ON THE OPERATOR EQUATIONS

$ABA = A^2$ AND $BAB = B^2$

Christoph Schmoeger

Communicated by Stevan Pilipović

Abstract. We generalize a result of I. Vidav concerning the operator equations $ABA = A^2$ and $BAB = B^2$.

1. Introduction

In [7] I. Vidav proved the following result:

Theorem 1.1. Let H be a complex Hilbert space and let A and B be bounded linear operators on H. Then the following assertions are equivalent:

(a) There is a uniquely determined bounded linear operator P on H such that $P^2 = P$ and $A = PP^*$ and $B = P^*P$.

(b) A and B are selfadjoint and satisfy the relations $ABA = A^2$ and $BAB = B^2$.

Vidav gave two proofs of Theorem 1.1; the first proof is geometrical and the second one is algebraic. In [6] Rakočević gave another proof of Theorem 1.1.

The aim of this paper is to prove a result, which implies Theorem 1.1. Section 2 deals with Drazin invertible elements of rings. In Section 3 we consider bounded linear operators on Banach spaces. Operators on Hilbert spaces are considered in Section 4, where we will give a proof of Theorem 1.1. In the final section we investigate several special classes of operators.

2. Drazin inverses in rings

In this section \mathcal{R} denotes an associative ring. An element $A \in \mathcal{R}$ is said to be Drazin invertible if there exists $C \in \mathcal{R}$ such that

1. $A^m = A^{m+1}C$ for some integer $m \geq 0$,
2. $C = AC^2$,
3. $AC = CA$.

2000 Mathematics Subject Classification: Primary 47A05.
Key words and phrases: selfadjoint operator, Drazin inverse.
In this case \(C \) is called a **Drazin inverse** of \(A \) and the smallest integer \(m \geq 0 \) in (1) is called the **index** \(i(A) \) of \(A \).

If \(R \) has a neutral element \(I \) and if we define \(A^0 = I \), then (1), (2) and (3) hold with \(m = 0 \) if and only if \(A \) is invertible.

Proposition 2.1. If \(A \in R \) is Drazin invertible, then \(A \) has a unique Drazin inverse.

Proof. \[4\].

Our main result in this section is:

Theorem 2.2. (a) If \(P, Q \in R \), \(P^2 = P, Q^2 = Q, A = PQ \) and \(B =QP \), then (1), (2) and (3) hold with \(m = 0 \) if and only if \(A \) is invertible.

Proof. (a) We have \(ABA = P Q^2 P^2 Q = (PQ)^2 = A^2 \) and \(BAB = Q P^2 Q^2 P = (QP)^2 = B^2 \).

(b) Since \(i(A) = i(B) = 1 \), there are \(C, D \in R \) with

\[
AC = A, \quad CAC = C, \quad AC = CA \\
BDB = B, \quad DBD = D, \quad BD = DB.
\]

Let \(P := CAB, Q := BAC \) and \(R := DBA \). Then

\[
P^2 = CABCA = C(ABA)CB = CA^2 CB = ACACB = ACB = CAB = P \\
R^2 = DBADBA = D(BAB)DA = DB^2 DA = BDBDA = BDA = DBA = R \\
Q^2 = BACBAC = BC(ABA)C = BCA^2 C = BCACA = BCA = BAC = Q.
\]

Furthermore we have

\[
PQ = CABBAC = CAB^2 AC = CA(BAB)AC = C(ABA)BAC \\
= CA^2 BAC = ACABAC = ABAC = A^2 C = ACA = A, \\
RP = DB(ACA)B = DBAB = DB^2 = DBD = B.
\]

It follows that

\[
QP = BACCB = B(ACA)CB = BACB = BCAB \\
= BP = (RP)P = RP^2 = RP = B. \]

3. Bounded linear operators

In this section \(X \) denotes a complex Banach space and \(L(X) \) the Banach algebra of all bounded linear operators on \(X \). If \(A \in L(X) \), then \(\sigma(A) \), \(\rho(A) \) and \(r(A) \) denote the spectrum, the resolvent set and the spectral radius of \(A \), respectively. We write \(N(A) \) for the kernel of \(A \) and \(A(X) \) for the range of \(A \). Define \(p(A) \) [resp. \(q(A) \)], the **ascent** [resp. the **descent**] of \(A \), to be the smallest integer \(n \geq 0 \) such that \(N(A^{n+1}) = N(A^n) \) [resp. \(A^{n+1}(X) = A^n(X) \)] or \(\infty \) if no such \(n \) exists. It follows
from [5, Satz 72.3] that if \(p(A) \) and \(q(A) \) are both finite, then they are equal and, if \(p = p(A) = q(A) < \infty \), then \(X = N(Ap) \oplus Ap(X) \).

