Zn(Ta_{1-x}Nb_x)_2O_6 nanomaterials. Synthesis, characterization and corrosion behaviour

MIHAELA BIRDEANU¹,²*, GHEORGHE FAGADAR-COSMA², IULIANA SEBARCHIEVICI¹, AUREL-VALENTIN BIRDEANU³, BOGDAN TARANU¹, IOAN TARANU¹ and EUGENIA FAGADAR-COSMA⁴

¹National Institute for Research and Development in Electrochemistry and Condensed Matter, 1 Plautius Andronescu Street, 300224 Timisoara, Romania, ²Politehnica University of Timisoara, Vasile Parvan Ave. 6, 300223 Timisoara, Romania, ³National R&D Institute for Welding and Material Testing – ISIM Timișoara, 20 M. Viteazu Ave., 300222 Timisoara, Romania and ⁴Institute of Chemistry Timisoara of the Romanian Academy, 24 M. Viteazu Ave., 300223 Timisoara, Romania

(Received 8 July, revised 10 September, accepted 11 September 2015)

Abstract: Zn(Ta_{1-x}Nb_x)_2O_6 pseudo-binary oxide nanocrystalline materials (where x = 1, 0.5, 0.1, 0.05 and 0) were obtained through a solid-state method and characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy and ultraviolet–visible (UV–Vis) spectroscopy. In addition, their morphology and topography were determined by field emission-scanning electron microscopy (SEM) and atomic force microscopy (AFM). There was a significant dependence between the rugosity and the uniformity of the crystals. Crystals evenly organized in multilayers had the lowest values of rugosity and non-uniform fractal type architectures had the highest values of rugosity. The anti-corrosion features of the compounds were evaluated after deposition on carbon steel (OL) in 0.1 M Na_2SO_4 media by open circuit potential measurements and the potentiodynamic polarization technique with Tafel representation. The inhibition efficiency of the pseudo-binary oxides deposited on a carbon steel electrode was in the range 42.3–52.7 %, which was promising for their further multiple-layer deposition with porphyrins in order to improve anticorrosion properties. Due to the high band gap (3.80–4.30 eV), provided by increasing the tantalum content, four of these pseudo-binary oxides could find applications in photovoltaic cells.

Keywords: nanomaterials; solid-state method; pseudo-binary oxides; corrosion inhibition; Tafel curves.

*Corresponding author. E-mail: mihaelabirdeanu@gmail.com

doi: 10.2298/JSC150708073B
INTRODUCTION

Steel, a widely used material in many industries, is prone to corrosion as a result of reactions with the environment. This spontaneous process could compromise the integrity of the material and might cause serious impact on the environment. For these reasons, measures to prevent and control corrosion are required.

Zinc is the most widely used material for protection of steel against corrosion. Its corrosion resistance, however, is limited. Zinc alloys can create improved corrosion resistance compared to pure zinc in the protection of ferrous-based metals. Efforts to improve the corrosion stability of pure zinc coatings have been directed toward alloying with a more noble metal or adding surface inhibitors. Recently, niobium and tantalum oxides were applied in chemical processing applications due to their outstanding corrosion resistance.

Binary niobate and tantalate compounds with the general formula \(\text{Zn(Ta}_{1-x}\text{Nb}_x\text{)}_2\text{O}_6 \) were found to be promising candidates for application in microwave devices based on the improved dielectric properties of these compounds, revealing both a high quality factor \((Q\times f)\) and dielectric constant \((\varepsilon_r)\). \(\text{ZnTa}_2\text{O}_6 \) was obtained by several modern chemistry preparation routes, e.g., citrate sol–gel, but the most used method is the conventional solid-state reaction of mixed oxides. \(\text{Zn(Nb}_{1-x}\text{Ta}_x\text{)}_2\text{O}_6 \) (where \(x = 0, 0.2, 0.4, 0.6, 0.8, 0.9 \) and 1) novel derivatives exhibiting remarkable dielectric properties were usually prepared by the conventional mixed oxide route.

\(\text{ZnNb}_2\text{O}_6 \) was also used as a dielectric and was obtained using the molten salt synthesis, the sol–gel method, solid-state reaction and the optical floating zone method. These materials were used in photocatalysis, as electrochemical gas sensors, in the energy storage field and in solar cell formulations.

