Igor M. Jajić, Saša Z. Krstović, Biljana Č. Perišić, Sandra M. Jakšić, Vojislava P. Bursić, Radivoje M. Jevtić, Biljana F. Abramović

1 University of Novi Sad, Faculty of Agriculture, Department of Animal Science, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
2 Scientific Veterinary Institute, Rumenački put 20, 21000 Novi Sad, Serbia
3 University of Novi Sad, Faculty of Agriculture, Department of Environmental and Plant Protection, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
4 Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia
5 University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia

PRESENCE OF ZEARALENONE IN THE MOST COMMONLY GROWN WHEAT CULTIVARS IN SERBIA

ABSTRACT: A total of 45 samples of wheat from three different locations in Vojvodina were analyzed for the presence of zearalenone. Analytical methods based on clean-up by solid-phase extraction (SPE) columns and detection by liquid chromatography were used after validation. Limit of detection for ZEA in wheat was 18.6 µg/kg and the limit of quantification was 56.5 µg/kg. Recovery values ranged between 86% and 97%. The occurrence of ZEA in wheat was rather high with 53.3% of positive samples with the average value of 330 µg/kg. Incidences were found from 68 µg/kg to 1079 µg/kg. Contamination levels were above the established maximum limit for unprocessed cereals, other than maize, in as many as seventeen samples. These results were compared to the results of investigation of deoxynivalenol and fumonisin content, established in our previous work on the same samples. The results obtained were also compared to those of the neighboring countries where the relevant data existed and to the data of previous studies in our country.

KEY WORDS: HPLC, wheat, zearalenone

INTRODUCTION

Fusarium molds appear as the most common contaminants of grains in the mild climatic zone. As a result, mycotoxins are often found in such substrates in larger or smaller concentrations, depending on storage and microclimatic conditions (Klarić, 2008). The main groups of Fusarium toxins commonly found in grains are trichothecenes (including deoxynivalenol, nivalenol, T-2
Fusarium, Penicillium and Aspergillus genera are the most frequently isolated fungi contaminating cereals, feedstuffs, vegetables and fruit in Serbia (Levine et al., 2004). Fungi from the *Fusarium* genera are especially present, and with them *Fusarium* mycotoxins, first of all zearalenone, which presence is mainly associated with *F. graminearum* and it is the highest in years with abundant precipitation and lower temperatures at the end of summer and the beginning of autumn (Levine et al., 2004).

In Serbia, grain production, especially wheat and maize, represents an important economic factor considering the fact that our country is mostly agricultural. Out of 3.099.000 ha of area sown with major crops, 493.000 ha was sown with wheat in 2010 (Statistical Office of the Republic of Serbia, 2012). In our country, main crops are wheat, barley and maize which are particularly important as food, feed and raw materials for breweries and distilleries. Grain-based products represent the main part of human diet and infants, in particular. Babies and young children are exposed to higher doses of toxins per body weight unit compared to adults because of their proportionally higher consumption of cereals. This poses concern for consumer health and requires continuous control of foodstuffs and foods for chemical and biological contaminants.

The Commission of the European Communities (Commission Regulation 1126/2007) established the following tolerance values for ZEA in cereals and cereal-based products: unprocessed cereals other than maize (100 µg/kg), unprocessed maize with the exception of unprocessed maize intended to be processed by wet milling (350 µg/kg), cereals intended for direct human consumption, cereal flour, bran and germ as end products marketed for direct human consumption (75 µg/kg), refined maize oil (400 µg/kg), bread (including small bakery commodities), pastries, biscuits, cereal snacks and breakfast cereals, excluding maize-snacks and maize-based breakfast cereal (50 µg/kg), maize intended for direct human consumption, maize-based snacks and maize-based breakfast cereals (100 µg/kg), processed cereal-based foods (excluding processed maize-based foods) and baby foods for infants and young children (20 µg/kg) and processed maize-based foods for infants and young children (20 µg/kg). With respect to the aforementioned cereals and their products, Serbian regulation (Službeni glasnik, 2011) established the same tolerance levels as Commission Regulation did, and for feed (Službeni glasnik, 2010) the following tolerance levels were set: in complete and supplementary mixtures for piglets, young mails and gilts is 500 µg/kg, in complete and supplementary mixtures for other categories of pigs is 1000 µg/kg while in complete and supplementary mixtures for cattle, sheep and goats is 3000 µg/kg.