A Drazin invertible operator \(A \in \mathcal{L}(X) \) with \(i(A) \leq 1 \) is called simply polar.

The following proposition tells us exactly which operators are Drazin invertible.

Proposition 3.1. For \(A \in \mathcal{L}(X) \) and \(n \geq 1 \) the following assertions are equivalent:

(a) \(A \) is Drazin invertible and \(i(A) = n \).

(b) \(p(A) = q(A) = 1 \).

(c) \(\text{The resolvent } (\lambda I - A)^{-1} \text{ has a pole of order } n \text{ at } \lambda = 0 \).

Proof. [2, Theorem 5.2], [5, Satz 101.2]. \qed

As an immediate consequence of Proposition 3.1 and Theorem 2.2 we get the main result of this section:

Theorem 3.2. Suppose that \(A, B \in \mathcal{L}(X) \), \(p(A) = q(A) = 1 \) and \(p(B) = q(B) = 1 \). Then the following assertions are equivalent:

(a) There are \(P, Q \in \mathcal{L}(X) \) such that \(P^2 = P \), \(Q^2 = Q \), \(A = PQ \) and \(B = QP \).

(b) \(ABA = A^2 \) and \(BAB = B^2 \).

We use \(\sigma_p(A) \), \(\sigma_{ap}(A) \), \(\sigma_r(A) \) and \(\sigma_c(A) \) to denote the point, approximate point, residual and continuous spectrum of \(A \in \mathcal{L}(X) \), respectively.

Corollary 3.3. Suppose that \(A, B \in \mathcal{L}(X) \), \(p(A) = q(A) = p(B) = q(B) = 1 \), \(ABA = A^2 \) and that \(BAB = B^2 \). Then:

(a) \(\sigma(A) = \sigma(B) \);

(b) \(\sigma_p(A) = \sigma_p(B) \);

(c) \(\sigma_{ap}(A) = \sigma_{ap}(B) \);

(d) \(\sigma_r(A) = \sigma_r(B) \);

(e) \(\sigma_c(A) = \sigma_c(B) \).

Proof. Recall that \(\sigma_p(A) \), \(\sigma_r(A) \) and \(\sigma_c(A) \) are pairwise disjoint and that their union is \(\sigma(A) \). Thus (a) follows from (b), (d) and (e).

(b) Since \(p(A) = p(B) > 0 \), \(0 \in \sigma_p(A) \) and \(0 \in \sigma_p(B) \). From [1, Theorem 3] and Theorem 3.2 we get

\[
\sigma_p(A) \setminus \{0\} = \sigma_p(PQ) \setminus \{0\} = \sigma_p(QP) \setminus \{0\} = \sigma_p(B) \setminus \{0\}
\]

hence \(\sigma_p(A) = \sigma_p(B) \).

(c) Because of \(\sigma_p(A) \subseteq \sigma_{ap}(A) \) and \(\sigma_p(B) \subseteq \sigma_{ap}(B) \), it follows that \(0 \in \sigma_{ap}(A) \) and \(0 \in \sigma_{ap}(B) \). As in the proof of (b) we see with Theorem 3 in [1] that \(\sigma_{ap}(A) = \sigma_{ap}(B) \).

(d) Since \(0 \in \sigma_p(A) \) and \(0 \in \sigma_p(B) \), \(0 \notin \sigma_r(A) \) and \(0 \notin \sigma_r(B) \). Proceed as in the proof of (b), to obtain \(\sigma_r(A) = \sigma_r(B) \).

