ACCEPTED MANUSCRIPT

This is an early electronic version of an as-received manuscript that has been accepted for publication in the Journal of the Serbian Chemical Society but has not yet been subjected to the editing process and publishing procedure applied by the JSCS Editorial Office.

This “raw” version of the manuscript is being provided to the authors and readers for their technical service. It must be stressed that the manuscript still has to be subjected to copyediting, typesetting, English grammar and syntax corrections, professional editing and authors’ review of the galley proof before it is published in its final form. Please note that during these publishing processes, many errors may emerge which could affect the final content of the manuscript and all legal disclaimers applied according to the policies of the Journal.
Optimization of simultaneous cellulase and xylanase production by submerged and solid-state fermentation of wheat chaff

MIRJANA JOVANOVIĆ1, DAMJAN VUČUROVIĆ1,*, BOJANA BAJIĆ1, SINIŠA DODIĆ1, VANJA VLAJKOV1 and RADA JEVTIĆ-MUČIBAB12

1University of Novi Sad, Faculty of Technology Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Bulevar cara Lazara 1, Novi Sad, Serbia; 2University of Novi Sad, Institute of Food Technology Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia

(Received 30 May; revised 15 July; accepted 22 July 2019)

Abstract: Wheat chaff as an agricultural waste represents a cheap raw material for biotechnological processes. With its lignocellulosic composition, it is suitable for producing hydrolytic enzymes for the second generation renewable fuel production technologies. The aim of this work was to optimize process parameters (cultivation temperature 25-35 °C, pH value 4-6 and cultivation time 3-7 days) of cultivating fungi (Trichoderma reesei QM 9414) on media based on wheat chaff by submerged and solid-state technique, in order to enhance and compare the two types of simultaneous cellulase and xylanase production. Optimal conditions for the submerged fermentation were 29.65 °C for temperature, 4.27 pH and 7.00 days of cultivation, while for the solid-state fermentation the optimal conditions were 28.01 °C, 6.00 and 7.00 days, respectively. The cellulolytic and xylanolytic activities of the obtained cultivation broth filtrates were 0.0535 and 0.1676 U mL−1 for the submerged fermentation, and 0.0407 and 0.1401 U mL−1 for the solid-state fermentation, respectively, and with a 26.77 %, 13.39 % enhancement of enzyme activity for submerged fermentation, and a 22.96 % and 42.66% enhancement for solid-state fermentation, respectively, compared to the results obtained before optimization.

Keywords: Agricultural waste; lignocellulosic feedstock; fungi; hydrolytic enzymes, statistical analysis; enzyme activity

INTRODUCTION

Progress in science and medicine, together with the developments in the industry sector and the advancement of agricultural production has enabled a better and longer life of people. On the other side, the explosion of the human population and the conscienceless behaviour of the majority has led to problems such as the increased need for food, energy and space, altered or destroyed numerous ecosystems, increased quantities of accumulated waste and with that increased health and safety risks.

*Corresponding author: grimme@thch.uni-bonn.de

https://doi.org/10.2298/JSC1905300J
In order to overcome these problems, the world today is striving towards sustainable development which implies recycling of waste materials and the use of renewable resources - water, air and biomass, alternative energy sources and cleaner, environmentally friendly production. The necessary chemicals can be obtained from biomass by fermenting the sugar substrate or by chemical synthesis of the fermentation products, which makes every material that contains sugars usable in biotechnological production.

Efficient production of fermentable biomass hydrolysates is one of the main conditions for economically competitive production of numerous biotechnology products from renewable raw materials. Intensive research is currently focused on improving the hydrolytic degradation of biomass. These efforts include improvements in the technology of biomass pre-treatment and the production of hydrolytic enzymes, that catalyse the conversion of complex sugars to the free and fermentable ones.

There is no production of hydrolytic enzymes in Serbia but they are imported from abroad for appropriate purposes, although the region is abundant with raw materials for enzyme production. Wheat chaff, as a by-product of wheat processing, is obtained at the very beginning of this process and, accordingly, the cost of its production is small. With its composition, wheat chaff represents a very attractive raw material for the production of enzymes. On the other hand, the previous use of this by-product of wheat processing was only as a food for livestock. Therefore, the question arises of the possibility of obtaining greater economic and environmental profit by using the raw material for the production of a high-value product, such as enzymes, with the valorisation of other process outputs in order to achieve a concept of cleaner production, i.e. zero-emission concept.