In Serbia, available data for the distribution of *Fusarium* mycotoxins in cereal production are still limited. There is no national data base established for the collection of this kind of data in order to use them for prediction and prognosis of annual mycotoxin risk exposure of the local population.
Considering the aforementioned facts, the primary aim of this study was to gain an insight into ZEA presence in Serbia on the basis of analysis of 45 wheat samples from the 2010 harvest and to compare the results of investigation of deoxynivalenol and fumonisin content, established in our previous work on the same samples. The samples were taken directly from the fields immediately after the harvest before entering further the food chain. The levels of ZEA were determined after SPE clean-up by liquid chromatography with DAD, allowing detection limits in the ppb (18.6 µg/kg) range.

MATERIALS AND METHODS

2.1. Materials

Acetonitrile and methanol (both HPLC grade) were purchased from Sigma (St. Louis, MO, USA). Water (HiPerSolvChromanorm, HPLC grade) was purchased from Sigma (St. Louis, MO, USA). Zearalenone mycotoxin was purchased from Sigma-Aldrich (Sigma, St. Louis, MO, USA). MycoSep® 224 (AfIaZon) clean-up columns were obtained from Romer (Romer Labs. Inc., Union, MO, USA) and paper filter (Whatman No. 4) was obtained from Whatman (Maidstone, UK).

Samples

A total of 45 samples of wheat, from three different locations in Vojvodina, were analyzed for the presence of zearalenone. They were collected from the most important agricultural area in the country – Vojvodina, with 3 different regions: north-western (Bačka), north-eastern (Banat) and south-western region (Srem). The samples of wheat represent the most common cultivars grown in Vojvodina.

Due to the irregular mycotoxin distribution among the crops and kernels, a proper sampling was ensured according to EU requirements (Commission Regulation 401/2006). Manual sampling was performed by trained inspectors with grain probes which are authorized for official control of contaminants. Depending on the weight of bulk lot, from 3 to 100 incremental samples of 100 g or more, were taken randomly and combined into a representative sample of 1–10 kg weight. Each sample was transported to the laboratory immediately and was stored at low temperature in a dark place. All samples were milled on a laboratory mill and a portion was taken for the analysis of contaminants.

Extraction and clean-up

Twenty-five grams of ground sample were extracted with 100 ml acetonitrile:water (84:16, v/v) by high speed blending for 3 min. The extract
was filtered through paper filter, acidified with 50 µl acetic acid and 2 ml was cleaned-up by Mycosep® 224 (AflaZon) columns. The cleaned-up extract was evaporated to dryness.

Liquid chromatographic analysis

The equipment consisted of an Agilent 1260 Infinity Liquid Chromatography system, equipped with a µ-Degasser (G1379B), 1260 binary pump (G1312B), 1260 standard autosampler (G1329B), 1260 thermostated column compartment (G1316A), 1260 diode array and multiple wavelength detector (G1315C), and a column Hypersil ODS (100 x 4.6 mm i.d., particle size 5 µm, Agilent Technologies, USA).

After evaporation, the residue was redissolved in 400 µl methanol, and a 15 µl aliquot of the solution was injected into the LC system. A mobile phase consisting of a mixture of methanol–water (70:30, v/v) was used at 0.5 ml/min with UV detection at 236 nm. The mobile phase was filtered through a 0.45 µm pore size cellulose filter membrane (Agilent Technologies, USA).

RESULTS AND DISCUSSION

Validation parameters of method for ZEA determination were estimated using the recovery tests of samples of the studied wheat matrix. The accuracy of the method was determined with the recovery of fortified blank grain samples at three levels with three replicates for each level and three injections for each replicate (nine injections per level). Recoveries obtained for wheat were in the range 86 – 98%. These recoveries comply with the requirements of European Commission concerning analytical methods development (Commission Regulation 657/2002).

The limit of detection (LOD) and the limit of quantification (LOQ) are determined on the basis of standard deviation of the response and the slope of the linearity plot (Reason, 2003). The LOD was calculated as $3.3\alpha/b$ and LOQ as $10\alpha/b$, where α was the standard deviation of the response about the line of the best fit and b was the slope of the calibration curve. Detection limit (LOD) for wheat was below 18.6 µg/kg while limit of quantification (LOQ) was close to 56.5 µg/kg. The obtained results showed that the proposed analytical method fitted well for the purpose of control of ZEA in grain samples.

