A study of periodic current oscillations of iron in nitric acid solutions

NAITAO CUI¹, SHIYONG ZHAO¹, CHAO WANG² and SHENHAO CHEN¹,2*

¹Chemistry Department, Shandong University, Jinan 250100, P. R. China, ²State Key Laboratory for Corrosion and Protection, Shenyang 110015, P. R. China and ³Chemistry Department, Xuzhou Teachers' University, Xuzhou 221009, P. R. China

(Received 4 April 2001)

The periodic current oscillations of Fe/HNO₃ are presented in this paper. The effects of HNO₃ concentration and imposed potential were investigated. The dropping method was used to change the local pH of the Fe/electrolyte interface, creating environments that favor the occurrence of current oscillations. Some interesting results were obtained and an explanation of the current oscillations is suggested.

Keywords: iron, nitric acid, current oscillations, electrodissolution.

INTRODUCTION

The periodic oscillatory behavior at the transition region from the active state to the passive state of certain metals has always been an area of research interest,¹–¹⁴ not only because of its potential importance in corrosion and protection of metals, but also because of its role in attempts to understand the oscillation phenomena occurring in interfacial processes.²–⁴ The most extensively studied electrochemical oscillator is the Fe/H₂SO₄ system. However, as the metal active dissolution-passivation is a very complicated process, the oscillation mechanism of Fe/H₂SO₄ system is still far from clear.⁵–⁸

Beck found the formation of a ferrous salt film in the prepassive potential region in the Fe/H₂SO₄ system.¹⁰ Then current oscillation phenomena were attributed to periodic changes in the salt film porosity or in the exposed area under the salt form.¹¹,¹² However, many authors believe that the formation of an oxide film is the reason of current oscillation.³,⁴,⁹,¹³ Pigeaud and Kirkpatrick thought that, before the formation of a stable passive film, precipitation of colloidal dispersed Fe(OH)₂ occurs.¹³ Wang and Chen obtained some interesting results using the holographic microphotographic technique at the interface of an Fe/0.5 M H₂SO₄ oscillatory system.³ The results support the temporal formation of Fe(OH)₂ and Fe₃O₄ during the current oscillations. They

* Author to whom correspondence should be addressed. E-mail: shchen@sdu.edu.cn.
thought that the temporal formation of Fe(OH)$_2$ and Fe$_3$O$_4$ is the cause of the current oscillations. With the dissolution of Fe, the Fe$^{2+}$ is accumulated at the interface causing a decrease of the H$^+$ concentration due to the migration of H$^+$ ions away from the vicinity of the electrode. The local increase of pH leads to a temporal precipitation of Fe(OH)$_2$ and Fe$_3$O$_4$ which block the Fe surface. The back diffusion of H$^+$ ions from the bulk to the interface causes the dissolution of the Fe(OH)$_2$ and Fe$_3$O$_4$ and a reactivation of the electrode.3,4

In this paper, some experimental results concerning electrochemical oscillation in the Fe/HNO$_3$ system are presented. The effects of HNO$_3$ concentration and imposed anode potential were investigated. Particularly, in order to investigate the electrochemical oscillation mechanism, a dropping method was used to change the local pH of the Fe/electrolyte interface, creating environments that favor the occurrence of current oscillations. Some interesting results were obtained.

\section*{EXPERIMENTAL}

The electrochemical experiments were carried out in a three-electrode system. The electrode potential was controlled by a PAR M173 potentiostat and a PAR M175 function generator. The response current was monitored by a YEW 3086 X-Y-t recorder. The working electrode, 2.5 mm in diameter, was prepared from an iron rod of 99.99 \% purity (Johnson Mathey Chemicals). The electrode was carefully sealed with epoxy resin in a glass tube, leaving only the working surface exposed to the solution. The counter electrode was a Pt sheet and a Hg/Hg$_2$SO$_4$/0.5 M H$_2$SO$_4$ electrode was used as a reference electrode, with its Luggin capillary probe located 2 mm below the working electrode. The electrolytes were prepared from analytical grade reagents and triply distilled water. The working electrode was polished with 600 and 1200 grade emery paper and washed with water, triply distilled water in an ultrasonic bath prior to each experiment. All measurements were performed at 25±2 °C.

\section*{RESULTS AND DISCUSSION}

\textit{Anodic i–E polarization curves in HNO$_3$ solutions of various concentrations}

The current-potential (i–E) polarization curve of the Fe/HNO$_3$ system are shown in Fig. 1. The potential scan rate was 2 mV s$^{-1}$. When the HNO$_3$ concentration is very low (0.05 M), a well-defined i–E curve is traced, as is shown in Fig. 1a, no current oscillation was found. With increasing HNO$_3$ concentration, current oscillations occur over a wide range of HNO$_3$ concentrations (0.1 M – 8 M). In the range 0.1 M ≤ c_{HNO_3} ≤ 8 M, the i–E curves can be divided into two types according to the HNO$_3$ concentration. The first type is in the range 0.1 M ≤ c_{HNO_3} ≤ 1 M, where by scanning the potential from −700 mV to 500 mV, the current increases continuously until oscillations take place, then passivation is achieved. The second type is in concentrated HNO$_3$ solutions (2 M – 8 M). With increasing potential, the current first increases and then decreases over a wide potential range, after which current oscillations occur within a certain potential range where the iron electrode is in transition from the prepassive to the passive state.