The implementation of the technology for enzymes production from wheat chaff at industrial scales requires that this process primarily be optimised at the laboratory level. In order to optimize the process, it is necessary to study the enzyme production in detail by cultivating fungi on the by-products of wheat processing under different process parameters. Process optimization can contribute to understanding the different operating conditions, as well as the interactions of the examined variables on the bioprocess of cultivation on the given biomass.

Since the process of enzyme production from wheat chaff is insufficiently explored, there is a need to determine the optimal process parameters for obtaining enzymes by cultivating fungi on nutrient media based on wheat chaff, with the aim of producing enzymes from the given by-products.

EXPERIMENTAL

Producing microorganism

To test the production of cellulolytic and xylanolytic enzymes, the producing strains used were Trichoderma reesei QM 9414, Aspergillus spp. and Penicillium spp., which are kept in
the collection of cultures at the Faculty of Technology Novi Sad. Refreshing of the fungi was carried out on the potatoes dextrose agar (PDA) by incubating them for 3-4 days at 28 °C.

The inoculation of the nutrient media was carried out with a pre-prepared spore suspension in a sterile saline solution containing 10^6 spores g$^{-1}$. For the purpose of initial testing or selection of the producing strain, 10 % of the inoculum was added to the liquid substrates, and for the solid-state substrates, the same volume of the spore suspension was sprayed over their surface.

Media preparation

For the purpose of research, the by-product of wheat processing (wheat chaff) was used to prepare nutrient media. The raw material was obtained from the local wheat processing plant (mill) “Žitopromet - Mlin” a.d. Senta.

The composition of liquid substrates for the submerged cultivation technique (SmF) on wheat chaff with the aim of selecting the producing strain was 3 g of wheat chaff, 0.5 % (NH$_4$)$_2$SO$_4$ and 1.36 % K$_2$HPO$_4$ in 100 mL of distilled water.

For cultivation on solid substrates (SSF) with the aim of selecting the producing strain, the same amount of raw material (3 g) was suspended in the same amount (100 mL) of a water solution containing 0.5 % (NH$_4$)$_2$SO$_4$ and 1.36 % K$_2$HPO$_4$ like for the liquid media. After 15 minutes of mixing, the pH value was checked and corrected to 4.5 ± 0.1 by adding 1 % NaOH or 1 % H$_2$SO$_4$. After an additional 15 min of stirring, the suspension was allowed to stand still so that the solid phase could settle in the gravitational field. The liquid phase was decanted and the residue used as a solid substrate for the production of enzymes. In this way enzymes have been produced from the same amount of raw material used, i.e. 3 g of wheat chaff, as well as the same preparation method (100 mL of prepared salt solution), so that the obtained results could be comparable.

Sterilization of the prepared media was carried out in an autoclave at a temperature of 121 °C and a pressure of 2.1 bar for 20 min.

Cultivation conditions

Production of enzymes by fungi cultivation for both submerged and solid-state techniques was carried out in 300 ml Erlenmeyer flasks. Initial trials on choosing the fungi strain were carried out for 7 days at a temperature of 28 ± 1 °C. For optimization purposes, the examined process factors were varied in the following ranges: temperature 25-30 °C, pH 4-6 and cultivation time 3-7 days.

Sample preparation and analysis

After cultivation on solid media, the products of strain metabolism were extracted with 100 mL 0.1 M acetate buffer (pH 5.0) with constant mixing at 200 rpm during 30 min at a constant temperature, in order to equal the liquid volume with the submerged cultivation broths.

Separation of solid and liquid phase after extraction of solid media as well as the submerged cultures was carried out by filtering through a qualitative filter paper. Obtained filtrates were subjected to the standard analysis of cultivation media.

The intensity of hydrolytic action of the cultivation liquids and solid extracts towards cellulose and xylan were assayed separately for each substrate by measuring the release of reducing sugars using the DNS (3,5-dinitrosalicylic acid) method.

Enzyme assay for cellulase activity

The substrate for cellulase activity estimation was a 1 % solution of a soluble carboxymethylcellulose (CMC) in a 0.1 M acetate buffer with a pH value of 5.5. The full
dissolving of carboxymethylcellulose was achieved by cooking this solution in a boiling water bath. This carboxymethylcellulose solution was mixed with a liquid phase of submerged fermentation or a solid-state fermentation extract in a ratio of 3:1. A 0.1 M acetate buffer with a pH value of 5.5 was used for a blank test. After homogenization, the hydrolysis was performed for 30 minutes at 45 °C in a tempered water bath. Finally, after hydrolysis and DNS method, one unit (U) of cellulase activity was defined as the amount the enzyme that liberated 1 μmol of reducing sugar as glucose mL\(^{-1}\) min\(^{-1}\) under the assay conditions.

