ACCEPTED MANUSCRIPT

This is an early electronic version of an as-received manuscript that has been accepted for publication in the Journal of the Serbian Chemical Society but has not yet been subjected to the editing process and publishing procedure applied by the JSCS Editorial Office.

This “raw” version of the manuscript is being provided to the authors and readers for their technical service. It must be stressed that the manuscript still has to be subjected to copyediting, typesetting, English grammar and syntax corrections, professional editing and authors’ review of the galley proof before it is published in its final form. Please note that during these publishing processes, many errors may emerge which could affect the final content of the manuscript and all legal disclaimers applied according to the policies of the Journal.
The extraction of Sr\(^{2+}\) with dicyclohexano-18-crown-6 in conventional organic solvent and ionic liquid diluents

ZHENG WEI1, YANG GAO1-*, YU ZHOU1, CAISHAN JIAO1, MENG ZHANG1, HONGGUO HOU1 and WEI LIU2,

1 Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin, Heilongjiang Province, China, 150001; 2 Nuclear Power Institute of China, Chengdu, Sichuan Province, China, 610005

(Received 17 April; revised 16 October; accepted 18 October 2019)

Abstract: \(^{90}\)Sr (\(t_{1/2}=28.8\) a), one of the most significant fission products in high-level radioactive liquid waste (HLLW), contributes to a large part of the heat load and radiation. Removal of \(^{90}\)Sr from the HLLW is beneficial for the final treatment of nuclear wastes. In this paper, the extraction of Sr\(^{2+}\) was carried out using dicyclohexano-18-crown-6 (DCH18C6) in a variety of diluents including conventional organic solvents and novel ionic liquid solvents. The effect of several factors, such as nitric acid concentration, crown ether concentration, initial strontium concentration on the extraction of Sr\(^{2+}\) have been studied comprehensively. The higher distribution ratio and stripping efficiency of Sr\(^{2+}\) were obtained with binary diluents consisted of n-octanol and acetylene tetrachloride compared with that using pure n-octanol as diluent. As for the C\(_n\)mimNTf\(_2\) (\(n=2, 4, 6\)) ionic liquid solvent systems, the distribution ratio of Sr\(^{2+}\) was much higher from the nitric acid medium with low concentration than the traditional solvent systems. The results showed that \(D_{\text{C2mimNTf2}}> D_{\text{C4mimNTf2}}> D_{\text{C6mimNTf2}}\), which indicated that shorter carbon chain benefits the extraction of Sr\(^{2+}\).

Keywords: strontium extraction; crown ether; diluent effect; high level liquid waste

INTRODUCTION

The reprocessing of spent nuclear fuel has aroused more and more attention with the development of nuclear industry in recent years. The high-level radioactive liquid waste (HLLW), produced during the reprocessing of the nuclear fuel, comprises of minor actinides (MAs) such as Am, Cm, and fission product elements (FPs) including lanthanides (Ln(III)), Cs, Sr, Zr, etc. Taking account of the viewpoints of minimizing the long-term radioactive risk and facilitating the management of the HLLW, it is necessary to separate the MAs and FPs from the HLLW\(^1\). Two long-lived radionuclides \(^{90}\)Sr and \(^{137}\)Cs, whose
half-lives are 28.8 and 30.2 years, respectively, have the characteristics of high radioactivity, and their specific activities are 3.2×10^{11} Bq/g and 5.1×10^{12} Bq/g, respectively. Therefore, they are also strong heat-release nuclides, which mainly contribute to the temperature elevation of HLLW. On the one hand, the storage time and the management cost of the HLLW will significantly decrease if separating 90Sr and 137Cs from HLLW. On the other hand, the recovered 90Sr and 137Cs can be used in the field of medicine and radiation technology. For example, 137Cs and 90Sr are being used in blood irradiation and radiopharmaceutical applications, respectively. Besides, 90Sr could be used as radioisotope micro power generator or radiation-source for radiation research. Studies on the separation of 90Sr and 137Cs from the HLLW were reported in quantities.

