The isolation of (6S, 9S)-cyclo(prolylvalyl) from marine actinomycete, by use of high speed countercurrent chromatography

ANDRIJA ŠMELCEROVIĆ*1, MIRKO SCHIEBEL2 and SINIŠA DORĐEVIĆ3

*1Chemical Industry “Nevena”, Đorda Stamekovića b.b., YU-16000 Leskovac, Yugoslavia, 2Department of Organic Chemistry, Tammanstrasse 2, 37077 Göttingen, Germany and 3Faculty of Technology, Bulevar Oslobodenja 124, YU-16000 Leskovac, Yugoslavia

(Received 3 May, revised 31 July 2001)

The marine actinomycete B 1758 came from the actinomycete collection of the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, Germany. 1.079 g of raw extract was obtained by fermentation. Seven fractions were separated by column chromatography on silica gel. Fraction 4 was separated by high speed countercurrent chromatography. Fraction 4.6 yielded 5.2 mg of (6S, 9S)-cyclo(prolylvalyl).

Keywords: (6S, 9S)-cyclo(prolylvalyl), marine actinomycete B 1758, HSCCC.

INTRODUCTION

The world seas, making up 2/3 of the Earth’s surface and 90% of the biosphere, have recently been seen as a new source of natural substances.1,2 For a long time, marine microorganisms were little investigated because they were considered hard to isolate and cultivate, which is applicable to a large number of marine microorganisms.3

Countercurrent chromatography (CCC) is an original tool for separating natural products, finding application in the isolation of secondary metabolites such as antibiotics.4–6 In this work, the isolation of (6S, 9S)-cyclo(prolylvalyl) from marine actinomycete, by use of high speed countercurrent chromatography (HSCCC), is described.

EXPERIMENTAL

Materials and methods

The 1H-NMR spectra were recorded on a Bruker WM 300 (300.1 MHz) spectrophotometer. The EI-MS mass spectra were recorded on a Varian MAT 731 (70 eV) instrument; high resolutions were compared with perfluorokerosine as a comparison substance. The DCI-MS mass spectra were recorded on a Finnigan MAT 95 A instrument with NH3 as the reacting gas. Column chromatography was accomplished on silica gel 30-60 μm (J. T. Baker). Thin-layer chromatography was performed on DC-folien Polygram SIL G/UV254 (Macherey Nagel&Co). HSCCC was performed using a P.C. INC. High Speed Countercurrent Chromatograph with two Pharmacia LKB HPLC pumps 2150. The optical rotations were measured using a Perkin-Elmer 343 polarimeter.
Breed B 1758

The marine actinomycete B 1758 came from the actinomycete collection of the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven. 1.079 g of raw extract was obtained by fermentation. The raw extract was degreased with cyclohexane and then separated by column chromatography on silica gel, with step gradients consisting of chloroform and methanol (1.5 dm3 CHCl$_3$, 1 dm3 CHCl$_3$/1% CH$_3$OH, 1 dm3 CHCl$_3$/2% CH$_3$OH, 0.5 dm3 CHCl$_3$/5% CH$_3$OH, 0.7 dm3 CHCl$_3$/15% CH$_3$OH). Seven fractions were separated by thin layer chromatography (CHCl$_3$/5% CH$_3$OH), but still contained mixtures of substances (fraction 1, 875 cm3, 20.3 mg; fraction 2, 375 cm3, 189.8 mg; fraction 3, 850 cm3, 100.5 mg; fraction 4, 875 cm3, 82.7 mg; fraction 5, 950 cm3, 103.7 mg; fraction 6, 325 cm3, 71.3 mg; fraction 7, 250 cm3, 28.8 mg). The fraction 4 was separated by HSCCC (215 cm3 column, solvent chloroform/ methanol/ethyl acetate/water 1:1:1:1, the phase was lighter than the stationary phase, flow rate 1 cm3 per minute). Six fractions were separated by thin layer chromatography (CHCl$_3$/5% CH$_3$OH) (fraction 4.1, 35 cm3, 21 mg; fraction 4.2, 10 cm3, 13.3 mg; fraction 4.3, 10 cm3, 5.6 mg; fraction 4.5, 15 cm3, 9.4 mg; fraction 4.6, 10 cm3, 5.2 mg). Fraction 4.6 yielded 5.2 mg of (6S,9S)-cyclo(prolylvalyl) (Δ-C10H$_{16}$N$_2$O$_2$).