(e) Similar. \qed

An operator \(A \in \mathcal{L}(X) \) is called a Fredholm operator if \(\dim N(A) < \infty \) and \(\text{codim } A(X) < \infty \). In this case we set \(\text{ind}(A) = \dim N(A) - \text{codim } A(X) \).
By \(\mathcal{F}(X) \) we denote the ideal of all finite dimensional operators in \(\mathcal{L}(X) \). Let \(\tilde{\mathcal{L}} \) denote the quotient algebra \(\mathcal{L}(X)/\mathcal{F}(X) \) and write \(\tilde{A} \) for the coset \(A + \mathcal{F}(X) \) of \(A \in \mathcal{L}(X) \) in \(\tilde{\mathcal{L}} \). From [5, Satz 81.1] we have

\[A \text{ is a Fredholm operator } \iff \tilde{A} \text{ is invertible in } \tilde{\mathcal{L}}. \]

Corollary 3.4. Let \(A \) and \(B \) as in Corollary 3.3 and \(\lambda \in \mathbb{C} \). Then:

\[\lambda I - A \text{ is a Fredholm operator } \iff \lambda I - B \text{ is a Fredholm operator}. \]

Proof. We first consider the case \(\lambda = 0 \). Let \(A \) be a Fredholm operator, thus \(\tilde{A} \) is invertible in \(\tilde{\mathcal{L}} \). From \(\tilde{A} \tilde{B} \tilde{A} = \tilde{A}^2 \) we obtain \(\tilde{B} = \tilde{I} \), hence \(B \) is a Fredholm operator. Since \(\tilde{B} \tilde{A} \tilde{B} = \tilde{B}^2 \), it follows that \(\tilde{A} = \tilde{I} \). Hence there are \(F_1, F_2 \in \mathcal{F}(X) \) such that \(A = I + F_1 \) and \(B = I + F_2 \). By [5, Satz 81.3],

\[\text{ind}(A) = \text{ind}(I + F_1) = \text{ind}(I) = 0 = \text{ind}(I + F_2) = \text{ind}(B). \]

Now assume that \(\lambda \neq 0 \). Our statements follow directly from [1, Theorem 6] and Theorem 3.2. \(\square \)

4. Operators on Hilbert spaces

In this section we will give a proof of Theorem 1.1. \(H \) denotes a complex Hilbert space. If \(A \in \mathcal{L}(H) \) we write \(\text{iso} \sigma(A) \) for the set of all isolated points of \(\sigma(A) \).

Proposition 4.1. Let \(A \in \mathcal{L}(H) \) be normal and \(0 \in \text{iso} \sigma(A) \).

(a) \(0 \) is simple pole of the resolvent \((\lambda I - A)^{-1} \).
(b) \(p(A) = q(A) = 1 \).
(c) \(A \) is Drazin invertible and \(i(A) = 1 \).

Proof. (a) follows from [5, Satz 112.2], (b) and (c) follow from Proposition 3.1. \(\square \)

Theorem 4.2. Let \(A, B \in \mathcal{L}(H) \) be selfadjoint, \(ABA = A^2 \) and \(BAB = B^2 \).

(a) \(0 \in \rho(A) \) or \(0 \) is a simple pole of \((\lambda I - A)^{-1} \).
(b) \(\sigma(A) \subseteq \{0\} \cup [1, \infty) \) (hence \(A \geq 0 \)).
(c) \(A \) is Drazin invertible and \(i(A) \leq 1 \).
(d) If \(C \) is the Drazin inverse of \(A \), then \(C = C^* \) and \(0 \leq C \leq I \).
(e) If \(A \neq 0 \), then \(\|A\| \geq 1 \).
(f) If \(\|A\| = 1 \), then \(A^2 = A = B \).

Proof. (a) and (b): From

\[
A(B - I)^2 A = A(B^2 - 2B + I)A = AB^2 A - 2ABA + A^2 = A^2 BA - A^2 = A^3 - A^2
\]

it follows that \(A^3 - A^2 = (A(B - I))(A(B - I))^* \geq 0 \), therefore \(\sigma(A^3 - A^2) \subseteq [0, \infty) \).

Now take \(\lambda \in \sigma(A) \setminus \{0\} \). The spectral mapping theorem gives \(\lambda^2(\lambda - 1) = \lambda^3 - \lambda^2 \geq 0 \),
Theorem 2.2 (a) shows that (a) implies (b). Now let

\[\lambda \geq 1. \]

This shows (b) and \(0 \in \text{iso}\, \sigma(A) \) or \(0 \in \rho(A) \). Now use Proposition 4.1 to derive (a).