Podesta \textit{et al.} studied current oscillations in the Fe/H$_2$SO$_4$ system.14 They pointed out that a $c_{\text{H}_2\text{SO}_4} > 1$ M, a ferrous sulphate salt film forms on the surface of the Fe electrode, while at $c_{\text{H}_2\text{SO}_4} < 1$ M, a Fe(OH)$_2$ film maybe forms. In the Fe/HNO$_3$ sys-
tem, the solubility of Fe(NO₃)₂ · 6H₂O is 83.5 g/100 ml H₂O at 20 ºC, hence a Fe(NO₃)₂ salt film cannot form on the Fe electrode surface. On the other hand, taking into account the increase of the interface pH, caused by a migration of H⁺ away from the vicinity of the electrode, a Fe(OH)₂ film maybe forms at the Fe electrode surface. With decreasing HNO₃ concentration, the Fe(OH)₂ film becomes thicker and thicker, and the amplitude of the current oscillations becomes smaller and smaller.

It can be seen from Fig. 1a that in 0.05 M HNO₃ solution when the potential is scanned in a positive direction, the anodic dissolution current of Fe is very small. The amount of Fe²⁺ produced by the anodic dissolution of Fe is small, and the decrease of the H⁺ concentration due to the migration of H⁺ ions away from the vicinity of the electrode is slowed down. It is difficult to form the certain thickness of a Fe(OH)₂ film which is necessary for the occurrence of current oscillations. Hence, no current oscillations are observed.

The effect of the HNO₃ concentration on current oscillations

Figure 2 shows typical potentiostatic current/time curves at E = –210 mV for the Fe/HNO₃ systems. For 0.05 M HNO₃, the i–t curve (Fig. 2a) shows clearly that the current decreases to a very low value within a few seconds of the onset of polarization, the Fe electrode enters a passive state. No current oscillations are observed. When the HNO₃ concentration is 0.1 M, current oscillations occur 54 s after the formation of the passive state. However, when the HNO₃ concentration is 0.5 M, current oscillations occur immediately the polarization is commenced. For HNO₃ concentration ≥1.0 M, the i–t curves are obviously different compared with that obtained with 0.5 M HNO₃ as shown in Fig. 2d and Fig. 2e. When the potential of the Fe electrode is suddenly changed from the open-circuit value to –290 mV, the current decreases gradually for a few seconds, and then current oscillations are observed. In 5.0 M HNO₃ solution, the
current decreases gradually to a relatively steady value and no oscillations are observed, as shown in Fig. 2f. In this concentration of HNO₃, even if the electrode is polarized for a long time (for example, 30 min), no current oscillations are found.

The effect of the imposed potential on the current oscillations

The potentiostatic $i-t$ curves of a Fe/0.5 M HNO₃ system with different imposed potentials are shown in Fig. 3. It can be seen that changing the anode potential results in different types of $i-t$ curves. When $E = -190$ mV, the current is very low, the electrode is in the passive state and current oscillations are not observed, as shown in Fig. 3a. With
this potential, even if the electrode is polarized for a long time (for example, 30 min), no current oscillations are found. The current oscillations appear in the potential range $-200 \text{ mV} \leq -230 \text{ mV}$. In this potential range when $E = -200 \text{ mV}$, current oscillations appear after some period of time, while when $E = -220 \text{ mV}$, current oscillations occur immediately after commencement of polarization, as shown in Fig. 3b and Fig. 3c. On further increasing the potential to -240 mV, no current oscillations are observed.

Explanation of the current oscillation phenomena in 0.5 M HNO$_3$

As occurs in 0.5 M H$_2$SO$_4$ solution,3 it can be inferred that a change of pH in the Fe/electrolyte interface would influence the formation and dissolution of a Fe(OH)$_2$ film and a Fe$_3$O$_4$ film, as well as the occurrence, development and cessation of current oscillations. In the other word, if current oscillations can be induced by changing the pH in the Fe/electrolyte interface artificially, the current oscillation mechanism based on the temporal formation of Fe(OH)$_2$ films and Fe$_3$O$_4$ films would be supported. In this section, a dropping method was used to change the local pH of the Fe/0.5 M HNO$_3$ interface, creating environments that favor the occurrence of current oscillations.