Enzyme assay for xylanase activity

Substrate for assessing xylanase activity was a 1 % solution of xylan in 0.05 M acetate buffer with a pH value of 4.5. Complete dissolution of xylan was achieved by cooking this solution in a boiling water bath. This solution was mixed with a liquid phase from submerged fermentation or a solid-state fermentation extract in a ratio of 3:1. For a blank test, 0.05 M acetate buffer with a pH value of 4.5 was used. After homogenization, the hydrolysis was performed for 60 minutes at 45 °C in a tempered water bath. Finally, after hydrolysis and DNS method, one unit (U) of xylanase activity was defined as the amount the enzyme that liberated 1 μmol of reducing sugar as xylose mL\(^{-1}\) min\(^{-1}\) under the assay conditions.

Statistical optimization

All the results presented in this paper represent the mean values from three experiments repeated under the same conditions. The results were statistically analysed by variance analysis in the degree of significance \(\alpha = 0.05\). The adequacy of the model was estimated based on the determination coefficient \(R^2\) and the \(p\)-value of the model. The response surface methodology (RSM) method is a modelling method suitable for studying the impact of multiple factors (temperature, pH and cultivation time) on responses (cellulase and xylanase activity) by their simultaneous variation with the implementation of a limited number of experiments. This is precisely why this method has been used to optimize the conditions of production of enzymes by submerged and solid-state cultivation techniques from wheat chaff.

Statistical processing of experimental data was performed using the software package STATISTICA 13.5 (StatSoft, USA). The significance of the influence of each of the factors as well as their interactions were determined by comparing the \(p\)-values for each of the coefficients in the regression equation. To optimize the factors, the desired (required) function method was applied in the software package DESIGN-EXPERT 7.0 (StatEase, Inc., USA).

RESULTS AND DISCUSSION

Strain selection

Table I shows the results of enzyme activity in the filtrates obtained after cultivating *Trichoderma reesei* QM 9414, *Penicillium* spp., and *Aspergillus* spp. on wheat chaff based media by SmF and SSF. Based on the results for enzyme activity in filtrates after cultivating three types of fungi on wheat chaff, it can be concluded that higher values can be obtained by SmF compared to the SSF method. In terms of cellulose activity, the fungi with the highest value was obtained for *Trichoderma reesei* QM 9414, followed by *Aspergillus* spp. and finally *Penicillium* spp. for both SmF and SSF. On the other hand, the highest xylanase activity was obtained by using *Trichoderma reesei* QM 9414, followed by *Penicillium* spp. and finally *Aspergillus* spp. for both SmF and SSF. Since *Trichoderma reesei* QM 9414 gave the highest results for both examined
enzymes activities and cultivation techniques, this fungus has been chosen as the producing strain for the optimization process.

TABLE I. Cellulase and xylanase activity of filtrates after cultivating three different types of fungi on wheat chaff based media by submerged and solid-state technique

<table>
<thead>
<tr>
<th>Producing strain</th>
<th>Cellulase activity, U mL$^{-1}$</th>
<th>Xylanase activity, U mL$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SmF</td>
<td>SSF</td>
</tr>
<tr>
<td>Penicillium spp.</td>
<td>0.0118</td>
<td>0.0031</td>
</tr>
<tr>
<td>Trichoderma reesei QM 9414</td>
<td>0.0422</td>
<td>0.0331</td>
</tr>
<tr>
<td>Aspergillus spp.</td>
<td>0.0351</td>
<td>0.0227</td>
</tr>
</tbody>
</table>

Analysing Table I it can be seen that xylanase activity has higher values compared to cellulase activity for an observed producing strain and cultivation technique. This fact is in accordance with the previously published results by Hirasawa17. The obtained results in Table I are comparable to literature data since Mihajlovski13 reported a cellulase activity of 0.405 U mL$^{-1}$ after cultivating Paenobacillus chitinolyticus CKS1 in a barley bran liquid medium. Although much higher levels of enzyme (cellulase and xylanase) activity have been obtained18,19, thus the need for process optimization.