RESULTS AND DISCUSSION

In 1H-NMR spectrum of the isolated compound, the wide signal at $\delta = 5.67$ indicated an OH-or NH-proton. The spectrum gave two doublets at $\delta = 1.05$ and $\delta = 0.90$ with the intensity 3, indicating the presence of methyl groups. The EI and DCI mass spectra indicated a mass of 196 Da. The high resolution of this signal suggested the formula C$_{10}$H$_{16}$N$_2$O$_2$. Searching the AntiBase data bank for the above formula, 6 structures were obtained. With respect to the above information, the structure corresponded with that of cyclo(prolylvalyl). A spectroscopic investigation of the corresponding diketopiperazines showed that the protons 6-H and 9-H are in cis-position with respect to each other, in DMSO always at $\delta = 3.8$ or lower, while in the trans-position they lay higher than $\delta = 3.5$. This suggests that the isolated compound is 6S,9S-cyclo(prolylvalyl). Comparison of the cited optical rotation values with those of the newly isolated compound indicated the compound was (6S, 9S)-cyclo(prolylvalyl) (1). Studies of diketopiperazines isolation from marine sources have been already cited.

([α]20_D (reference works)$^9 = -157^o$ (c 1 in CHCl$_3$), [α]20_D (investigation reading) = $-(155\pm10)^o$ (c 0.1 in CHCl$_3$).

![Chemical Structure Diagram]

(6S, 9S)-Cyclo(prolylvalyl): C$_{10}$H$_{16}$N$_2$O$_2$ (196.2). EI-MS (70 eV): m/z (%) = 196.2 [M]$^+$ (4), 154.1 (100), 125.1 (24), 70.1 (44). DCI-MS (NH$_3$): m/z (%) = 214.2 [M + NH$_4$]$^+$ (100), 197.2 [M+H]$^+$ (30). 1H-NMR (CDCl$_3$, 300 MHz): $\delta = 5.67$ (s (br), 1 H,
NH), 4.07 (t, \(3J = 9\) Hz, 1 H, 6-H), 3.92 (t, \(3J = 2\) Hz, 1 H, 9-H), 3.66–3.48 (m, 2 H, 3-CH\(_2\)), 2.62 (dsep, \(3J = 7.5\) Hz, \(3J = 2\) Hz, 1 H, 10-H), 2.42–2.32 (m, 1 H, 5-H), 2.09–1.83 (m, 3 H, 5-H, 4-CH\(_2\)), 1.05 (d, \(3J = 7.5\) Hz, 3 H, CH\(_3\)), 0.90 (d, \(3J = 7.5\) Hz, 3 H, CH\(_3\)).

1H-NMR (DMSO-\(d_6\), 300 MHz): \(\delta = 7.88\) (s (br), 1 H, NH), 4.10 (t, \(3J = 7.5\) Hz, 1 H, 6-H), 3.90 (t, \(3J = 2\) Hz, 1 H, 9-H), 3.45–3.14 (m, \(3J = 7.5\), 2 H, 3-CH\(_2\)), 2.33 (dsep, \(3J = 7.5\) Hz, \(3J = 2\) Hz, 1 H, 10-H), 2.18–2.07 (m, 1 H, 5-H), 1.91–1.72 (m, 3 H, 5-H, 4-CH\(_2\)), 1.01 (d, \(3J = 7.5\) Hz, 3 H, CH\(_3\)), 0.85 (d, \(3J = 7.5\) Hz, 3 H, CH\(_3\)).

C\(_{10}\)H\(_{16}\)N\(_2\)O\(_2\): Calculated: 196, 1208; Recorded: 196, 1211.

CONCLUSION
The isolation of (6S,9S)-cyclo(prolylvalyl) from marine actinomycete B 1758 is a new example of a diketopiperazine from marine sources. However, this is the first example of diketopiperazines isolation by use of high speed countercurrent chromatography.

Abbreviations: \(s = \) singlet; \(d = \) doublet; \(dsep = \) doublet septet; \(t = \) triplet; \(m = \) multiplet; \(br = \) broad.

Acknowledgements: The first author would like to heartily thank Prof. Dr. Hartmut Laatsch of the Institute for Organic Chemistry at the University of Göttingen, Germany, for generously given a work post, and to the DAAD for the scholarship.

REFERENCES
6. I. A. Sutherland, J. S. Lee, D. J. Gaureau, Anal. Biochem. 89 (1978) 213
7. H. Laatsch, Naturstoffdatenbank AntiBase\(^8\), Chemical Concept, Weinheim, 1998

IZVOD
IZOLONAĐE (6S, 9S)-CIKLO (PROLILVALIL)IZ MORSKE AKTINOMICYETE, KORIŠNEŠE NMSCX HRUMATOGRAFIJE

ANDRIJA MELČEROVIĆ, MIKO SČEBEL I SINIĆA OŠIćEVIĆ

Morska aktinomicyeta B 1758 potiče iz zbirke aktinomicyeta instituta Alfred Wegener za polarni i morska istraživanja u Bremerhaven-u, Nemačka. Fermentacijom je dobijeno 1,079 g sirovog ekstrakta. Kolonskom hromatografijom na silikagelu je razdvojeno sedam frakcija. Četvrta frakcija je razdvojena korišćenjem HSCCC hromatografije. U frakciji 4.6 je dobijeno 5,2 mg (6S, 9S)-ciklo (prolylvalil).

(Primjišen 3. maj, revidiran 31. jula 2001)