(1) *Effect of dropping NaOH solution.* The effect of dropping a 0.5 M NaOH solution when the Fe electrode is polarized at -290 mV in 0.5 M HNO$_3$ solution is shown in Fig 4a. As the potential is changed suddenly from the open-circuit value (-700 mV) to -290 mV, the polarization current decreases gradually and finally regains a steady value, no oscillation are observed. When 0.2 ml of a 0.5 M NaOH solution is dropped through a needle (internal diameter 0.2 mm) into the electrolyte 2 mm below the surface of the Fe electrode, the current decreases suddenly and reaches a very low, indicating that the Fe electrode enters into a passive state. These effects can be attributed to a thickening of the Fe(OH)$_2$ film and the formation of a Fe$_3$O$_4$ film. The passive state is main-

![Fig. 4. Effect of dropping on the potentiostatic current oscillations of the Fe/0.5 M HNO$_3$ system.](image-url)
tained for 16 s, then current oscillations occur. However, these last for only 10 s, when the current resumes its original steady value. Similar phenomena are observed when the dropping is repeated once again.

For a given potential, a suitable pH value in the Fe/electrolyte is necessary for the formation of Fe(OH)$_2$ and Fe$_3$O$_4$ films. If the pH value cannot be achieved only by the migration of H$^+$ ions caused by the accumulation of Fe$^{2+}$ ions, usually, current oscillations cannot occur. Through the dropping of the NaOH solution, the pH value can be artificially attained and a Fe(OH)$_2$ film is formed which results in the current decrease. At the end of the dropping, the diffusion of H$^+$ ions from the bulk solution to the interface causes the dissolution of the Fe(OH)$_2$ and then the Fe$_3$O$_4$ film. The Fe electrode is re-activated and the current becomes larger. The Fe$^{2+}$ ions, produced by the electrode-dissolution of iron, cause migration the H$^+$ ions away from the vicinity of the Fe electrode. The increase of pH in of the Fe/electrolyte interface leads to the formation of Fe(OH)$_2$ and Fe$_3$O$_4$ films once again. Thus, current oscillations appear.

As the amount of NaOH dropped is small compared to the bulk solution, as soon as the dropping is stopped, the Fe/electrolyte interface is restored to its original state as is the effect of diffusion before dropping. So the current oscillations can not continue for very long.

The effect of dropping a 0.5 M NaOH solution when Fe electrode is potentiostatic polarized at -320 mV in 0.5 M HNO$_3$ solution is shown in Fig. 4b. Phenomena similar to those at -290 mV are observed. After dropping 0.2 ml of a 0.5 M NaOH solution, the Fe electrode enters a passive state, and then current oscillations occur. Only the oscillation amplitude is smaller and the time of oscillations is shorter than at -290 mV. In fact, when $E \leq -240$ mV, no current oscillations are found in a 0.5 M HNO$_3$ solution, but the dropping a 0.5 M NaOH solution can introduce current oscillations until $E = -320$ mV. At $E < -320$ mV, current oscillations can no longer be introduced by dropping a 0.5 M NaOH solution. Maybe at this potential it is not possible to form the Fe(OH)$_2$ and Fe$_3$O$_4$ films essential for current oscillations even by the dropping of a 0.5 M NaOH solution.

(2) Effect of dropping H$_2$O. The effect of dropping 0.2 ml of H$_2$O when the Fe electrode is polarized at -290 mV in 0.5 M HNO$_3$ solution is shown in Fig. 4c. Before dropping H$_2$O, no current oscillations are observed. When H$_2$O is dropped, the phenomena similar to those induced by dropping a NaOH solution follow: the current decreases suddenly to a very low value. The low current is maintained for 6 s, when current oscillations occur. The change of the pH of the interface caused by dropping H$_2$O is less than that caused by dropping a NaOH solution, as can be seen from Fig. 4c and Fig. 4a, and the continuous time of current oscillation is shorter also.

(3) Effect of dropping a 0.5 M HNO$_3$ solution. Taking into account the fact that a disturbance of the electrolyte could affect the current oscillations, a 0.5 M HNO$_3$ was also dropped into the electrolyte as a control experiment. The $i-t$ curve of an Fe electrode polarized at -290 mV on dropping 0.2 ml of a 0.5 M HNO$_3$ solution into a 0.5 M HNO$_3$ solution is shown in Fig. 4d. A completely different result is obtained compared with that obtained by dropping NaOH and H$_2$O. Immediately after the dropping, the dissolution of Fe(OH)$_2$ is accelerated by H$^+$ ions, so the current increases violently. Once the dropping is stopped, diffusion makes the pH of the Fe/electrolyte interface in-
crease, and the current restores its original value quickly. The above experimental results indicate that the cause of current oscillations is mainly the change of pH at the Fe/electrolyte interface.

CONCLUSIONS

Current oscillations occur in the Fe/xM HNO₃ system (0.1 ≤ x ≤ 8) within a certain potential range. According to the experimental results of dropping a NaOH solution, H₂O or a HNO₃ solution at the Fe/electrolyte interface, a change of pH at the Fe/electrolyte interface is the main cause of current oscillations. The formation of a Fe(OH)₂ film at the electrode surface is the essential condition for current oscillations in the Fe/HNO₃ system.

Acknowledgements: This work was subsidized by the Special Funds for the Major State Basic Research Projects G19990650 and the Chinese National Science Fund No.29873028.

REFERENCES

9. U. F. Franck, Angew. Chem. 17 (1978) 1