Many separation procedures, such as ion exchange, solvent extraction, precipitation et al., have been developed for the partitioning of 90Sr from HLLW. Solvent extraction has received much more extensive attention and application among them. It is widely accepted due to its easily being scaled-up and simple operation. At the same time, the separation process aimed at 90Sr using solvent extraction is convenient to cooperate with other processes.

At present, tons of the extractants have been studied for the partitioning of 90Sr, of which crown ether has attracted much attention due to its similar cavity size to the ion diameter of Sr$^{2+}$. Pedersen et al. first synthesized crown ether with macrocycles like 18-crown-6 (18C6) which was an excellent extractant for Sr$^{2+}$. To improve the hydrophobicity of 18C6, dicyclohexano-18-crown 6 (DCH18C6) was synthesized after two cyclohexyls were planted on the cyclic polyether. The efficient separation of Sr$^{2+}$ using DCH18C6 in different diluents as the extractant has been reported extensively. Horwitz et al. studied the effect of various diluents, including esters (n-butyl acetate, 3-methylbutyln acetate, n-hexyl acetate), ketones (2-hexanone, 4-methyl-2-pentanone, 2-octanone et al.), alcohols (n-amyl, n-hexyl, n-heptyl et al.) and carboxylic (pentanoic, hexanoic, heptanoic, octanoic et al.) on the extraction efficiency of Sr$^{2+}$, with DCH18C6 and its di-tert-butyl derivative (DTBCH18C6) serviced as extractants. It was found that n-octanol seemed to be the best choice as a potential process-scale solvent from the point of view of physical properties (e.g. flash point). However, the unfavorable extraction behavior was also observed when the crown ether concentration and the nitric acid concentration were not quite high. Amar Kumar reported the extraction of strontium from nitric acid medium employing DCH18C6 in the mixture of 80/20 v/v% butanol/n-octanol, and it was found that higher distribution ratio (D_{Sr}) values were obtained in this mixture diluent as compared to various pure alcohol diluents. Compared with the SREX (strontium extraction) solvent (pure n-octanol), it was indicated that the favorable extraction and stripping efficiency was obtained with 80/20 v/v% toluene/n-octanol used as the diluent for DTBCH18C6, which principally contributes to the lower uptake of
EFFECTIVE EXTRACTION OF STRONTIUM 3

acid in the mixture diluents than that in pure n-octanol18. In the following study, another mixture diluent consisted of n-octanol and chloroform was put forward. It was found that 1:1 mixture diluent resulted in the highest D_{Sr} value when DTBCH18C6 was used as extractant of Sr$^{2+}$. The synergistic solvent extraction of n-octanol and chloroform was used to explain these experimental results19.

Apart from applying the binary diluents composed of n-octanol and another organic reagent to upgrade the extraction performance, some other outstanding diluents aimed at strontium extraction were also put forward. Fan \textit{et al.}20 investigated the extraction performance of Sr$^{2+}$ employing DCH18C6 in tetrachloride acetylene (TCA), and it was found that the extraction efficiency of Sr$^{2+}$ could reach up to 92% when HNO$_3$ concentration was 1 mol·L$^{-1}$. Better stripping performance was also obtained when deionized water was used as stripping agent. However, the diluent TCA is a kind of unstable halohydrocarbon which easily breaks down, so it is unadvisable to use alone in a large scale. Considering the great extraction ability and shortcoming of TCA, it is worthy to investigate the extraction performance of the binary diluent of TCA and n-octanol.

