Relative activities of siloxane monomers toward the cation exchange resin-catalyst in the equilibration reactions

M. N. GOVEDARICA*

ICTM, Centre of Chemistry, Department of Polymeric Materials, Njegoševa 12, YU-11000 Belgrade, Yugoslavia

(Received 17 August 2000, revised 11 April 2001)

The relative activities of a number of siloxane monomers, both cyclic and linear, toward the cation exchange resin-equilibration catalyst were determined. The determination was based on the fact that when a particular siloxane compound is added to an arbitrarily chosen equilibrate, it takes part in the equilibration process, provoking certain viscosity changes of the reaction mixture. Taking these viscosity changes as a measure of activities, the following order was obtained: hexamethylcyclotrisiloxane > hexamethyldisiloxane > octamethylcyclotetrasiloxane > one linear all-methyl oligosiloxane of number average molecular weight of approximately 800 > decamethylcyclopentasiloxane. The results obtained by using the described viscosimetric determination method were controlled by measuring the number average molecular weights of the reaction mixtures at the beginning and at the end of the equilibration process. The deviations of the experimentally measured from the calculated values were less than 20 %, as was found in one equilibration system. In most other systems the deviations were about 10 % which is a very good result which strengthens the validity of the applied determination method.

Keywords: cation exchange resin, catalyzed siloxane equilibration, activities of siloxane monomers, acidic equilibration catalyst.

INTRODUCTION

The problem of different activities of siloxane monomers toward the catalyst in equilibration processes was examined back in the early days of siloxane chemistry. More than forty years ago it was reported that in acid-catalyzed (by sulfuric acid) equilibrations the following order of activities exists: D₃>M>M₃>M₃D>M₃D₃>M₃D₄ (where: M: (CH₃)₃SiO₁/₂ and D: (CH₃)₂SiO). In the meantime new classes of acidic equilibration catalysts were introduced. Among others, cation exchange resins (CER) became very important, mostly because of their broad industrial application. Besides this, the use of CER-catalysts changes the nature of the catalytic process; instead of being homogeneous (if, for example, sulfuric acid is used) it becomes heterogeneous. For this reason it seemed to be opportune to (re)investigate the behavior of some commonly

* Serbian Chemical Society active member.
used siloxane monomers toward the acidic CER-catalysts. Finally, a new experimental approach to this problem, the principle of which was presented in a recently published article, gave an additional impetus to this investigation.

The activities of the following siloxane monomers were determined: hexamethyldicyclotrisiloxane \([(CH_3)_2SiO]_3\), (D₃), octamethyldicyclotetrasiloxane \([(CH_3)_2SiO]_4\), (D₄), decamethyldicyclopentasiloxane \([(CH_3)_2SiO]_5\), (D₅), hexamethyldisiloxane \((CH_3)_2SiOSi(CH_3)_2\), (MM), and of one linear all-methyl oligosiloxane of number average degree of polymerization \(DP_n = 8.5\), \([(CH_3)_2SiO]_{8.5}SiOSi(CH_3)_3\), (MD_{8.5}M).

Elements of the determination procedure

The determination procedure was basically identical to that described in a previous communication. In brief, a series of equilibrations of an arbitrary chosen equilibrant (named the basic equilibrant, BE) and a siloxane compound, the activity of which was to be determined, was performed keeping the molal ratio (equilibrant)/(siloxane compound) constant throughout the entire series. The inherent viscosities of these equilibrating mixtures were registered at arbitrarily selected time intervals until the equilibria were attained. Then, taking the instantaneous viscosity changes as fractions of the total change, the “fractional viscosities” were calculated:

\[
\eta_{inh} \text{ (fractional)} = \frac{\eta_{inh} \text{ (actual)} - \eta_{inh} \text{ (initial)}}{\eta_{inh} \text{ (actual)} - \eta_{inh} \text{ (final)}} \frac{\Delta \eta_{inh} \text{ (actual)}}{\Delta \eta_{inh} \text{ (total)}}
\]

where \(\eta_{inh} \text{ (initial)}\) is the viscosity of the starting reaction mixture; \(\eta_{inh} \text{ (actual)}\) is the viscosity of the equilibrating reaction mixture at a specified reaction time; \(\eta_{inh} \text{ (final)}\) is the viscosity of the equilibrate after completion of the reaction.

In the above formula, the viscosity changes \(\Delta \eta_{inh} \text{ (actual)}\) and \(\Delta \eta_{inh} \text{ (total)}\) were taken as absolute values of the corresponding differences, because these changes could be either positive or negative, depending on the nature of the reacting siloxane monomer. For example, MM would shorten the polymer chains and hence lower the viscosity, whereas D₄ would extend the chains and so increase the viscosity.