The present study was focused on obtaining three novel pseudo-binary compounds, namely: \(\text{Zn(Ta}_{1-x}\text{Nb}_x\text{)}_2\text{O}_6 \), (where \(x = 0.5, 0.1 \) and 0.05) and on an investigation regarding their structural, morphological and optical properties in comparison with the already known \(\text{ZnNb}_2\text{O}_6 \) and \(\text{ZnTa}_2\text{O}_6 \). The effects produced by the increased content of tantalum on the properties of these novel pseudo-binary oxides are discussed. Based on successful experience in corrosion protection (inhibition efficiency up to 96 %) by bilayer depositions of \(\text{Zn}_3\text{Ta}_2\text{O}_8 \) or \(\text{Zn}_3\text{Nb}_2\text{O}_8 \) and 5-(4-pyridyl)-10,15,20-tris(4-phenoxy-phenyl)porphyrin or 5-(4-pyridyl)-10,15,20-tris(3,4-dimethoxy-phenyl)porphyrin on carbon steel electrodes, another important aim was to evaluate the anticorrosion activity exhibited by thin films of these compounds on carbon steel in an acid environment.

EXPERIMENTAL

Apparatus. The structural information of the nanomaterials was obtained by X-ray diffraction on an X’pert Pro MPD X-ray diffractometer using CuK\(_\alpha\) radiation, at room tempe-
The FTIR measurements were performed on a JASCO 430 FTIR spectrometer in KBr pellets. The morphology and the particle dimensions of the samples were investigated by SEM / EDAX (Model INSPECT S) and AFM (Model Nanosurf® EasyScan 2 Advanced Research). The band gap of the nanomaterials was estimated from the diffuse reflectance spectrum, at room temperature, recorded on an UV–Vis–NIR spectrometer Lambda 950. The electrochemical measurements were realised using a Voltalab potentiostat, Model PGZ 402. The degree of inhibition efficiency, \(IE(\%) \), was calculated based on the equation for the efficiency potential calculation, which is given in the Supplementary material to this paper along with the method for corrosion testing and cell description. The method for corrosion testing and cell description are given in the Supplementary material to this paper.

Reagents. The starting materials used during the synthesis of the \(\text{Zn(Ta}_{1-x}\text{Nb}_x\text{)}_2\text{O}_6 \) (where \(x = 1, 0.5, 0.1, 0.05 \) and 0) pseudo-binary oxides were: tantalum(V) oxide (\(\text{Ta}_2\text{O}_5, 99.99 \% \), Sigma), niobium(V) oxide (\(\text{Nb}_2\text{O}_5, 99.99 \% \), Merck) and zinc oxide (\(\text{ZnO}, 99.99 \% \), Merck).

General method for obtaining \(\text{Zn(Ta}_{1-x}\text{Nb}_x\text{)}_2\text{O}_6 \) (where \(x = 1, 0.5, 0.1, 0.05 \) or 0) nanomaterials

\(\text{Zn(Ta}_{1-x}\text{Nb}_x\text{)}_2\text{O}_6 \) (where \(x = 1, 0.5, 0.1, 0.05 \) or 0) nanomaterials were obtained by a solid-state method varying the mole ratios (Table I). The obtained materials were in the form of powders and these were subsequently heated at 1200 °C for a soaking time of 3 h. The samples were heated and cooled in a furnace at a rate of 5 °C min⁻¹.

RESULTS AND DISCUSSION

Structural characterization

The X-ray diffraction patterns for: a) \(\text{ZnTa}_2\text{O}_6 \), b) \(\text{Zn(Ta}_{0.95}\text{Nb}_{0.05}\text{)}_2\text{O}_6 \), c) \(\text{Zn(Ta}_{0.9}\text{Nb}_{0.1}\text{)}_2\text{O}_6 \), d) \(\text{Zn(Ta}_{0.5}\text{Nb}_{0.5}\text{)}_2\text{O}_6 \) and e) \(\text{ZnNb}_2\text{O}_6 \) are presented in Fig. 1, from which it could be observed that besides the main peaks associated with the \(\text{ZnTa}_2\text{O}_6 \) and \(\text{ZnNb}_2\text{O}_6 \) pure nanomaterials, some associated peaks appeared (indexed with JCPDS, card No. 01-076-1827 and 01-076-1826), belonging to the \(Pbcn \) space group.