In the recent 10 years, a novel type of diluent, room-temperature ionic liquids (ILs), have been studied for the reprocessing of the spent nuclear fuel21,22. Compared with traditional organic solvent, room-temperature ILs have the features of non-toxic, physical and chemical stability which can be used to the separation of metal cation, and extraction of actinides, lanthanides, and fission products by use of ionic liquids have been conducted23. Dai \textit{et al.}24 obtained “Unprecedented large D_{Sr}” by DCH18C6 dissolved in various imidazolium-based ILs (with either PF$_6$ or NTf$_2$), which risen up to 10^4, while in toluene or chloroform, D_{Sr} only reached values of the order of 10^{-1}. In the following study, extraction mechanism of cation exchange was proposed by Dietz through investigating the ILs extraction systems aimed at the separation of Sr$^{2+}$25. Monoaza-substituted crown ethers in ILs were investigated for the separation of Sr$^{2+}$ and Cs$^+$ from the aqueous phase26. Visser \textit{et al.} studied the extraction of Sr$^{2+}$, Cs$^+$ and Na$^+$ using DCH18C6 and Dtb18C6 dissolved in the room-temperature ILs C$_n$mimPF$_6$ ($n=4, 6, 8$)27,28. Considering the small number of studies about the different kinds of the ILs on the extraction and stripping performance for Sr$^{2+}$, the bis(trifluoromethylsulfonyl)imide-based ILs for the partitioning of Sr$^{2+}$ deserves to be further investigated.

In the present work, a solution of DCH18C6 in a variety of diluents including mixture of n-octanol and TCA, ILs of C$_n$mimNTf$_2$ ($n=2, 4, 6$) were studied for more efficient extraction behavior of Sr$^{2+}$, and the effect of nitric acid concentration, crown ether concentration, Sr$^{2+}$ concentration, temperature on the extraction of Sr$^{2+}$ were investigated. In addition, stripping Sr$^{2+}$ from traditional diluents and ionic liquid systems were investigated, respectively.
EXPERIMENTAL

Reagents

DCH18C6 (>98%), whose chemical structure formula was shown in Fig. 1, was procured from Tokyo Chemical Industry and was used as received. A.R. grade n-octanol and TCA, ionic liquids C_{n}mimNTf_{2} (n=2, 4, 6) (>99 %) procured from the Sinopharm Chemical Reagent Co, were used as received. All other reagents including various nitrate salts were of A.R. grade without further purification.

![Fig 1. Structure of dicyclohexano-18-crown-6](image)

Solvent extraction experiments

The extraction experiments were conducted by equilibrating 10^{-3} L (or 0.5×10^{-3} L) organic phase with 10^{-3} L aqueous phase in a constant temperature vibrator at 25±0.3 °C for half an hour. The oscillation equilibrium time experiment has been carried out in advance, which proved that 30 min is enough to achieve the two-phase equilibrium. The DCH18C6 concentration in organic phase was 0.01 mol L^{-1}, the initial HNO_{3} concentration was 1 mol L^{-1}, and the Sr^{2+} concentration in aqueous phase was 1.14×10^{-3} mol L^{-1}, except for the experiments of the effect of the concentration of DCH18C6, HNO_{3} and Sr^{2+}, respectively. After centrifugation, an aliquot of the raffinate was separated and its concentration was assayed by inductively coupled plasma mass spectroscopy (ICP/MS). The concentration of Sr^{2+} in the organic phase was determined by the subtraction of the Sr^{2+} concentration in the raffinate from the initial aqueous Sr^{2+} concentration. After centrifugation, an aliquot of the raffinate was separated and its concentration was assayed by inductively coupled plasma mass spectroscopy (ICP/MS). The concentration of Sr^{2+} in the organic phase was determined by the subtraction of the Sr^{2+} concentration in the raffinate from the initial aqueous Sr^{2+} concentration. The distribution ratio, D_{Sr}, presented as Eq. (1), was defined as the ratio of the Sr^{2+} concentration in the organic phase to that in the aqueous phase. The extraction efficiency, E_{Sr}, presented as Eq. (2), was defined as the ratio of the Sr^{2+} concentration in organic phase to the initial Sr^{2+} concentration in the aqueous phase. As for the stripping experiments, an aliquot of the organic phase was taken and mixed with the stripant solution in a constant temperature vibrator at 25±0.3 °C for half an hour, which is enough to achieve the two-phase equilibrium. After centrifugation, an aliquot of the aqueous was separated and the Sr^{2+} concentration in it was assayed by ICP/MS. The stripping efficiency, E_{Sr}', presented as Eq. (3), was defined as the ratio of the Sr^{2+} concentration in aqueous phase to the initial Sr^{2+} concentration in the organic phase.

