ON THE CLASSES OF RAPIDLY VARYING FUNCTIONS

Slavko Simić

Communicated by Stevan Pilipović

ABSTRACT. The classes KR_∞, MR_∞, R_∞ of rapidly varying functions are natural extensions of Karamata's concept of regular variation. In [2] we introduced a new class K of perfect Karamata's kernels and its subclasses Θ and Σ. In this paper we study inclusion properties of these classes and, among other results, we prove $KR_\infty \subset MR_\infty \subset \Sigma \subset \Theta \subset K$.

Introduction

We begin with some definitions from Karamata's theory. A positive measurable function ℓ is slowly varying in Karamata's sense if $\ell(\lambda x) \sim \ell(x)$ ($x \to \infty$), for each $\lambda > 0$. Functions of the form $x^\rho \ell(x)$, $\rho \in \mathbb{R}$ are regularly varying with index ρ [1]. For a positive measurable function f, define \tilde{f} by $\tilde{f}(x) := \frac{f(x)}{\int_1^x f(t) \ell(t) \, dt}$. It is well known [1], that $\tilde{f}(x) \to \rho$, $0 < \rho < \infty$ ($x \to \infty$), if and only if f is regularly varying function in Karamata's sense with index ρ.

From there it follows an extension to the class Θ of rapidly varying functions. In [2] we gave the following definition.

DEFINITION 1. A positive measurable function p belongs to the class Θ if and only if $\tilde{p}(x) \to \infty$ ($x \to \infty$).

There is no representation form for the class Θ since its structure is ambiguous. For example, we showed in [2] that it is not closed under multiplication.

DEFINITION 2. Let Σ denote the maximal subclass of Θ which is closed under multiplication. Then Σ consists of all positive measurable functions s such that $s^2 \in \Theta$ [2, Theorem 1].

We also introduced the class K of perfect Karamata's kernels.
Definition 3. A positive measurable kernel $C(\cdot)$ belongs to the class K if the asymptotic relation \(\int_1^x f(t)C(t) \, dt \sim f(x) \int_1^x C(t) \, dt \) \((x \to \infty) \), takes place for every regularly varying function $f(\cdot)$ of arbitrary index.

It is proved in [2] that a necessary and sufficient condition for $C \in K$ is

\[
(1) \quad \int_1^x C(t) \, dt \in \Theta.
\]

Strict inclusion [2],

\[
(2) \quad \Sigma \subset \Theta \subset K,
\]

takes place in the sense that Θ/Σ and K/Θ are not empty.

From the property of regularly varying function f with index ρ, $\forall \lambda > 0$, $f(\lambda x)/f(x) \to \lambda^\rho$ \((x \to \infty) \), a natural extension to the class R_∞ arises.

Definition 4. [1, p. 83] A positive measurable function f belongs to the class R_∞ if $f(\lambda x)/f(x) \to \infty$ \((x \to \infty) \), for each $\lambda > 1$.

Subclasses of R_∞ are KR_∞ and MR_∞.

Definition 5. [1, p. 85] Let f be positive and measurable. Then

(i) $f \in KR_\infty$ if and only if $\liminf_{x \to \infty} \inf_{\lambda \geq 1} \frac{f(\lambda x)}{\lambda^\rho f(x)} = 1$ for every $c \in R$,

(ii) $f \in MR_\infty$ if and only if $\liminf_{x \to \infty} \inf_{\lambda \geq 1} \frac{f(\lambda x)}{\lambda^\rho f(x)} > 0$ for every $d \in R$.

There is strict inclusion [1, p. 83]

\[
(3) \quad KR_\infty \subset MR_\infty \subset R_\infty.
\]

We shall investigate intermediate inclusion properties of the classes KR_∞, MR_∞, R_∞ and Σ, Θ, K apart from (2) and (3).

Results

In all cases there is a strict inclusion property between the classes of rapidly varying functions mentioned above, except in the following one.

Proposition 1. The classes R_∞ and Θ are incomparable i.e., they have not an inclusion property.