The intensity of the peaks, relative to the background signal, demonstrates the high purity and good quality of the samples. The highest intensity peak is located at 2\(\theta \) = 30.4769° for \(\text{ZnTa}_2\text{O}_6 \) and 2\(\theta \) = 30.3424° for \(\text{ZnNb}_2\text{O}_6 \), which belong to the 131 plane for \(\text{ZnTa}_2\text{O}_6 \) and the 311 plane for \(\text{ZnNb}_2\text{O}_6 \). The novel structures have the highest intensity peaks located at 2\(\theta \) = 30.4569° for \(\text{Zn(Ta}_{0.95}\text{Nb}_{0.05}\text{)}_2\text{O}_6 \), 2\(\theta \) = 30.4273° for \(\text{Zn(Ta}_{0.9}\text{Nb}_{0.1}\text{)}_2\text{O}_6 \) and 2\(\theta \) = 30.3964° for \(\text{Zn(Ta}_{0.5}\text{Nb}_{0.5}\text{)}_2\text{O}_6 \), the values of which belonging to the interval limited by...
ZnTa$_2$O$_6$ and ZnNb$_2$O$_6$. A magnified image of the peaks of the XRD pattern in the 2θ range 19–27° is presented in the upper right corner of Fig. 1. As can be observed, at $2\theta = 20.55^\circ$, the intensity of the peak decreased as the Nb concentration increased. The peak situated at $2\theta = 24.67^\circ$ (Fig. 1a), which belong to ZnTa$_2$O$_6$, is shifted to left with increasing Nb concentration and finally reaches $2\theta = 24.67^\circ$ (Fig. 1e), which corresponds to the ZnNb$_2$O$_6$ nanomaterial according to JCPDS.

The lattice constants were calculated from XRD analysis data, using FullProf Suite computer package: $a = 4.80$ Å, $b = 18.09$ Å, $c = 5.13$ Å, $\alpha = \beta = \gamma = 90^\circ$ and the elementary cell volume ($V / 10^6$ pm3) is 409.71 for ZnTa$_2$O$_6$, while $a = 15.30$ Å, $b = 5.96$ Å, $c = 5.14$ Å, $\alpha = \beta = \gamma = 90^\circ$ and elementary cell volume ($V / 10^6$ pm3) is 413.07 for ZnNb$_2$O$_6$.

The mean crystallite size (d) of the powder samples was calculated using the Scherrer equation. The average crystallite sizes determined from XRD line broadening for each of the samples were: 58 nm for ZnTa$_2$O$_6$, 47 nm for Zn(Ta$_{0.95}$Nb$_{0.05}$)$_2$O$_6$, 42 nm for Zn(Ta$_{0.9}$Nb$_{0.1}$)$_2$O$_6$, 39 nm for Zn(Ta$_{0.5}$Nb$_{0.5}$)$_2$O$_6$.
and 34 nm for ZnNb$_2$O$_6$. Thus, the values increased with increasing Ta content in the nanomaterial.

The FTIR spectra of the obtained pseudo-binary oxides: a) ZnNb$_2$O$_6$, b) ZnTa$_2$O$_6$, c) Zn(Ta$_{0.95}$Nb$_{0.05}$)$_2$O$_6$, d) Zn(Ta$_{0.9}$Nb$_{0.1}$)$_2$O$_6$ and e) Zn(Ta$_{0.5}$Nb$_{0.5}$)$_2$O$_6$ are comparatively presented in Fig. 2.

The FTIR spectra of the newly obtained nanomaterials (Zn(Ta$_{1-x}$Nb$_x$)$_2$O$_6$ ($x = 0.5, 0.1$ and 0.05)) displayed some distinctive bands that were located at 600 cm$^{-1}$ for [Zn(Ta$_{0.5}$Nb$_{0.5}$)$_2$O$_6$], 620 cm$^{-1}$ for [Zn(Ta$_{0.9}$Nb$_{0.1}$)$_2$O$_6$, Zn(Ta$_{0.95}$Nb$_{0.05}$)$_2$O$_6$] and 640 cm$^{-1}$ for [Zn(Ta$_{0.5}$Nb$_{0.5}$)$_2$O$_6$]. Analyzing the structure of the novel nanomaterials and the presence of the known bands from the precursor oxides, these new displayed bands at 640 cm$^{-1}$ and at 620 cm$^{-1}$ could be assigned to Zn–O–Nb and to Zn–O–Ta novel generated bonds. As expected, these new bands were strongly associated with the increased presence of each element in the structure of the nanomaterials. Thus, the intensity of the peaks at 600 cm$^{-1}$ increased with increasing of Ta content, and the position of the peaks tended to be shifted towards lower wave numbers with increasing of ZnO content, in agreement with reported data. 21,44 Moreover, equal mole ratios of Ta and Nb generally favoured large non-resolved bands. Another aspect is that the very weak bands with peaks around 540–560 cm$^{-1}$ could be attributed to symmetrical stretching vibration modes ν_s(O–Metal–O), where the metal is Ta or Nb.
Morphological characterization