Zearalenone content was determined in fifteen cultivars of winter wheat which have been the most commonly grown cultivars in Serbia since 1955. The occurrence of ZEA in these samples originated from the trial fields of the Institute of Field and Vegetable Crops and it is summarized in Table 1. Banatka is a native population, San Pastore and Libellula are Italian cultivars, Zlatna Dolina is a Croatian cultivar. Serbian cultivars used in the study were created at the Institute of Field and Vegetable Crops, Novi Sad (Sava, Novosadska rana 2, Balkan, Lasta). All the mentioned cultivars are presently grown
in Serbia. Serbian cultivars that are most widespread and encompassed by this study are Novosadska rana 5, Renesansa, Pesma, Cipovka, Dragana, Šimonida, and Zvezdana. Grain samples were obtained from 15 winter wheat cultivars grown in 2010 at the following Serbian locations: Novi Sad (Bačka), Sremska Mitrovica (Srem) and Pančevo (Banat). The locations are characterized by semiarid conditions, with dry, hot spring and summer, neutral autumn and moderately cold winter. At each location, the plots were rotated with soybean. Positive samples were contaminated with ZEA at levels from 68 – 1079 µg/kg. According to the data in Table 1, more than half of the analyzed wheat samples were ZEA-contaminated at mean level of 330 µg/kg. The contamination levels in as many as seventeen samples were above the maximum limit of 100 µg/kg, a level set in Europe (Commission Regulation 1126/2007). Contamination was found in samples with visually healthy (asymptomatic) kernels.

The incidence and level of contamination of studied cereal samples with ZEA did not show comparable levels as it was reported for previous harvest years in the country. The frequency of contamination seems to be highly dependent of weather conditions. The analysis of wheat samples for human consumption in 1995 (P a r r y et al., 1995) showed a widespread contamination (70% incidence) with low to medium levels of ZEA (V r a b c h e v a, 1996;
As regards the occurrence of ZEA in wheat in neighboring countries, Vrabcheva (1996) reported 69% of positive samples in Bulgarian wheat, while Mađenova and Manova (2009) obtained quite lower number of positive wheat samples (1.9%). In Romanian wheat, during the period from 2008-2010, ZEA occurred in 10% of wheat samples (Gălănuc et al., 2011). Škrbić et al. (2011) found no ZEA in wheat samples collected during the harvest of 2007.

In our previous study on the same samples, the contents of deoxynivalenol (DON) and fumonisins (FUMs) were determined (Jakšić et al., 2012). We compared these results to those obtained for ZEA, in terms of better estimation of mycotoxin contamination (Table 2). As it can be seen, the number of contaminated samples was quite similar for all toxins found in the samples from Banat region, while the number of fumonisin contaminated samples from Bačka and Srem regions was lower than in the other two. The highest number of positive samples was established in Srem region where the highest concentration of all three toxins was obtained. Also, it can be said that the distribution of DON and ZEA contamination is well correlated unlike the distribution of fumonisin contamination.

Tab. 2. – Comparison of occurrence of deoxynivalenol, fumonisins and zearalenone in crops in Serbia from the 2010 harvest

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Location/content µg/kg</th>
<th>Location/content µg/kg</th>
<th>Location/content µg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Banat (Banat)</td>
<td>Novi Sad (Bačka)</td>
<td>Sremska Mitrovica (Srem)</td>
</tr>
<tr>
<td>FUMs</td>
<td>DON</td>
<td>ZEA</td>
<td>FUMs</td>
</tr>
<tr>
<td>Banatka</td>
<td>ND</td>
<td>229</td>
<td>92</td>
</tr>
<tr>
<td>San Pastore</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Libellula</td>
<td>81</td>
<td>312</td>
<td>214</td>
</tr>
<tr>
<td>Zlatna Dolina</td>
<td>ND</td>
<td>ND</td>
<td>38</td>
</tr>
<tr>
<td>Sava</td>
<td>427</td>
<td>104</td>
<td>73</td>
</tr>
<tr>
<td>Novosadska rana 2</td>
<td>ND</td>
<td>132</td>
<td>68</td>
</tr>
<tr>
<td>Balkan</td>
<td>419</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Lasta</td>
<td>ND</td>
<td>288</td>
<td>181</td>
</tr>
<tr>
<td>Novosadska rana 5</td>
<td>68</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Renesansa</td>
<td>351</td>
<td>196</td>
<td>241</td>
</tr>
<tr>
<td>Pesma</td>
<td>72</td>
<td>292</td>
<td>88</td>
</tr>
<tr>
<td>Cipovka</td>
<td>401</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Dragana</td>
<td>36</td>
<td>232</td>
<td>71</td>
</tr>
<tr>
<td>Simonida</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Zvezdana</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>No. of positive</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>samples (%)</td>
<td>(53.3)</td>
<td>(53.3)</td>
<td>(53.3)</td>
</tr>
<tr>
<td>Average (mg/kg)</td>
<td>232</td>
<td>223</td>
<td>129</td>
</tr>
<tr>
<td>Range (mg/kg)</td>
<td>36-427</td>
<td>104-312</td>
<td>68-241</td>
</tr>
<tr>
<td>Median (mg/kg)</td>
<td>216</td>
<td>230</td>
<td>90</td>
</tr>
</tbody>
</table>
The obtained results for wheat harvested in 2010 confirmed that this crop should be continuously controlled in order to protect the population against unallowable risk of mycotoxin contamination. The results of the present study are particularly important for the wheat production which should be regarded as a potential source of *Fusarium* mycotoxins. This requires increased control measures for agricultural production starting from the field, before foodstuffs enter the manufacturing process and food chain.