(c) follows from (a), (b) and Proposition 4.1.

(d) Because of \(AC = A, CAC = C \) and \(AC = CA \) it follows that \(AC^* A = A \), \(C^* AC^* = C^* A \) and \(AC^* = C^* A \), hence \(C^* \) is a Drazin inverse of \(A \). By Proposition 2.1, \(C = C^* \). If \(0 \in \rho(A) \), then \(A = I \), thus \(C = I \), hence \(\|C\| = 1 \). Now let \(0 \in \sigma(A) \). In [2, page 53] it is shown that \(r(C)^{-1} = \text{dist}(0, \sigma(A) \smallsetminus \{0\}) \).

Now we see from (b) that \(r(C)^{-1} \geq 1 \), hence, since \(C = C^* \), \(\|C\| = r(C) \leq 1 \). We denote the inner product on \(H \) by \(\langle \cdot, \cdot \rangle \). Take \(x \in H \) and let \(y = Cx \). Then

\[\langle Cx, x \rangle = \langle CACx, x \rangle = \langle ACx, Cx \rangle = \langle Ay, y \rangle \geq 0, \]

since \(A \geq 0 \). Thus \(C \geq 0 \). From \(\|C\| \leq 1 \) we obtain \(0 \leq C \leq I \).

(e) If \(A \neq 0 \), we have \(\|A\| = r(A) \geq 1 \), by (b).

(f) If \(\|A\| = 1 \), then \(r(A) = 1 \), thus we obtain from (b) that \(\sigma(A) \subseteq \{0, 1\} \). By the spectral mapping theorem, \(\sigma(A^2 - A) = \{0\} \), hence \(\|A^2 - A\| = r(A^2 - A) = 0 \), this gives \(A^2 = A \). Since \(\sigma(A) = \sigma(B) \) (Corollary 3.3), we see that \(\|B\| = r(B) = r(A) = \|A\| = 1 \). Hence, by the same arguments as above, \(B^2 = B \). It follows that \(ABA = A \) and \(BAB = B \), hence \(\|A\|^2 = A \|B\|^2 = B \). A projection \(A \) is Drazin if \(\|A\| = 1 \). From [8, Satz V.5.9] we derive that \(ABA = BA \). Hence \(AB = BA \). We conclude that \(A = ABA = BA^2 = BA = B^2A = BAB = B \).

Proof of Theorem 1.1. Theorem 2.2 (a) shows that (a) implies (b). Now suppose that (b) is valid. If \(0 \in \rho(A) \), then \(A = B = I \) and we are done. Therefore we can assume that \(0 \in \sigma(A) \) and \(0 \in \sigma(B) \). By Theorem 4.2, \(A \) and \(B \) are Drazin invertible and \(\sigma(A) = \sigma(B) \). Let \(P \) and \(Q \) as in the proof of Theorem 2.2 (b).

Hence \(P = CAB, Q = BAC, PQ = A, QP = B \) and \(C \) is the Drazin inverse of \(A \). From Theorem 4.2 we get \(C = C^* \), thus \(P^* = BAC = Q \).

It remains to show that \(P \) is uniquely determined. Suppose that \(R^2 = R, PP^* = RR^* \) and \(P^*P = R^*R \). Then \(P^*P(I-R) = R^*R(I-R) = R^*R - R^*R = 0 \), thus \(P(I-R)x \subseteq N(P)+ = P(x)^\perp \), hence \(P(I-R) = 0 \). Therefore we have \(PR = P \). A similar argument gives \(R^*P^* = R^* \). Taking adjoints we obtain \(R = PR = P \).

Proof of Theorem 1.1.

5. Examples and remarks

In this section we give some examples of operators \(A \) which are Drazin invertible with \(i(A) = 1 \). \(X \) always denotes a complex Banach space.

An operator \(A \in \mathcal{L}(X) \) is called hermitian if \(\|\exp(itA)\| = 1 \) for all \(t \in \mathbb{R} \).

Example 5.1. If \(A \in \mathcal{L}(X) \) is hermitian and if \(0 \in \text{iso}\, \sigma(A) \), then \(A \) is Drazin invertible and \(i(A) = 1 \).