The morphological aspects of the resulting powders were examined by SEM, as shown in Fig. 3. The micrographs for ZnNb$_2$O$_6$, Zn(Ta$_{0.5}$Nb$_{0.5}$)$_2$O$_6$, Zn(Ta$_{0.9}$Nb$_{0.1}$)$_2$O$_6$, Zn(Ta$_{0.95}$Nb$_{0.05}$)$_2$O$_6$ and ZnTa$_2$O$_6$ nanomaterials revealed the formation of soft spherical agglomerates (a) ZnNb$_2$O$_6$) that display an irregular morphology or fractal-like (e) ZnTa$_2$O$_6$) crystal structures.

![SEM images of different nanomaterials](image)

Fig. 3. The SEM images of: a) ZnNb$_2$O$_6$, b) Zn(Ta$_{0.5}$Nb$_{0.5}$)$_2$O$_6$, c) Zn(Ta$_{0.9}$Nb$_{0.1}$)$_2$O$_6$, d) Zn(Ta$_{0.95}$Nb$_{0.05}$)$_2$O$_6$, and e) ZnTa$_2$O$_6$.

Depending on the nature and chemical composition of the nanomaterials, the morphology was different: crystals organized in multilayer, as in case of ZnNb$_2$O$_6$, with uniform covering aspect or various size distributed crystals with porous aspect (both mesopores and macropores were present) or even a sponge-like shape in the case of b) Zn(Ta$_{0.5}$Nb$_{0.5}$)$_2$O$_6$, c) Zn(Ta$_{0.9}$Nb$_{0.1}$)$_2$O$_6$ and d) Zn(Ta$_{0.95}$Nb$_{0.05}$)$_2$O$_6$, and a fractal-like aspect in case of e) ZnTa$_2$O$_6$ (with a touch of an amorphous aspect). The EDAX analysis certified the initial mole ratios between Zn, Nb and Ta, see the Supplementary material for detailed information.
In Figure 4 are shown The AFM images of the surface for each of the studied materials deposited on OL electrodes, using a scan size of 1 μm×1 μm. A contact mode cantilever was used to measure the samples.

![AFM images of ZnNb2O6, Zn(Ta0.5Nb0.5)2O6, Zn(Ta0.9Nb0.1)2O6, Zn(Ta0.95Nb0.05)2O6 and ZnTa2O6](image)

Fig. 4. AFM images of: a) ZnNb2O6, b) Zn(Ta0.5Nb0.5)2O6, c) Zn(Ta0.9Nb0.1)2O6, d) Zn(Ta0.95Nb0.05)2O6 and e) ZnTa2O6.

Particle size analysis for ZnNb2O6, Zn(Ta0.5Nb0.5)2O6, Zn(Ta0.9Nb0.1)2O6, Zn(Ta0.95Nb0.05)2O6 and ZnTa2O6 deposited on OL electrodes was performed from the AFM measurements data (Nanosurf EasyScan 2 AFM software). The average grain sizes was determined as follows: about 30 nm for ZnNb2O6, around 38 nm for Zn(Ta0.5Nb0.5)2O6, about 45 nm for Zn(Ta0.9Nb0.1)2O6, about 50 nm for Zn(Ta0.95Nb0.05)2O6 and about 70 nm for ZnTa2O6, in very good agreement with the results of the XRD measurements. The particle size increased in accordance with the increasing tantalum content. The surface roughness was calculated using equations for the roughness from the literature.45

The measured surface had an area of 1.243 pm². Using the Nanosurf EasyScan 2 computer software, the values of S_a and S_q for the nanomaterials were calculated as follows: $S_a = 0.21$ nm and $S_q = 0.38$ nm for ZnNb2O6, $S_a = 0.26$ nm and $S_q = 0.43$ nm for Zn(Ta0.5Nb0.5)2O6, $S_a = 0.42$ nm and $S_q = 0.53$
nm for Zn(Ta_{0.9}Nb_{0.1})_2O_6, S_a = 0.53 nm and S_q = 0.89 nm for Zn(Ta_{0.95}Nb_{0.05})_2O_6 and S_a = 0.73 nm and S_q = 1 nm for ZnTa_2O_6.