CONCLUSIONS

Samples of wheat grown in Serbia were tested for zearalenone, produced by common *Fusarium* species. The incidence of ZEA contamination of wheat (53.3%) was found to be quite high, especially in Srem region (93.3%). It should be noted that the average value (330µg/kg) in the examined wheat samples was very high, and in 17 out of 45 samples ZEA content exceeded the maximum tolerable level set by EU and Serbian regulations. By comparing these data to DON and FUMs content in the same samples, it can be said that ZEA distribution responds to DON distribution but not to distribution of FUMs. This study indicates the existence of a serious risk related to the occurrence of DON in the food chain in Serbia and importance of frequent monitoring of this mycotoxin. Since the new Serbian regulation for control of mycotoxins in food was adopted and harmonized with EU regulations in April 2011, it is expected that more frequent control of ZEA will be conducted and that more data on its occurrence in Serbia will be available. In the future, based on the obtained results, it will be necessary to form a national database of ZEA occurrence in the food chain in Serbia.

REFERENCES

ПРИСУСТО ЗЕАРАЛЕНОНА У НАЈЧЕШЋЕ УЗГАЈАНИМ СОРТАМА ПШЕНИЦЕ У СРБИЈИ

Игор М. Јајић1, Саша З. Крстовић1, Биљана Ч. Першић1, Сандра М. Јакшић2,
Војислава П. Бурсић3, Радивоје М. Јевтић4, Биљана Ф. Абрамовић5

1 Универзитет у Новом Саду, Пољопривредни факултет, Департман за
сточарство, Трг Д. Обрадовића 8, 21000 Нови Сад, Србија
2 Научни институт за ветеринарство, Руменачки пут 20, 21000 Нови Сад, Србија
3 Универзитет у Новом Саду, Пољопривредни факултет, Департман за
фитomedицину и заштиту животне средине, Трг Д. Обрадовића 8,
21000 Нови Сад, Србија
4 Институт за ратарство и повртарство, Максима Горког 30,
21000 Нови Сад, Србија
5 Универзитет у Новом Саду, Природно-математички факултет,
Департман за хемију, биохемију и заштиту животне средине,
Трг Д. Обрадовића 3, 21000 Нови Сад, Србија

Резиме

На присуство зеараленона анализирано је укупно 45 узорака пшенице са три различите локације у Војводини. Коришћене су аналитичке методе засноване на пречишћавању екстракцијом на чврстој фази, те квантификација течном хрома-
tографијом, након валидације методе. Граница детекције за зеараленон у пшени-
ци је износила 18,6 µg/kg, а граница одређивања 56,5 µg/kg. Ефикасност методе
је била у опсегу од 86% до 97%. Зеараленон је био присутан у 53,3% испитиваних
узорака, са просечним садржајем од 330 µg/kg. Добијене вредности садржаја
зеараленона су биле у опсегу од 68 µg/kg до 1079 µg/kg. У чак седамнаест узорака
је пронађена концентрација овог токсина која превазилази максимални дозвоље-
ni sадржaj зеараленона у нетретираним житарицама. Ови резултати су упоређени
са вредностима садржаја зеараленона у нашим претходним истраживањима. Резултати
су такође упоређени са доступним резултатима добијеним у нашој и суседним земљама
tоком претходних година.

КЉУЧНЕ РЕЧИ: HPLC, пшеница, зеараленон

ACKNOWLEDGMENT

The work was financed by the Ministry of Education, Science and Technolog-
nical Development, Republic of Serbia (Project No TR31081).