Optimization of process parameters

In the case of enzyme biosynthesis by any cultivation technique, the composition of the nutrient medium, the method of preparation and inoculum dosing, as well as the process parameters must be optimal for the selected production microorganism20. When optimizing bioprocesses, the application of RSM is of great importance21. This is the reason why Box-Behnken Design (BBD) within RSM has been used to determine the maximum cellulase and xylanase activity which can be obtained from cultivating Trichoderma reesei on wheat chaff based media by SmF and SSF while analysing the effect of three different process parameters (Table II).

In order to describe the response functions for cellulase and xylanase activities, the results from Table II were fitted into second order polynomial equations of multiple regression analysis and the obtained equations are presented together with the analysis of variance ANOVA in Table III. The software suggested a quadratic model as most suitable for describing all of the responses:

$$Y = x + aA + bB + cC + a^2A^2 + b^2B^2 + c^2C^2 + abAB + acAC + bcBC$$ \hspace{1cm} (1)

where Y is the response, x is the intercept, while A (cultivation temperature), B (pH value) and C (cultivation time) are independent variables with their appropriate coefficients a, b and c (linear: a, b and c; quadratic: a^2, b^2 and c^2; interaction: ab, ac and bc), respectively.

According to the ANOVA significant model terms are those whose p-value is lower than 0.05.
TABLE II. Experimental plan derived from BBD for the examined process variables and responses of SmF and SSF of wheat chaff

<table>
<thead>
<tr>
<th>Run</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Variables</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t / °C</td>
<td>pH</td>
<td>Cultivation time, day</td>
<td>SmF</td>
<td>SSF</td>
</tr>
<tr>
<td></td>
<td>Y₁</td>
<td>Y₂</td>
<td>Activity, U mL⁻¹</td>
<td>Y₁</td>
<td>Y₂</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>0.0222</td>
<td>0.1214</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>4</td>
<td>7</td>
<td>0.0514</td>
<td>0.1720</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>4</td>
<td>5</td>
<td>0.0149</td>
<td>0.0171</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>0.0414</td>
<td>0.1570</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>5</td>
<td>7</td>
<td>0.0458</td>
<td>0.0617</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>6</td>
<td>5</td>
<td>0.0137</td>
<td>0.0219</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>4</td>
<td>3</td>
<td>0.0165</td>
<td>0.1278</td>
</tr>
<tr>
<td>9</td>
<td>35</td>
<td>5</td>
<td>3</td>
<td>0.0077</td>
<td>0.0126</td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td>6</td>
<td>5</td>
<td>0.0092</td>
<td>0.0118</td>
</tr>
<tr>
<td>11</td>
<td>25</td>
<td>5</td>
<td>3</td>
<td>0.0096</td>
<td>0.0096</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>4</td>
<td>5</td>
<td>0.0147</td>
<td>0.0189</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>6</td>
<td>7</td>
<td>0.0398</td>
<td>0.1491</td>
</tr>
<tr>
<td>14</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>0.0195</td>
<td>0.0164</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>0.0383</td>
<td>0.1466</td>
</tr>
</tbody>
</table>

For cellulase activity in media filtrates obtained after cultivating *Trichoderma reesei* on wheat chaff via SmF significant model terms are A, C, AC, A² and B², while for xylanase activity of the same samples significant model terms are C and A². The significant model term for the response cellulase activity for the SSF enzyme production is only the term C², while for the response xylanase activity significant terms are C and A². From this analysis it can be concluded that the most dominant factor of the examined is C (cultivation time), then A (cultivation temperature) and finally B (pH value). Also, the significant terms for the response xylanase activity are the same for both SmF and SSF. The graphical display of the effects of examined parameters and their significance on the responses can be seen on Fig. 1.

The types of lines in a perturbation graph are directly related to the type of effect the parameter has on the response. For example, if the line is linear (straight line), then the linear form of this parameter has a significant influence on the response. This can be observed for parameter C on Fig. 1A, Fig. 1B and Fig. 1D. In other words, by increasing the value of parameter C (cultivation time) the enzyme activity of cellulase of both SmF and SSF and xylanase activity of SmF increase. Secondly, if a line has the form of a parable, then the quadratic term of this parameter has a significant effect on the response. Observing Fig. 1 this can be seen for parameter A on Fig.1A, Fig. 1B and Fig. 1D, and also for parameter C on Fig. 1C. Practically this means that the hydrolytic activities of the examined...
enzymes have a maximum value somewhere in the examined range of the mentioned parameters. *T. reesei* enzymes are thermolabile compounds \(^{22}\), i.e. their structure and activity depend on the temperature of their surroundings \(^{23}\); it is not surprising that this parameter has such an effect on the responses. Likewise, the producing strain enhances its enzyme synthesis depending on its phase of growth (lag, exponential, etc.) \(^{24}\) and that is why there is an optimum cultivation time when the enzyme activity is at its top. Finally, if the lines of two parameter's intersect twice at different point of the observed interval, these two parameters have a joint influence on the response. This interaction of parameters was affirmed only for parameters A and C in Fig. 1A.