There is a strong correlation between the aspect of the samples (SEM images) and the rugosity. The more uniform crystals displayed in multilayers reflect in the lowest value of rugosity and the non-uniform fractal type architectures present the highest value of rugosity. Some failure of the surfaces producing deep pores and channels could be noticed (Fig. 4c–e).

Optical properties

Using the Kubelka–Munk equation,46,47 the absorbance was calculated from the reflectance spectra (Fig. 5). The diffuse reflectance spectra were also recorded (Supplementary material to this paper). The plots of \((k/s) h\nu\)\(^2\) vs. \(h\nu\), where \(k\) denotes absorption coefficient, \(s\) is the scattering coefficient and \(h\nu\) is the photon energy, are presented in the inset to Fig. 5. The band gaps were calculated and their values were: 3.20 eV for ZnNb_2O_6, 3.80 eV for Zn(Ta_{0.5}Nb_{0.5})_2O_6, 4.00 eV for Zn(Ta_{0.9}Nb_{0.1})_2O_6, 4.10 eV for Zn(Ta_{0.95}Nb_{0.05})_2O_6 and 4.30 eV for ZnTa_2O_6. The values of band gap increase in the same manner as the increase the inhibition of corrosion, proving the differentiated chemical stability of the tested nanomaterials.

Fig. 5. Absorption spectra of: a) Zn(Ta_{0.5}Nb_{0.5})_2O_6, b) Zn(Ta_{0.9}Nb_{0.1})_2O_6, c) Zn(Ta_{0.95}Nb_{0.05})_2O_6, d) ZnNb_2O_6 and e) ZnTa_2O_6. Inset: plot of \((k/s) h\nu\)\(^2\) vs. \(h\nu\) (energy) of: a) Zn(Ta_{0.5}Nb_{0.5})_2O_6, b) Zn(Ta_{0.9}Nb_{0.1})_2O_6, c) Zn(Ta_{0.95}Nb_{0.05})_2O_6, d) ZnNb_2O_6 and e) ZnTa_2O_6.
Tafel plots

Tafel plots of the investigated OL electrodes, recorded after 30 min OCP (Supplementary material) in 0.1 M Na$_2$SO$_4$ solution, are shown in Fig. 6. The parameters calculated from these plots are summarized in Table II.

![Tafel representation of polarization curves recorded in 0.1 M Na$_2$SO$_4$ for the studied electrodes. a) OL, b) ZnTa$_2$O$_6$, c) ZnNb$_2$O$_6$, d) Zn(Ta$_{0.95}$Nb$_{0.05})_2$O$_6$, e) Zn(Ta$_{0.9}$Nb$_{0.1})_2$O$_6$ and f) Zn(Ta$_{0.5}$Nb$_{0.5})_2$O$_6$.](image)

The slopes were determined in the Tafel region of the anodic and cathodic curves for segments of approximately 50 mV.

The current density corresponds to the rate of the electrochemical reactions associated with corrosion processes taking place on the OL surface, under polarization in 0.1 M Na$_2$SO$_4$ media.