The obtained fractional viscosities as a function of reaction (equilibration) time are actually the measure of the activity of the examined siloxane compound toward the catalyst. A simple comparison made on a set of such viscosity–reaction time curves obtained for different siloxanes enables the determination of the order of the relative activities of these siloxanes toward the concrete equilibration catalyst.

EXPERIMENTAL

Materials. The monomeric siloxane compounds: D₃, D₄, D₅ and MM were purchased from ABCR GmbH + Co.KG (Germany) and used as received. The linear all-methyl oligosiloxane, MD_{8.5}M, was prepared in our laboratory. A commercial grade macrotirelasil cation exchange resin, MCER, Doulite C 26, obtained from Diamond Shamrock, USA, and having a total capacity of 1.85 eq/L, was used as the equilibration catalyst after overnight warming at 50 °C.

Equilibrations. All equilibrations, including that used for the preparation of the basic equilibrant, were carried out in a three-necked, round-bottomed flask equipped with a mechanical stirrer, reflux condenser and a thermometer. The flask was placed into a constant temperature oil bath.
The amount of MCER-catalyst was in all cases 2.2 meq/10 g of reaction mixture. The reaction temperature was held constant at 70 ºC, whereas the basic equilibrate was obtained by equilibrating at 95 ºC for 24 h. A detailed description of the equilibration procedure can be found elsewhere.5

Determination of inherent viscosities. The viscosities were determined using an Ubbelohde-type viscosimeter in toluene at 30 ºC. The concentrations of solutions amounted to approximately 0.15 g/cm³.

Determination of molecular weights. The number average molecular weights were determined on a Knauer vapor pressure osmometer at 30 ºC. The instrument was calibrated with benzen (dibenzoyl) and the samples were dissolved in methylene chloride.

RESULTS AND DISCUSSION

Relative activities. The equilibrate used in the equilibrations aimed at the determination of the relative activities (BE) was obtained by equilibrating a mixture of 99 wt% of D₄ and 1 wt% of MM, which was an arbitrary choice, as any other composition could also have been used as long as it represents a real equilibrate. The main characteristics of the chosen equilibrate were: inherent viscosity \(\eta_{inh} = 11.4 \text{ cm}³/\text{g} \), bulk viscosity \(\eta_{bulk} = 0.402 \text{ Pa s} \) and number average molecular weight \(M_n = 2613 \).

Table I lists the compositions of the starting reaction mixtures and the measured inherent viscosities after different reaction time intervals. Using these viscosity data, the fractional viscosities were calculated and the results are presented as a function of reaction time in Fig. 1.

![Graph showing the change in \(\eta_{inh} \) as a function of reaction time](image)

Fig. 1. \(\eta_{inh} \) (fractional) as a function of reaction time (siloxane compounds: D₃ – o; D₄ – •; D₅ – △; MM – ○; MD₇ – ▲; MD₇₋₈.5 M – △).

It can be seen that the activities of D₃ and MM only are clearly distinguishable; D₃ is the most active siloxane monomer followed by MM. The position of the other ex-
perimental points did not permit the construction of unambiguous and hence quite dis-
tinguishable curves. It is clear, however, that all the other examined siloxanes are less
active than the first two, i.e., D₃ and MM. Therefore, in a somewhat speculative way,
the following order of activities might be adopted: D₃ > MM > (D₄ / c₁₇₉ D₅ / c₁₀₄).

TABLE I. Starting equilibration compositions and inherent viscosities at different reaction time intervals

<table>
<thead>
<tr>
<th>Reaction times, minutes</th>
<th>Inherent viscosities*, cm³/g, at given starting compositions**, g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D₃</td>
</tr>
<tr>
<td>Initial state</td>
<td>4.50</td>
</tr>
<tr>
<td>20</td>
<td>11.87</td>
</tr>
<tr>
<td>40</td>
<td>12.37</td>
</tr>
<tr>
<td>75</td>
<td>13.02</td>
</tr>
<tr>
<td>150</td>
<td>13.59</td>
</tr>
<tr>
<td>300</td>
<td>14.00</td>
</tr>
<tr>
<td>Final state</td>
<td>14.61</td>
</tr>
<tr>
<td>[Δη₂₃(total)]</td>
<td>5.13</td>
</tr>
</tbody>
</table>

*These values are averages obtained from 4–5 individual runs, none of them differed by more than ±5% from the average value.

**In all equilibrations the amount of BE was 15 g and the concentration of CER-catalyst was 0.45 g (corresponding to 2.2 meq)/10 g of the reaction mixture.