TABLE III. Regression equation coefficients and the \(p\)-values for the modelled responses of hydrolytic enzymes production from wheat chaff

<table>
<thead>
<tr>
<th>Effect</th>
<th>SmF</th>
<th>SSF</th>
<th>SmF</th>
<th>SSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.0400</td>
<td>0.1500</td>
<td>0.0110</td>
<td>0.1200</td>
</tr>
<tr>
<td>Linear</td>
<td>A</td>
<td>-0.0041</td>
<td>-0.0067</td>
<td>0.0057</td>
</tr>
<tr>
<td>B</td>
<td>-0.0015</td>
<td>-0.0039</td>
<td>0.0023</td>
<td>-0.0028</td>
</tr>
<tr>
<td>C</td>
<td>0.0130</td>
<td>0.0160</td>
<td>-0.0011</td>
<td>0.0290</td>
</tr>
<tr>
<td>Quadratic</td>
<td>A^2</td>
<td>-0.0200</td>
<td>-0.0120</td>
<td>-0.0022</td>
</tr>
<tr>
<td>B^2</td>
<td>-0.0077</td>
<td>-0.0055</td>
<td>-0.0005</td>
<td>-0.0039</td>
</tr>
<tr>
<td>C^2</td>
<td>-0.0002</td>
<td>0.0021</td>
<td>0.0143</td>
<td>-0.0067</td>
</tr>
<tr>
<td>Interaction</td>
<td>AB</td>
<td>-0.0012</td>
<td>-0.0021</td>
<td>0.0014</td>
</tr>
<tr>
<td>AC</td>
<td>-0.0061</td>
<td>-0.0120</td>
<td>-0.0100</td>
<td>-0.0091</td>
</tr>
<tr>
<td>BC</td>
<td>-0.0043</td>
<td>-0.0041</td>
<td>0.0025</td>
<td>-0.0070</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to Table III, the models \(p\)-values \((p<0.05)\) and lack of fit values \((p>0.05)\) showed that the models are significant and in the observed form (quadratic) are suitable for predicting the production of enzymes by *Trichoderma reesei* from wheat chaff for both SmF and SSF. The regression coefficients \((R^2)\) of 0.9756, 0.9917, 0.9438 and 0.9687 for cellulase activity after SmF, xylanase activity after SmF, cellulase activity after SSF and xylanase activity after SSF, respectively, indicate a good correlation between the experimentally obtained data and values predicted by the models (Fig. 2). Likewise, the correlation of the examined responses (cellulase and xylanase activity) has been obtained from the modelling software and their values are 0.897 and 0.884 for SmF and SSF, respectively.

The general approach in the desirability function method consists in converting individual responses into desired functions whose values range from
0 to 1 (Fig. 3). The value of the individual desired function “0” is the worst value, while the value “1” represents the best value of the observed response. For the SmF the maximal value of the desirability function of 0.987 can be obtained if the temperature is ranged between 28.43 °C and 30.82 °C, while the pH value is between 4.15 and 4.32. In order to obtain a maximal enzyme activity by SSF, the cultivation temperature should be between 27.56 °C and 28.42 °C, while the pH value should be kept at 6. Under these conditions, the value of the desirability function is 1.000.