$$D_{Sr} = \frac{C_{org}}{C_{aq}} = \frac{V_{aq}(C_{aq} - C_{aq}^{int})}{V_{org}C_{org}}$$ \hspace{1cm} (1)

$$E_{Sr} = \frac{V_{aq}C_{aq}}{V_{aq}C_{aq}^{int}}$$ \hspace{1cm} (2)

$$E_{Sr}' = \frac{V_{aq}C_{aq}'}{V_{org}C_{org}}$$ \hspace{1cm} (3)
Where C_{ini} denotes the initial Sr$^{2+}$ concentration in aqueous phase, C_{aq}, C_{org}, and C_{aq}' refer to the Sr$^{2+}$ concentration in aqueous phase, organic phase and the stripping aqueous phase when the extraction reaction or the back-extraction reaction reach the equilibrium, respectively. The experiments were carried out in duplicate and experimental errors in the distribution measurements were within ±5%.

RESULTS AND DISCUSSION

Extraction of Sr$^{2+}$ with traditional diluents

Solvent extraction studies were carried out in the mixture diluents composed of n-octanol and TCA and the results are given in Table 1. As is seen, D_{Sr} values increase along with the increase of TCA in the mixture diluents. It should be noted that higher distribution ratio was obtained when small volume of TCA was mixed with n-octanol. Besides, the viscosity of the obtained mixture is lowered and DCH18C6 became easier to dissolve in the mixture diluents, and it was usually accepted that the decreasing fraction of n-octanol in mixture diluents reduced the amount of nitric acid extracted into the organic phase. Considering the irradiation instability of TCA which easily decomposes and generates corrosive hydrochloric acid under irradiation conditions, mixture diluents should be mainly constituted of n-octanol. Thus, we made a detailed investigation on the effect of mixture diluents with 30%, 50% TCA on Sr$^{2+}$ extraction.

Table 1. D_{Sr} using 0.01 mol·L$^{-1}$ DCH18C6 in the mixture diluents of n-octanol and TCA from 1 mol·L$^{-1}$ HNO$_3$

<table>
<thead>
<tr>
<th>n-octanol/TCA ratio</th>
<th>D_{Sr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.18</td>
</tr>
<tr>
<td>90</td>
<td>0.56</td>
</tr>
<tr>
<td>80</td>
<td>0.84</td>
</tr>
<tr>
<td>70</td>
<td>1.60</td>
</tr>
<tr>
<td>60</td>
<td>3.81</td>
</tr>
<tr>
<td>50</td>
<td>6.65</td>
</tr>
<tr>
<td>30</td>
<td>8.62</td>
</tr>
<tr>
<td>10</td>
<td>10.24</td>
</tr>
<tr>
<td>0</td>
<td>11.06</td>
</tr>
</tbody>
</table>

Effect of the HNO$_3$ concentration

The effect of the HNO$_3$ concentration on the extraction of Sr$^{2+}$ was carried out using 0.01 mol·L$^{-1}$ DCH18C6 in 70/30 v/v% n-octanol/TCA and 50/50 v/v% n-octanol/TCA, respectively. The results are shown in Fig. 2. The D_{Sr} values firstly increased and then decreased with the increase in HNO$_3$ concentration, and the nitric acid concentration corresponding to the maximum D_{Sr} value in the 50/50 v/v% n-octanol/TCA and 70/30 v/v% n-octanol/TCA solvents systems were about 1 and 2 mol·L$^{-1}$, respectively. Generally, the salting-out effect of NO$_3^-$ could facilitate the extraction of Sr$^{2+}$ and dominated the extraction at lower nitric acid feed. Conversely, the competition effect of H$^+$ decreased the extraction.
of Sr\(^{2+}\) because of the decrease of the free DCH18C6 concentration in the organic phase, and this competition effect dominated especially at higher nitric acid feed.