Because of the assertion above, there are two inclusion chains. The first one is

Proposition 2. An extension of (3) is the following

\[
KR_\infty \subset MR_\infty \subset R_\infty \subset K.
\]

The second one is

Proposition 3. An extension of (2) is the following

\[
KR_\infty \subset MR_\infty \subset \Sigma \subset \Theta \subset K.
\]

Therefore the class K includes all known classes of rapidly varying functions in Karamata’s sense.
Proofs

Proof of Proposition 1. In order to prove that the classes R_∞ and Θ are incomparable, we have to find some positive measurable functions f and g such that $f \in R_\infty$ but $f \notin \Theta$ and $g \in \Theta$ but $g \notin R_\infty$.

An example of f is the next one. Let $f(x) := xe^x$ except at the points $x = e^n$, $n \in N$, where we put $f(e^n) := e^{e^n}$. Now, using Definition 4, it is easy to verify that $f \in R_\infty$. But

$$\tilde{f}(e^n) = e^{e^n-n} \int_1^{e^n} e^t dt \to 0 \quad (n \to \infty).$$

Hence $\lim_{x \to \infty} \tilde{f}(x) = 0$, and $f \notin \Theta$.

An example of g is the following: denote by (p_n), $n \in N$ the sequence of primes and let $g(x) := xe^{x}$ except at the points $x = p_n$ where $g(p_n) := p_ne^{p_n}$. Since $g(x) \geq xe^x$ for $x \geq 1$, we get

$$\tilde{g}(x) \geq xe^x \int_1^x e^t dt \to \infty \quad (x \to \infty);$$

hence $g \in \Theta$. But $\lim_{x \to \infty} \frac{g(2x)}{g(x)} = 2$, i.e., $g \notin R_\infty$.

In order to prove Proposition 2, taking into account (3), we just have to prove that then $f \in K$ whenever $f \in R_\infty$. For this we need the following two lemmas.

Lemma 1. If $f \in R_\infty$, then $\int_1^\infty f(t) dt \in KR_\infty$.

Proof. Denote by $F(x) := \int_1^x f(t) dt$, and let $f \in R_\infty$. Since, for fixed $\lambda > 1$, $f(\lambda t)/f(t) \to \infty$ $(t \to \infty)$ (Definition 4), for any $A > 0$ we can find t_0 such that $f(\lambda t) > Af(t)$ for $t > t_0 > 1$. Now, for sufficiently large x, we get

$$\frac{F(\lambda x)}{F(x)} = \frac{F(t_0) + \int_{t_0}^x f(t) dt}{F(t_0) + \int_1^x f(t) dt} \geq \frac{F(t_0) + \lambda \int_{t_0}^x f(\lambda t) dt}{F(t_0) + \int_1^x f(t) dt} > \frac{F(t_0) + \lambda A \int_{t_0}^x f(t) dt}{F(t_0) + \int_1^x f(t) dt} > A,$$

since $f(t) \to \infty$ $(t \to \infty)$. Since A can be arbitrary large, we conclude that $F(x) \in R_\infty$. But $F(x)$ is also monotone increasing, hence $[1, p. 85] F \in KR_\infty$. □

Lemma 2. If $g \in MR_\infty$, then $g \in \Theta$. Hence $MR_\infty \subset \Theta$.

This lemma is proved in [1, p. 104].

Proof of Proposition 2. Since $KR_\infty \subset MR_\infty(3)$, from the above lemmas we get $F(x) = \int_1^x f(t) dt \in \Theta$. Applying (1), we obtain $f \in K$. Hence $R_\infty \subset K$.

To prove strict inclusion we shall consider a function f_1 defined as: $f_1(x) := e^x$ except at the points $x = 2^n$, $n \in N$ where we put $f_1(2^n) := 2^n$. Then, clearly $\int_1^x f_1(t) dt \in \Theta$; hence by (1), $f_1 \in K$. Yet

$$\lim_{x \to \infty} \frac{f_1(2x)}{f_1(x)} = 2,$$

hence $f_1 \notin R_\infty$. □
Proof of Proposition 3. From (2) and (3) follows that we have to prove that MR_∞ is a proper subclass of Σ. Applying Lemma 2 we obtain $KR_\infty \subset MR_\infty \subset \Theta$. But from Definition 5 evidently follows that if $f \in MR_\infty$ then also $f^2 \in MR_\infty \subset \Theta$. Hence, according to Definition 2, $MR_\infty \subset \Sigma$.