![Fig 1. Perturbation graphs for analysing the effect of examined parameters (A: cultivation temperature, °C; B: pH value, 1 and C: cultivation time, days) on responses for A) cellulase activity after SmF; B) xylanase activity after SmF; C) cellulase activity after SSF and D) xylanase activity after SSF](image)

Fig 1. Perturbation graphs for analysing the effect of examined parameters (A: cultivation temperature, °C; B: pH value, 1 and C: cultivation time, days) on responses for A) cellulase activity after SmF; B) xylanase activity after SmF; C) cellulase activity after SSF and D) xylanase activity after SSF

In order to determine the optimal setting of examined parameters for obtaining the highest values of the responses, the desirability function was used. Initial criteria were that the variables stay in the examined range, while the activities of
cellulase and xylanase should reach their maximum value. The results of this desirability function analysis are shown in Table IV and Fig. 3. Comparing the determined enzyme activities from Table I and IV, it can be concluded that there is an increase, i.e. enhancement of 26.77 %, 13.39 %, 22.96 % and 42.66% in terms of cellulase activity after SmF, xylanase activity after SmF, cellulase activity after SSF and xylanase activity after SSF, respectively, when comparing the results before and after the optimisation process.

As can be seen from Table IV optimal temperature and pH values differ for SmF and SSF, namely because the conditions of the two cultivation techniques are quite different. The water content (water/solid ratio) is high for the SmF and very low for SSF, which influences the acidity level (pH value) of the media during the primary metabolism of the producing strain when mostly organic acids are being secreted into the media. Thus, the SmF can handle a more acid surrounding, while
the SSF cannot. On the other hand, there are some heat and mass transfer limitations in SSF compared to SmF, which is also the consequence of lower water content in the SSF, and that is why there is a difference in optimal temperature.

TABLE IV. Optimum point prediction of parameters A: cultivation temperature, °C; B: pH value, 1 and C: cultivation time, days by the desirability function method for Y_1: cellulase activity, U mL$^{-1}$ and Y_2: xylanase activity, U mL$^{-1}$ after SmF and SSF of wheat chaff; optimization model validation

<table>
<thead>
<tr>
<th>Factor</th>
<th>SmF</th>
<th></th>
<th></th>
<th>SSF</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A / °C</td>
<td>29.65</td>
<td>28.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4.27</td>
<td>6.00</td>
<td>0.0407</td>
<td>0.1401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C / day</td>
<td>7.00</td>
<td>7.00</td>
<td>0.0455</td>
<td>0.1398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validation</td>
<td></td>
<td></td>
<td>0.0549</td>
<td>0.1703</td>
<td>0.1703</td>
<td>0.0455</td>
</tr>
</tbody>
</table>

Fig. 3. Desirability function graph for cellulase and xylanase activity as a function cultivation temperature, pH value and cultivation time for A) SmF and B) SSF of wheat chaff

Running an additional set of experiments under optimal conditions suggested by the model showed that the obtained data for examined enzyme activities are in a good agreement with the values predicted by the optimization model (Table IV).

Previous studies on enzyme production did include the examined strains _Penicillium_26, _Aspergillus_27 and _Trichoderma_17 but all of them used some other types of substrate or agricultural waste for their media preparation: wheat bran28, sugar bagasse29, paper pulp30, wheat straw31, rice straw38, rice bran32, etc. Nevertheless, all of the aforementioned authors obtained higher enzyme activities due to higher substrate loading21, genetically engineer producing strain17, by adding enzyme production enhancers (for example, lactose33) or by better enzyme
ENZYMES PRODUCTION FROM WHEAT CHAFF

Also, wheat chaff became interesting only recently due to it being a good source of (xylo)oligosaccharides, which can be obtained after the action of certain enzymes, thus supporting the fact that in terms of cultivating microorganisms on wheat chaff based media, the producing strain would need to synthesize hydrolytic enzymes in order to utilize the substrate, i.e. enzyme production.

Similarly, a previous study by Saqib compared SmF and SSF for enzymes production and showed that higher enzyme activity is obtained by SSF. However, the initial amount of substrate (agricultural waste – wheat straw) was ten times lower in SmF. Results reported here were obtained from the same amount of raw material (3 g) as suggested by Hansen in order to be able to compare the two cultivation techniques and the results shown that a slight advantage should be given to the SmF. Besides this, production of enzymes at industrial level leans towards SmF due to better parameter control, easy scalability and simpler product recovery, which is the opposite for SSF together with mass and heat transfer limitation. Still, further research should be carried out in laboratory bioreactors for SmF and SSF in order to compare the two techniques in terms of medium composition, operating costs, purification techniques. Only then can a final conclusion be drawn to which of the two production techniques to turn when the aim would be to produce hydrolytic enzymes from wheat chaff.