<table>
<thead>
<tr>
<th>Electrode</th>
<th>E_{corr} / V</th>
<th>i_{corr} / μA cm$^{-2}$</th>
<th>R_{p} / kΩ cm2</th>
<th>v_{corr} / μm y$^{-1}$</th>
<th>IE / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare OL</td>
<td>-1.05</td>
<td>40.36</td>
<td>0.90</td>
<td>469.1</td>
<td>–</td>
</tr>
<tr>
<td>ZnTa$_2$O$_6$</td>
<td>-1.14</td>
<td>20.74</td>
<td>1.40</td>
<td>241.1</td>
<td>48.61</td>
</tr>
<tr>
<td>ZnNb$_2$O$_6$</td>
<td>-1.15</td>
<td>19.09</td>
<td>1.41</td>
<td>221.9</td>
<td>52.70</td>
</tr>
<tr>
<td>Zn(Ta${0.95}$Nb${0.05})_2$O$_6$</td>
<td>-1.14</td>
<td>23.25</td>
<td>1.34</td>
<td>270.2</td>
<td>42.39</td>
</tr>
<tr>
<td>Zn(Ta${0.9}$Nb${0.1})_2$O$_6$</td>
<td>-1.13</td>
<td>22.51</td>
<td>1.27</td>
<td>261.7</td>
<td>44.22</td>
</tr>
<tr>
<td>Zn(Ta${0.5}$Nb${0.5})_2$O$_6$</td>
<td>-1.15</td>
<td>21.23</td>
<td>1.43</td>
<td>246.8</td>
<td>47.40</td>
</tr>
</tbody>
</table>
The corrosion potential (E_{corr}) of the bare OL electrode was -1.05 V and the corresponding corrosion current density (i_{corr}) was 40.36 μA cm$^{-2}$. In all cases the presence of $\text{Zn(Ta}_{1-\chi}\text{Nb}_{\chi}\text{)}\text{O}_6$ shifted the polarization curves towards the region of lower corrosion current densities because of the better stability of the covering metal oxides. For all the studied covering materials, a similar corrosion inhibiting activity was observed, as presented in Table II. The differences in the inhibition efficiencies (IE) were probably generated by the differences in the stability of these materials, the roughness and the porosity of the protective coatings. Comparing, for instance, ZnNb_2O_6 and ZnTa_2O_6, the average roughness increased from $S_a = 0.21$ nm to $S_a = 0.73$ nm and the IE decreased from 52.7 to 48.61 %, respectively. Furthermore, ZnNb_2O_6 had a uniform covering aspect being less porous than ZnTa_2O_6. This study clearly showed that a decrease in the niobium content in the pseudo-binary oxides was accompanied by an increase in the average roughness values, which had the effect of decreasing the inhibition efficiency.

The shift of E_{corr} towards negative values in the presence of $\text{Zn(Ta}_{1-\chi}\text{Nb}_{\chi}\text{)}\text{O}_6$ was caused by the different nature of the electrochemically active species from the metal surface (Zn, Ta and Nb) besides Fe. The presence of solely niobium ions next to the zinc ones (the case of ZnNb_2O_6) shifted the corrosion potential towards more negative values (-1.15 V), the corrosion current density being decreased from 40.36 (OL) to 19.09 μA cm$^{-2}$, which means a decrease in the corrosion rate (ν_{corr}) and a better inhibition efficiency.

The polarization resistance (R_p) increased slightly from 0.9 for bare OL to 1.43 kΩ cm2 for the $\text{Zn(Ta}_{0.5}\text{Nb}_{0.5}\text{)}\text{O}_6$ covered electrode, also indicating an inhibition of the corrosion in the presence of $\text{Zn(Ta}_{1-\chi}\text{Nb}_{\chi}\text{)}\text{O}_6$ nanomaterials.

CONCLUSIONS

Three novel pseudo-binary oxides, namely: $\text{Zn(Ta}_{0.5}\text{Nb}_{0.5}\text{)}\text{O}_6$, $\text{Zn(Ta}_{0.9}\text{Nb}_{0.1}\text{)}\text{O}_6$ and $\text{Zn(Ta}_{0.95}\text{Nb}_{0.05}\text{)}\text{O}_6$ were obtained by a solid-state method and comparatively characterized by XRD, FTIR, SEM/EDAX, AFM and UV–Vis investigations with the already known ZnNb_2O_6 and ZnTa_2O_6 compounds.

The existence of a single crystalline phase and the average crystallite size were evidenced from the XRD diagrams and confirmed by the AFM measurements. A strong correlation between the aspect of the samples (SEM images) and the rugosity properties was found. The nanomaterial capacity to agglomerate might justify the continuous and uniform covering of the OL materials.

The structure of the studied materials was confirmed by FTIR spectroscopy and EDAX analysis. The values of the band gap increased in the order: ZnNb_2O_6, $\text{Zn(Ta}_{0.5}\text{Nb}_{0.5}\text{)}\text{O}_6$, $\text{Zn(Ta}_{0.9}\text{Nb}_{0.1}\text{)}\text{O}_6$, $\text{Zn(Ta}_{0.95}\text{Nb}_{0.05}\text{)}\text{O}_6$ and ZnTa_2O_6, which followed the increased chemical stability of the tested material with inc-
reasing tantalum content, recommending these materials for application in photo-voltaic cells.