The higher TCA solvent system were actually more sensitive to the change of concentration of HNO\(_3\). As is seen in Fig. 2, the \(D_{Sr}\) values of 50/50 v/v% n-octanol/TCA solvent system were higher than that of 70/30 v/v% n-octanol/TCA solvent system at \(\leqslant 3\) mol·L\(^{-1}\) HNO\(_3\). However, the \(D_{Sr}\) values of 50/50 v/v% n-octanol/TCA solvent system were lower than that of 70/30 v/v% n-octanol/TCA solvent system at \(\geqslant 4\) mol·L\(^{-1}\) HNO\(_3\). The results showed that using DCH18C6 in lower proportion of TCA in the binary diluents as extractant was more convenient for the extraction of Sr\(^{2+}\) at high acid feed, whereas relatively higher proportion of TCA was more favorable at high acid feed.

![Graph showing the effect of the initial HNO\(_3\) concentration in aqueous phase on the \(D_{Sr}\). Organic phase: 0.01 mol·L\(^{-1}\) DCH18C6](image)

Fig 2. The effect of the initial HNO\(_3\) concentration in aqueous phase on the \(D_{Sr}\). Organic phase: 0.01 mol·L\(^{-1}\) DCH18C6

Effect of the DCH18C6 and initial Sr\(^{2+}\) concentration

The effect of the crown ether concentration and the initial Sr\(^{2+}\) concentration on the extraction of Sr\(^{2+}\) in these different extraction systems were studied. Fig. 3 shows a correlation between the \(D_{Sr}\) values and the initial Sr\(^{2+}\) concentration. The initial Sr\(^{2+}\) concentration was investigated in range of 0.4-2 mol·L\(^{-1}\) considering the average concentration of \(^{90}\)Sr\(^{2+}\) in HLLW\(^{5,14}\). As indicated, \(D_{Sr}\) values were barely affected by the initial Sr\(^{2+}\) concentration in the aqueous within a certain range. Fig. 4 shows the dependence of \(D_{Sr}\) values on the extractant concentration. As indicated, the \(D_{Sr}\) values increased with the increasing crown ether concentration and an excellent linear correlation between log \(D_{Sr}\) and log \(C(DCH18C6)\) was observed.
In order to confirm the stoichiometry of the extracted complex, an equilibrium equation of Sr$^{2+}$ is listed as follows:

$$m \text{Sr}_{\text{aq}}^{2+} + 2m \text{NO}_3^{-} + n \text{DCH18C6} \rightarrow [\text{Sr(NO}_3)^2]_m^n \cdot n \text{DCH18C6} \quad (3)$$

Eq. (4) is derived based on the definition of strontium distribution:

$$\log D = \log K_{\text{ex}} + 2m \log C(\text{NO}_3^-) + (m-1) \log C(\text{Sr}^{2+}) + n \log C(\text{DCH18C6}) \quad (4)$$

Where K_{ex} is defined as the equilibrium constant of the extracted reactions.

![Graph showing the effect of the initial Sr$^{2+}$ concentration in aqueous phase on the D_{Sr}.](image)

Fig 3. The effect of the initial Sr$^{2+}$ concentration in aqueous phase on the D_{Sr}. Organic phase: 0.01 mol L$^{-1}$ DCH18C6.

The plots of $\log D_{\text{Sr}}$ vs. $\log C(\text{DCH18C6})$ give straight line with the slope of 0.95, 1.10, respectively, and it implies that $n = 0.95, 1.10$ in these extraction systems. In addition, the result that D_{Sr} kept almost constant with the change of the initial Sr$^{2+}$ concentration indicates all the m values are close to 1 in these extraction systems. Therefore, the extracted complex can be described as Sr(NO$_3$)$_2$·DCH18C6. The schematic depiction of the Sr$^{2+}$ complex is inserted in Fig. 4. Good agreement between the results by this work and the former conclusions is obtained. Fan et al.20 investigated the extraction mechanism of Sr$^{2+}$ using DCH18C6 as extractant in TCA by the slope analysis method. It was found that the extracted species conformed to Sr(NO$_3$)$_2$·DCH18C6, as well as the element analysis and 1H NMR data for DCH18C6 and the complex well supported the conclusion by the slope analysis method. There was other more detailed summing-up of the Sr$^{2+}$ extraction with DCH18C6 from HNO$_3$ medium. Yang et al.30 studied the stoichiometric ratio of Sr$^{2+}$ to DCH18C6 in the extracted complexes by plotting the logarithm of D_{Sr} against the logarithm of the concentration of DCH18C6 in organic phase. From the slopes of the obtained
curve it can be deduced that the stoichiometric ratio were 2:1 when $C_0(DCH18C6) < 8$ mmol·L$^{-1}$, and 1:1 when $C(DCH18C6) \geq 8$ mmol·L$^{-1}$, which was in agreement with our conclusion that 1:1 when $C(DCH18C6) = 10$ mmol·L$^{-1}$.