D₃ is the most active siloxane monomer probably due to the relative instability introduced by the strain energy of its six-membered planar ring. Higher membered siloxane rings are nonplanar (and hence more or less unstrained) and the energies of their Si–O bonds, as well as of siloxane bonds in linear siloxanes, are very similar to each other. Furthermore, the effect of CH₃ electron-donating groups on the Si–O bond(s), i.e., on the basicity of the oxygen atom of the Si–O bond(s) and, in this way, on its (their) activity(ies) toward the acidic catalysts in linear siloxanes, must be much more pronounced in MM than in higher homologues. This means that, with the exceptions of D₃ and MM, the activities of all higher siloxane homologues, both cyclic and linear, should become more and more similar.

Molecular weights. The above outline and hence the results obtained by its application too, were additionally substantiated in the following way.

The base of the procedure is the equilibration reaction between BE and a particular siloxane monomer. The number average molecular weights of both the starting mixtures, as well as of these mixtures in final state can be easily experimentally determined. However, the same molecular weight values can also be calculated using the following assumptions and approximations: a) the compositions of all equilibria – regarding the (linear polymer)/(cyclics) ratio – were adopted from literature data, and they ranged, when expressed as weight fractions of cyclics in the equilibria, between approximately 4 % and 14 %, depending on the molecular weight of the linear polymer present in the equilibria; b) the average molecular weight of the cyclosiloxane mixture at equilibria...
was taken to amount to 300, as the main constituent of this mixture, D₄, has a molecular weight of 296, and c) all the final states were assumed to be real equilibria.

TABLE II. Number average molecular weights of initial and final equilibration mixtures

<table>
<thead>
<tr>
<th>Sample composition (g)</th>
<th>M_n (initial) Calc.</th>
<th>Exp.</th>
<th>M_n (final) Calc.</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE* + D₃ (15 + 4.50)</td>
<td>730</td>
<td>–</td>
<td>2415</td>
<td>2590</td>
</tr>
<tr>
<td>BE* + D₄ (15 + 6.00)</td>
<td>787</td>
<td>822</td>
<td>2437</td>
<td>2957</td>
</tr>
<tr>
<td>BE* + D₅ (15 + 7.50)</td>
<td>843</td>
<td>905</td>
<td>2454</td>
<td>2839</td>
</tr>
<tr>
<td>BE* + MM (15 + 3.28)</td>
<td>685</td>
<td>750</td>
<td>754</td>
<td>850</td>
</tr>
<tr>
<td>BE* + MDE₈ (15 + 16.00)</td>
<td>1163</td>
<td>1025</td>
<td>1027</td>
<td>909</td>
</tr>
</tbody>
</table>

*The calculated and experimentally determined number average molecular weights of BE were 2334 and 2613, respectively.

The comparison of the calculated and corresponding experimentally determined (by vapor pressure osmometry) average molecular weights, given in Table II, shows a fair agreement and supports the validity of the applied procedure used for the determination of the relative activities.

Acknowledgement: I would like to thank Mr. S. Petrović and Mr. Lj. Ivković on their technical assistance.

ИЗВОД

РЕЛАТИВНЕ АКТИВНОСТИ СИЛОКСАНСКИХ МОНОМЕРА ПРЕМА КАТЈОНСКОЈ ЈОНОИЗМЕЊИВАЧКОЈ СМОЛИ – КАТАЛИЗАТОРУ РЕАКЦИЈЕ ЕКВИЛИБРАЦИЈЕ

М. Н. ГОВЕДАРИЦА

ИХТМ, Центар за хемију, Одељење за полимерне материјале, Његошева 12, 11000 Београд

Одређене су relativne aktivnosti nekih siloksanskih monomera, kako cikličnih tako i linearnih, prema katjonskoj jonoizmjenivachkoj smoli, katalizatoru reakcije ekvilibracije. Određivanje bazira na činjenici da kada se neko siloksansko jedište dodaje proizvoljno odabranom ekvilibru, ono tada učestvuje u ekvilibraciji izazivajući određene promene viskoziteta reakcione smese. Uzimajući ove promene viskoziteta za meru aktivnosti, dobijen je sljedeći redosled: heksametilciklotrisiloksan > heksametildisiloksan > oktametilciklotetrasiloksan > jedan linearni metil supstituisani oлигосилоксан средње бројне моларне масе од око 800 > декаметилциклопентасилоксан. Резултати dobijeni primenom oписане вискозиметричне методе су проверeni tako што su određene средње бројне моларне масе реакционих смеса на početku i na kraju ekvilibracije. Odstupanje eksperimentalno određenih od izračunatih vrednosti je bilo manje od 20 %, i to samo u jednom slučaju, u većini ostalih ekvilibracionih sistema odstupanje je bilo oko 10 %, što je veoma dobav rezultat koji potvrđuje ispravnost primenjenog metoda određivanja aktivnosti.

(Примљено 17. августа 2000, реџидирало 11. априла 2001)
REFERENCES
2. C. J. Litteral, DB Patent 2152270 (1971)
7. Ref. 6., pp. 163–164