
<td>21.39</td>
<td>18.54</td>
<td>22.03</td>
</tr>
<tr>
<td>Platymeric Index</td>
<td>79.41 eury.</td>
<td>71.67 eury.</td>
<td>74.28 eury.</td>
<td>81.82 eury.</td>
<td></td>
</tr>
<tr>
<td>Fibula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Length–Breadth Index</td>
<td>-</td>
<td>8.82</td>
<td>9.17</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

198
Dislocated bones III
The bones belong to a male (?) adult individual, of unknown age (Table 1). No paleopathological changes were noticed.

Dislocated bones IV
The bones belong to a male, adult individual, aged between 25–30 (Tables 1, 5 and 7).

Osteoarthritis on the glenoid cavity of the right scapula is the only perceived paleopathological change. Teeth analysis showed the presence of the following teeth: 14, 16 (root), 17, 18, 23, 24, 25, 43, 44 and 48. Teeth 11, 12, 13, 21, 22, 26, 31, 32, 33, 34, 35, 36, 41 and 42 were lost postmortem, and teeth 15, 45, 46 and 47 antemortem. Abrasion of the 1st degree (in enamel) was noted on teeth: 14 (→II) and 17, 2nd degree (exposed dentin) on 24, 25, 43 and 44, and 3rd degree (to the bottom of fissures) on teeth 23 and 48. Periodontal disease and hypoplasia were moderately prominent. A cyst was noticed, 1 cm in diameter, on the buccal side of tooth 16. Teeth rotation is the only anomaly related to jaws and dental arch. Caries was noticed in teeth: 14 (distal carious spot 0.3 cm in length), 16 (so-called gross-gross caries) 17 (mesial, caries 0.4 cm in diameter), 18 (occlusal, caries shaped as a dot) and 48 (occlusal, three caries shaped as a dot; mesial caries 0.4 cm in diameter). No calculus was noticed. Occlusion could not be determined.

A noticeable epigenetic characteristic on norma frontalis is sulci frontales (one on the left side), and os fonticuli posterolateralis on norma lateralis (one on the right side, 0.7 x 1 cm in size, and one on the left side, measuring 0.85 x 0.5 cm).

DISCUSSION AND CONCLUSION

Paleodemographic structure of the site
Anthropological analysis revealed that on the eastern part of Site No. 37, the total of 29 individual were buried: 16 adults (55.2%) and 13 children (44.8%) (Table 1).

The average life expectancy of individuals was, relatively speaking, 20 years, and regarding adult individuals only, 34 years. The average life expectancy of males was 38, and women 25 years. It is an interesting fact that the highest mortality of children was between ages 1.5 to 5 (69%). Average stature of adult females was 157 ± 4 cm, and males 172 ± 5 cm.

Paleopathological finds
Due to the nature and types of the most prevalent diseases, and relating different immunity levels individuals displayed, paleopathological changes in children and adults encountered in the described osteological material, were observed separately.

Children
Diseases which left a direct mark on osteological material of children were caused by blood disorders (anemia, porotic hyperostosis (23%), cribra orbitalia (15%), cribra femora (30%) and lesions near ends of long postcranial bones (15%)), skeleton development anomalies (dysplasias) (8%), middle ear inflammation (23%) and infective bone inflammations (tuberculosis) (15%).

However, most of these diseases could not have been the single direct cause of death in children. The highest mortality in children happened after the first year of age. Concerning children older than age one, it can be concluded that even though nutritious needs had decreased especially after age three, diet had still played an important role. Likewise, diarrhea, respiratory and gastrointestinal infections were still the major cause of death, together with accidental deaths, which played a significant role as well.

Adults
When it comes to adult individuals buried at the Site No. 37 the situation is somewhat different. Traces of a much larger number of diseases is visible in the osteological material belonging to these individuals: injuries, fissures and fractures (25%), abnormalities in skeleton development (fusion) (6%), joint diseases (50%), Schmorl’s defect (25%), metabolic diseases (6%), changes in bone caused by blood disorders (13%), changes in bone caused by circulation disorders (13%), bone tumors (13%) and infectious bone inflammations (6%).