![Fig 4](image)

Fig 4. The dependence of log D_{Sr} on the log $C(DCH18C6)$

Stripping

The diluent nitric acid, H$_2$CO$_3$ and DTPA etc. were the commonly used strippants. In this work, the different strippants were employed to study the stripping performance for Sr$^{2+}$, including diluent nitric acid, deionized water, KNO$_3$ (in view of their similar ionic radius to Sr$^{2+}$), and the results were shown in Table 2. It was found that the deionized water had great stripping performance for the solvent extraction systems.

<table>
<thead>
<tr>
<th>No. of stripping stages</th>
<th>Deionized water</th>
<th>0.01 mol·L$^{-1}$ HNO$_3$</th>
<th>0.1 mol·L$^{-1}$ HNO$_3$</th>
<th>2 mol·L$^{-1}$ KNO$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>81.9</td>
<td>76.1</td>
<td>74.8</td>
<td>76.6</td>
</tr>
<tr>
<td>II</td>
<td>93.2</td>
<td>87.9</td>
<td>82.8</td>
<td>84.9</td>
</tr>
<tr>
<td>III</td>
<td>96.9</td>
<td>95.6</td>
<td>89.0</td>
<td>87.9</td>
</tr>
<tr>
<td>IV</td>
<td>99.9</td>
<td>99.9</td>
<td>94.2</td>
<td>91.7</td>
</tr>
</tbody>
</table>

Table 3 gives the stripping data when deionized water was used as strippant. It was found that the stripping efficiency was higher from the mixture diluents than that from pure n-octanol, and the stripping efficiency increased with the rising proportion of TCA. Besides, about 4 stripping stages were needed to separate the Sr$^{2+}$ from the mixture diluents, while 5 or more stripping stages were necessary when pure n-octanol was the diluent of DCH18C6. The results further
illustrated that the binary diluent, mixture of n-octanol and TCA, had a better extraction and stripping performance than what we used before (pure n-octanol).

Table 3. Multi-stage stripping of Sr\(^{2+}\) from different diluents using deionized water as stripping agent

<table>
<thead>
<tr>
<th>No. of stripping stages</th>
<th>Pure n-octanol</th>
<th>70/30 v/v% n-octanol/TCA</th>
<th>50/50 v/v% n-octanol/TCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>73.9</td>
<td>81.9</td>
<td>83.1</td>
</tr>
<tr>
<td>II</td>
<td>80.6</td>
<td>93.2</td>
<td>95.6</td>
</tr>
<tr>
<td>III</td>
<td>89.3</td>
<td>96.9</td>
<td>98.7</td>
</tr>
<tr>
<td>IV</td>
<td>94.8</td>
<td>99.9</td>
<td>99.9</td>
</tr>
</tbody>
</table>

Furthermore, solvent extraction using DCH18C6 in the binary diluent as the extractant showed greater advantage compared to other methods aimed for the removal of Sr\(^{2+}\) from HLLW. For example, Zhang et al. studied the coprecipitation method using zirconyl molybdopyrophosphate for the removal of \(^{90}\)Sr, and the result showed that \(E_{Sr}\) only reached 92.96%.