Proof. Let \(P_0 \) be the spectral projection associated with \{0\}. Let \(M_0 = P_0(X) \) and \(A_0 = A|_{M_0} \). By [5, Satz 100.1] we have \(A(M_0) \subseteq M_0 \) and \(\sigma(A_0) = \{0\} \). Since \(A_0 \) is hermitian operator on \(M_0 \) [3, Proposition 4.12], we have \(\|A_0\| = r(A_0) = 0 \) [3, Theorem 4.10]. It follows that \(AP_0 = 0 \). Now [5, (101.9)] shows that 0 is a simple pole of \((\lambda I - A)^{-1} \). Proposition 3.1 completes the proof.
An operator $A \in \mathcal{L}(X)$ is said to be \textit{paranormal} if $\|Ax\|^2 \leq \|A^2x\| \|x\|$ for all $x \in X$.

Example 5.2. If $A \in \mathcal{L}(X)$ is paranormal and if $0 \in \sigma(A)$, then A is Drazin invertible and $i(A) = 1$.

Proof. Let P_0, M_0 and A_0 as in the proof of 5.1. From [5, page 500] we get $\|A_0\| = r(A_0) = 0$. Now proceed as in the proof of 5.1. □

A bounded linear operator A on a Hilbert space H is called \textit{hyponormal} if $\|A^*x\| \leq \|Ax\|$ for all $x \in H$. Since hyponormal operators are paranormal, we have by Example 5.2:

Example 5.3. If $A \in \mathcal{L}(H)$ is hyponormal and if $0 \in \sigma(A)$, then A is Drazin invertible and $i(A) = 1$.

Remark 5.4. If $A, B \in \mathcal{L}(X)$, $ABA = A^2$, $BAB = B^2$, $AB = BA$, $p(A) \leq 1$ and $p(B) \leq 1$, then $A^2 = A = B$.

Proof. From $A^2 = A^2B = ABA = AB^2 = B^2$ it follows that $A^3 = AB^2 = A^2$, thus $A^2(A - I) = 0$. Since $p(A) \leq 1$, we get $A(A - I) = 0$, hence $A^2 = A$. In the same way we derive $B^2 = B$. Consequently

Remark 5.5. Suppose that $A, B \in \mathcal{L}(X)$ are paranormal, $ABA = A^2$, $BAB = B^2$ and $AB = BA$; then $A^2 = A = B$.

Proof. Since $\|Ax\|^2 \leq \|A^2x\| \|x\|$ for $x \in X$, it follows that $p(A) \leq 1$. Similarly $p(B) \leq 1$. Now use 5.4. □

Remark 5.6. Suppose that H is a complex Hilbert space, $A, B \in \mathcal{L}(H)$ are normal, $ABA = A^2$, $BAB = B^2$ and $AB = BA$. Then A is selfadjoint and $A^2 = A = B$.

Proof. Since normal operators are paranormal, it follows from 5.5 that A and B are normal projections, hence they are selfadjoint. □

Remark 5.7. If $A \in \mathcal{L}(X)$ is hermitian, then $p(A) \leq 1$.

Proof. Let $x \in N(A^2)$ and $\|x\| = 1$. Then for $t \in \mathbb{R}$,

$1 = \|x\| = \|\exp(-itA)\exp(itA)x\| \leq \|\exp(-itA)\| \|\exp(itA)x\|$

$= \|\exp(itA)x\| \leq \|\exp(itA)\| \|x\| = \|x\| = 1,$

thus, since $A^n x = 0$ for $n \geq 2$,

$1 = \|\exp(itA)x\| = \|x + itAx\|.$

Therefore $|t| \|Ax\| - 1 \leq 1$ for all $t \in \mathbb{R}$. This gives $x \in N(A)$. □

Remark 5.8. Suppose that $A, B \in \mathcal{L}(X)$ are hermitian, $ABA = A^2$, $BAB = B^2$ and that $AB = BA$; then $A^2 = A = B$.

Proof. 5.7 and 5.4. □
ON THE OPERATOR EQUATIONS $ABA = A^2$ AND $BAB = B^2$

References

Mathematisches Institut I (Received 16 08 2005)
Universität Karlsruhe (TH)
Englerstraße 2
76128 Karlsruhe
Germany
christoph.schmoeger@math.uni-karlsruhe.de