The electrochemical parameters of the Tafel plots illustrate corrosion inhibition in the presence of all the new synthesized Zn(Ta_{1-x}Nb_x)_{2}O_6 compounds deposited on an OL surface. The combinations of Zn oxide with Ta and Nb oxides evidently increased the inhibition efficiency with increasing niobium content in the material. The best results revealed that a ZnNb_2O_6 treated electrode exhibited an inhibition efficiency of 52.7%.

Due to the inhibition efficiency of pseudo-binary oxides deposited on carbon steel electrode, the nanomaterials with increased niobium content will be used in multiple layer deposition with porphyrins in order to improve anticorrosion properties. Due to the high band gaps (3.80–4.30 eV) provided by increasing the tantalum content, four of these pseudo-binary oxides might find applications in photovoltaic cells.

SUPPLEMENTARY MATERIAL

Additional experimental details, the results of EDAX and optical analyses and the open circuit potential measurements are available electronically from http://www.shd.org.rs/JSCS/, or from the corresponding author on request.

Acknowledgements. This study was supported by the Sectoral Operational Programme Human Resources Development (SOP HRD), financed by the European Social Fund and by the Romanian Government under project number POSDRU/159/1.5/S/134378. The authors Iuliana Sebarchievici, Bogdan Taranu and Ioan Taranu acknowledge INCEMC Timisoara for financial support as part of the PN 09-34 04 05 project. The author Eugenia Fagadar-Cosma acknowledges the Romanian Academy for financial support within the frame of Programme 3 of ICT-AR.

ИЗВОД

Zn(Ta_{1-x}Nb_x)_{2}O_6 НАНОМАТЕРИЈАЛИ. СИНТЕЗА, КАРАКТЕРИЗАЦИЈА И КОРОЗИОНО ПОНАШАЊЕ

МИХАЕЛА БИРДЕАНУ1,2, ГЕОРГИЈЕ ФАГАДАР-КОСМА1, ИУЛИЈАНА СЕБАРЧИЕВИЋ1, АУРЕЛ-ВАЛЕНТИН БИРДЕАНУ1, БОГДАН ТАРАНУ1, ИОАН ТАРАНУ1 и ЕУГЕНИЈА ФАГАДАР-КОСМА1

1National Institute for Research and Development in Electrochemistry and Condensed Matter, 1 Plautius Andronescu Street, 300224 Timisoara, Romania; 2Politehnica University of Timisoara, Vasile Parvan Ave.6, 300223 Timisoara, Romania; 3National R&D Institute for Welding and Material Testing - ISIM Timisoara, 20 M. Viteazu Ave., 300222, Timisoara, Romania; 4Institute of Chemistry Timisoara of Romanian Academy, 24 M. Viteazu Ave., 300223 Timisoara, Romania.

Помоћу чврсто стање добијени су псеудо-бинарни оксиди опште формуле Zn(Ta_{1-x}Nb_x)_{2}O_6 (где је x = 1; 0,5; 0,1; 0,05 и 0). Ови нанокристални материјали су окарактерисани помоћу методе дифракције X-рака и Фуријеове трансформације инфракрвене и UV–Vis спектроскопије. Морфолошке и топографије ових нанокристалних материјала је одређена помоћу емисионе микроскопије (SEM) и атомске микроскопије поља (AFM). Нађена је значајна зависност између набораности и униформности кристала. Равномерно слојевито организовани кристали имају најнижу вредност набораности, док кристални неравномерне фракталне структуре имају
највеће вредности набораности. Антикорозионе особине једињења су испитиване након депозиције на угљенични челик (ОЛ) у 0,1 М Na₂SO₄ помоћу мерења потенцијалотереног кола и потенциодинамичке поларизационе технике преко Тафелових зависимosti. Ефикасност инхибиције таложења псеудо-бинарних оксида на електроди од угљеничног челика била је у опсегу 42,3–52,7 %, што може имати утицај на њихову слојевиту депозицију у присуству порфиринна, као и боља антинкорозиона својства. С обзиром на чињеницу да долази до великог свока потенцијала (3,80–4,30 eV) приликом повећања садржаја челика, може се претпоставити да четири испитивана псеудо-бинарна оксиди могу потенцијално имати примену у фотонапонским ћелијама.

(Пријемљено 8. јула, ревијерирано 10. септембра, прихватањено 11. септембра 2015)

REFERENCES

18. B. Fu, Y. Zhang, H. Yue, Ceram. Int. 39 (2013) 3789
42. www.ill.eu/sites/fullprof/