CONCLUSION

Using cheap agricultural waste for obtaining high-value products is very attractive nowadays. Wheat chaff as a by-product of milling facilities and which is currently being used only as animal feed has the potential of becoming such raw material for producing hydrolytic enzymes. Different fungi strains (Penicillium, Aspergillus and Trichoderma) have been investigated, with the aim of producing cellulases and xylanases from wheat chaff by submerged and solid-state technique. As Trichoderma showed the highest potential in enzymes production, an optimisation procedure of process conditions (cultivation temperature, pH value and cultivation time) has been carried out in order to enhance the observed bioprocess. Still, further research should be directed towards optimizing the cultivation medium, bioreactor style, enzyme separation and purification techniques.

Acknowledgements: This study is part of the projects which are supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (TR-31002).
ИЗВОД

ОПТИМИЗАЦИЈА СИМУЛТАНЕ ПРОИЗВОДЊЕ ЦЕЛУЛАЗА И КСИЛАНАЗА
СУБМЕРЗНОМ И ТЕХНИКОМ КУЛТИВАЦИЈЕ НА ЧВРСТИМ ХРАНЉИВИМ
ПОДЛОГАМА НА БАЗИ ПШЕНИЧНЕ ПЛЕВИЦЕ

МИРЈАНА ЈОВАНОВИЋ, ДАМЈАН ВУЧУРОВИЋ, ЂОНА ВАЉКОВ,
РАДА ЈЕВТИЋ - МУЧИЋ

Универзитет у Новом Саду, Технолошки факултет Нови Сад, Катедра за биотехнологију и
фармацевтичко инжењерство, Булевар цара Лазара 1, 21 000 Нови Сад, Србија;
Универзитет у Новом Саду, Научни институт за прехрамбене технологије у Новом Саду, Булевар цара Лазара 1, 21 000
Нови Сад, Србија

Пшенична плевица као полопривредни отпад представља јефтину сировину за
биотехнолошке процесе. Својим лигноцелулозним саставом она је погодна за
производњу хидролитичких ензима за примену у технологијама обновљивих горива
друге генерације. Циљ овог рада је био оптимизација процесних параметара
(температура култивације 25–35 °C, вредности рН 4–6 и времена култивације 3–7 дана)
култивације плесни (Trichoderma reesei) на хранљивој подлози чија је основа пшенична
плевица, и то субмерзном техником култивације и култивацијом на чврстим хранљивим
подлогама, како би се побољшале и упоредиле ове две врсте симултане производње
целулаза и ксиланаза. Оптимални услови субмерзне култивације су били 29,65 °C за
температуру, 4,27 за вредности рН и 7,00 дана за време култивације, док су за
култивацију на чврстим подлогама оптимални услови били 28,01 °C, 6,00 и 7,00 дана,
редоследом. Добијене целулолитичке и ксиланолитичке активности филтрата
култивационих подлога су износили 0,0536 и 0,1676 U mL⁻¹ за субмерзну
ферментацију, а 0,0407 и 0,1401 U mL⁻¹ за ферментацију на чврстим подлогоама,
редоследом, што је допринело повећању ензимске активности од 26,77 и 13,39 % за субмерзну
ферментацију, а 22,96 и 42,66 % за ферментацију на чврстим подлогоама, редоследом, у
поређењу са резултатима добијеним пре оптимизације. (Примљено 30. маја; ревидирано 15 јула; прихваћено 22. јула 2019)

REFERENCES

1. C. S. Farinas, Renewable Sustainable Energy Rev. 52 (2015) 179
 http://dx.doi.org/10.1016/j.rser.2015.07.092
 http://dx.doi.org/10.1016/j.ijbiomac.2015.10.090
 A. Manikanta, P. W. Ramteke, Renewable Sustainable Energy Rev. 82 (2018) 2379
 http://dx.doi.org/10.1016/j.rser.2017.08.074
 http://dx.doi.org/10.1016/j.cbpa.2016.08.028
 Technol. 46 (2010) 541 https://doi.org/10.1016/j.enzmicrotec.2010.03.010
6. V. Juturu, J. C. Wu, Renewable Sustainable Energy Rev. 33 (2014) 188
 http://dx.doi.org/10.1016/j.rser.2014.01.077
7. B. Bajić, S. Dodić, D. Vučurović, J. Dodić, J. Grahovac, Renewable Sustainable Energy
 Rev. 50 (2015) 1347 https://doi.org/10.1016/j.rser.2015.05.079
 https://doi.org/10.1016/j.jspr.2015.08.004
 https://doi.org/10.1016/j.procbio.2010.05.031