To prove that the class MR_∞ is a proper subclass of Σ, we shall consider the following example. Let $f(x) := e^{\log x \exp (\log^2 x)}$, $x \geq 1$ except on intervals of the form $[\exp (n - 1/n), \exp n]$, $n \in \mathbb{N}$, where we put $f(x) := e^{\log x \exp (\log^2 x)/\sqrt{n}}$.

We have to prove that $f \in \Sigma$, i.e., $f^2 \in \Theta$. In order to make calculations simpler, let us change the scale: $x \to \exp x$. In terms of $h(x) := f(e^x)$, we obtain

$$\hat{f}^2(x) = \frac{f^2(x)}{\int_0^x f^2(t)/h(t) \, dt} = \frac{h^2(x)}{\int_0^x h^2(t) \, dt}.$$

Then for $x > 0$,

$$\int_0^x h^2(t) \, dt < \int_0^x te^{2x^2} \, dt < e^{2x^2}.$$

Hence for $x \notin \bigcup_{n=1}^{\infty} (n - 1/n, n]$,

$$\hat{f}^2(x) = \frac{h^2(x)}{\int_0^x h^2(t) \, dt} > \frac{xe^{2x^2}}{e^{2x^2}} \to \infty \quad (x \to \infty).$$

If $x \in (n - 1/n, n]$ we obtain

$$\int_0^x h^2(t) \, dt = \int_0^{n-1/n} h^2(t) \, dt + \int_{n-1/n}^x h^2(t) \, dt < \exp(2(n - 1/n)^2) + \frac{e^{2x^2}}{\sqrt{n}}.$$

Hence

$$\hat{f}^2(x) > \frac{xe^{2x^2}/\sqrt{n}}{\exp(2(n - 1/n)^2) + e^{2x^2}/\sqrt{n}} = \frac{x}{1 + \sqrt{n} \exp(2(n - 1/n)^2 - 2x^2)}$$

$$> \frac{n - 1/n}{\sqrt{n} + 1} \to \infty \quad (x \to \infty).$$

Therefore we proved that $f^2 \in \Theta$. By Definition 2 this means that $f \in \Sigma$. Yet

$$\inf_{t \geq 0} \frac{h(n - 1/n + t)}{h(n - 1/n)} = \frac{1}{\sqrt{n}}$$

Hence

$$\liminf_{x \to \infty} \frac{f(\lambda x)}{f(x)} = 0,$$

i.e., by Definition 5(i), $f \notin MR_\infty$. This yields the strict inclusion $MR_\infty \subset \Sigma$. Therefore Proposition 3 is proved.

Remark 1. From Definition 3, it follows that if a function f is in the class K, it is still in K if changed in a denumerable number of points.
This remark is e.g., useful if one wants to verify that $\Theta \neq K$. Suppose $f_1 \in K$ is arbitrary. Define $f_0(n) = \int_1^n f_1(s)s^{-1}ds$ for $n = 1, 2, \ldots$ and $f_0 = f_1$ elsewhere. Then $f_0 \notin K, f_0 \notin \Theta$.

A similar remark applies to the proof of Proposition 2. The definition of $f_1 := e^x$ is irrelevant. Take $f_1 \in K$ arbitrary. Then define $f_0(2^n) = 2^n$ for $n \in N$ and $f_0 = f_1$ elsewhere. Then $f_0 \notin R_\infty$ and $F_0 \in K$.

Since there is no representation (except for KR_∞) of rapidly varying functions, any information about it is welcomed. We can provide here such a one.

Corollary 1. If $f \in R_\infty$, then

$$\int_1^x f(t)dt = \exp \left(y(x) + z(x) + \int_1^x \frac{u(t)}{t}dt \right),$$

where $y(x)$ is non-decreasing and $z(x) \to 0$, $u(x) \to \infty$ ($x \to \infty$).

This result is a combination of Lemma 1 and well-known representation for the class KR_∞ [1, p. 86].

References