Mortality in adults during 10th–12th century could have been the consequence of many diseases. Likewise,

[67] Degree of bone preservation: II category (a well preserved incomplete postcranial skeleton).
[68] Degree of bone preservation: II category (a well preserved incomplete cranial and postcranial skeleton).
[72] Syphilis existed in Europe in ancient times. However, written confirmation of this disease in this region dates from 1495 (Bala and Heges 1994, 230).
poor sanitation, respiratory and gastrointestinal infections, various poisonings (“St. Anthony’s fire” *Ignis sacer*, *Pestis igne*), and epidemics (typhus (*Typhus exanthematis*), dysentery (*Dysenteria*), smallpox (*Morfili*), scarlet fever (*Scarlatina*), variola (*Variola vera*), famine (*Hunger typhus*), diphtheria or croup (*Morbus aegyptiacus* or *Ulcera syriaca*)), as well as plague, leprosy could have been a major cause of mortality.

Dental analysis

Dental analysis pointed out the occurrence of abrasion, hypoplasia, periodontal disease, calculus, cysts, anomalies of the jaw and dental arch, and the significant presence of caries on teeth of these individuals. It ranged from caries stains, dot-shaped caries, developed caries, so-called “gross-gross” caries, to caries that resulted in teeth loss.

Markers of occupational stress

Markers of occupational stress were noticed in clavicles, scapulas, sternums, humeruses, radiuses, ulnas, femurs, tibias and fibulas. Occupational stress markers are indicators of activities an individual engaged in during their lifetime. Certainly, they are not enough to determine precisely what activity that was, but it can be concluded which body parts were most exposed to stress (muscle and ligament attachment points, so-called „squatting facets“ etc.) (50%).

Finally, the importance of the anthropological and archaeological analysis of the Belo Brdo populations from these parts should be emphasized once more. That way we would not only reconstruct and interpret the lifestyle, social conditions, types and sources of food and health status of these ancient people, but also create the whole picture about the people’s quality of living during a period, that in these parts, lasted for two centuries at least.

Translated by Dragan Marjanović

BIBLIOGRAPHY:

Todd 1921a – T. W. Todd, Age changes in the pubic bone: II The pubis of the male Negro–white hybrid; III The pubis of the white female; IV The pubis of the female Negro–white hybrid. American Journal of Physical Anthropology 4: 1–70.

ЛАКОВАЊЕ: NATAŠA MILADINOVIĆ-RADMILIOVIĆ, Археолошки институт, Београд

АНАЛИЗА ХУМАНОГ ОСТЕОЛОШКОГ МАТЕРИЈАЛА СА ИСТОЧНОГ ДЕЛА ЛОКАЛИТЕТА 37 У СРЕМСКОЈ МИТРОВИЦИ

Кључне речи: – средњовековни Сирмијум, Белобрдска култура, сифилис.

Локалитет 37 се налази на угулу улица Вука Караџића и Светог Саве, на простору срушеног Градског затвора у Сретском Митровици. Захтива археолошка ископања извршена су 1968. и 1969. године на површини од 1600 м² (сл. 1 и 2). Том приликом истражен су део северног крила царске палате Сирмијума је IV века, текидски културни слој из V века и део средњовековне некрополе са скелетним сахрањивањем из Х—ХII века. Налази се ове некрополе припадају Белобрдској култури. Остеолошки материјал хуманог порекла са овог локалитета је још седамдесете година прошлог века послат у САД на антрополошку експертизу. Нажалост, резултати тога анализа до данас нису достављени Музеју Срема у Сретском Митровици и Археолошком институту у Београду. Такође, колико је аутору овог текста познато, они нису никад ни публиковани.

Остеолошки материјал хуманог порекла са претходних ископања локалитета 37, као што је већ истакнуто, није био доступан за антрополошку аналиzu, тако да смо одлучили да представимо анализу сих 29 индивидуа (табела 1–8; сл. 1–15b; табла 1) и тиме допринесемо стварању опште слике о овој популацији.

Наравно, велику пoteškoću у антрополошкој реконструкциji и интерпретациji представљао је и широко археолошко — хронолошко латоњање (период X—XII века), чему је доприносило, између остalog, и велики број палаци откривених на некрополама који нису били, како се наглашава, хронолошко осетљиви, као и недовољно велики број откривених скелета. Због тога је било немогуће претизначити пратити унутрашњу динамику ове популације, у коме се догађаха, хронолошко осетљива, као и недовољно велики број откривених скелета. Због тога је било немогуће претизначити пратити унутрашњу динамику ове популације, у коме се догађаха, хронолошко осетљива, као и недовољно велики број откривених скелета.
Просечна телесна висина женских индивида износила је 157 ± 4 см, а мушких 172 ± 5 см (табела 2).

Због саме природе и врста обољења које се најчешће појављују у односу на њих, посебно смо посматрали палеопатолошке промене на деца и одраслих индивида са којима смо се срели приликом анализе овде описаних остеолошког материјала.

Болести које су директно остварили траг на остеолошком материјалу деце и индивида јесу промене на костима узроковане крвним поремећајима (анемија, порозна хиперостоза – 23%, cribr a orbitalia – 15%, cri bra femora – 30%, и лезије при окрајима дугих костију посткранијалног скелета – 15%), аномалије у развоју скелета (дисплазије – 8%), упале средње уха – 23%, и инфективна запаљења костију (туберкулоza – 15%).

Међутим, већина од ових болести самостално није могла да буде директан узрок смрти деца и индивида. Највиши смертни дец се био је после прве године живота. Што се тиче моратилета деце старши од годину дана, може се констатовати да, након су нутриционе потребе деце смањене, нарочито након тренутне године живота, исхрана и даље има значајну улогу. Такође, дијареја, респираторне и гастроинтестиналне инфекције и даље су главни узроки смрти, а значајан део уга и усмерености смрти је постојање оштећених костију.

Када су у питању одрасле индивида са локализације 37, ситуација је значајно другачија. На остеолошком материјалу ових индивида видљиве су промене у многим већем броју обећа: повреде, фисури и преломи костију (25%), аномалије у развоју скелета (фузије – 6%), болести зглобова (50%), Шморлов дефект (25%), метаболичке болести (6%), промене на костима узроковане крвним поремећајима (13%), промене на костима узроковане поремећајима у циркулацији (13%), тумори костију (13%) и инфективна запаљења костију (6%).

Смерност одраслих особа у периоду X–XII века могла је да буде последица више обећања. Такође, и лоши санитарни услови, респираторне и гастроинтестиналне инфекције, разна трошови (“Ограђ Светог Антуна” – Ignis sacer, Pestis ignea), као и епидемије (пегавач – Typhus exanthematicus), срабољуба (Dysenteria), мале боље (Morbilli), шарлах (Scarlatina), велике боље (Variola vera), глад (Hunger typhus), дифтерија или гушача (Morbus aegyptiacus односно U cera s yriaca), затим куга, лепра – могли су да буду један од главних узрока смерности становништва.

Дентална анализа нам је откривала пажњу на појаву абрације, хипоплазије, пародонтопатије, каменца, цести, аномалија вилица и зубног низа, али је и на значајно присуство иких у костију уз ровини ових индивида. Он се кретао од каринозних развоја, смероела у ниво тачке, развијеног икиса, тзв. “gross–gross” иких у костију, до икиша који су за последицу имали губитак зуба.

Маркери окупионог стреса уочени су на клавикулама, скапулама, стернумима, хумерусима, радиусима, улнаима, фемурима, тибијама и фибуласима. Маркери окупионог стреса су показатељ активности којима се одређена индивида бавила у току живота. Наравно, на основу њих се не може тачно прецизирати о којој се делатности ради, али се може констатовати који део тела је био највише изложен притиску (хватишта мишића, хватишта лигамената, тзв. “кљече фасете” итд. – 50%).

* * *

На крају, требало би још једном истичи важност антрополошке и археолошке анализе Белобрђских популација код нас. Тиме бисмо успели не само да реконструирамо и интерпретирамо начин живота тих древних популација, социјалне услове, врсту и изворе хране, здравствено стање, већ и да створимо целокупну слику о квалитету живота људи у једном периоду који је на нашем простору трајао најмање два века.
Plate I – Grave 16: 1 and 2) caries sicca; 3) asymmetry of manubrium; 4) so-called „squatting facets” on the lower end of left tibia; 5 and 6) injuries on tibias and on the left fibula accompanied by subperiosteal hematoma

Tabla I – Гроб 16: 1 и 2) caries sicca; 3) асиметрија манубриума; 4) шив. „клечење фасете” на доњем окрајку леве ћибије; 5 и 6) повреде ћибија и леве фибуле јарењене субпериосталним хематомом