Extraction studies in the different ILs

The extraction experiments of Sr\(^{2+}\) from nitric acid and deionized water medium were carried out. Table 4 gives the \(D_{Sr}\) data with different diluents from the 1 mol·L\(^{-1}\) HNO\(_3\) and deionized water medium. As seen in the top row, the DCH18C6-C\(_2\)mimNTf\(_2\) systems shown unsatisfactory results. The difference of the \(D_{Sr}\) values between the traditional and novel diluents in 1 mol·L\(^{-1}\) HNO\(_3\) medium is small, and the distribution ratios even are lower in C\(_2\)mimNTf\(_2\) and C\(_4\)mimNTf\(_2\) solvents than in 70/30 v/v\% n-octanol/TCA solvent. It couldn’t meet the expectations in these ionic liquids in view of the current reports. However, it was found that much higher extraction efficiency of Sr\(^{2+}\) could be obtained at the DCH18C6-C\(_6\)mimNTf\(_2\) systems when there was no HNO\(_3\) in aqueous phase, and the DCH18C6-70/30 v/v\% n-octanol/TCA system scarcely extracted Sr\(^{2+}\) from the aqueous phase without HNO\(_3\), as shown in the bottom row of Table 4.

Table 4. Distribution ratio values with DCH18C6 in different diluents

<table>
<thead>
<tr>
<th>A/O</th>
<th>70/30 v/v% n-octanol/TCA</th>
<th>C(_2)mimNTf(_2)</th>
<th>C(_4)mimNTf(_2)</th>
<th>C(_6)mimNTf(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.61</td>
<td>3.19</td>
<td>0.90</td>
<td>0.39</td>
</tr>
<tr>
<td>2</td>
<td>>750</td>
<td>199</td>
<td>3.79</td>
<td></td>
</tr>
</tbody>
</table>

Conditions: \(C(DCH18C6)=0.01\) mol·L\(^{-1}\), the aqueous medium is 1 mol·L\(^{-1}\) HNO\(_3\) and water when A/O=1 and A/O=2, respectively.

Accordingly, it was concluded that the better \(D_{Sr}\) with the DCH18C6-C\(_6\)mimNTf\(_2\) systems could be obtained as compared to that with the DCH18C6-

\(\text{EFFECTIVE EXTRACTION OF STRONTIUM}\)
70/30 v/v% n-octanol/TCA system when HNO₃ concentration in aqueous phase approached to zero. In addition, the extraction efficiency differs largely when different ILs are used. Generally, D_{Sr} with NTf₂⁻ anion was higher than that with PF₆⁻ (Xu et al.³²), and with the same anion NTf₂⁻, ILs carrying shorter substituted alkyl chain on the imidazolium ion generated higher D_{Sr}.

Effect of the HNO₃ concentration

To prove insight into the influence of acidity on the extraction efficiency of Sr²⁺, the dependence of D_{Sr} on the HNO₃ concentration was investigated, and the results are shown in Fig. 5. It indicates a maximum D_{Sr} value at pure water, followed by a sharp decrease at higher HNO₃ concentration in all the DCH18C6-CₙmimNTf₂ solvent extraction systems. As for the DCH18C6-70/30 v/v% n-octanol/TCA system, the increasing HNO₃ concentration (above 2 mol·L⁻¹) in aqueous phase resulted in higher D_{Sr}, and it was explained that the NO₃⁻ benefited facilitating the extraction of Sr²⁺ while H⁺ decreased the extraction of Sr²⁺ via competing with Sr²⁺.

![Fig 5. The effect of the nitric acid concentration. Organic phase: 0.01 mol·L⁻¹ DCH18C6. Feed: 0.1 g·L⁻¹ Sr²⁺. A/O=2.](image)

However, HNO₃ had a different effect on the extraction of Sr²⁺ when CₙmimNTf₂ were used as the diluents. For one thing, the increasing HNO₃ concentration in aqueous phase promoted the degradation of NTf₂⁻, which resulted in the decreasing values of D_{Sr} with ionic liquid solvent extraction systems²⁷. For another, like the traditional solvent extraction system, the increasing concentration of HNO₃ impeded the extraction of Sr²⁺. A couple of studies have reported that the distribution ratio decreased with the increase in the HNO₃ concentration. Xu et al.³² showed that the competition of H⁺ might be a
dominating factor that lead to an decrease in the extraction efficiency. Based on this result, the lower pH of solution medium would conduce to the extraction of Sr\(^{2+}\), so that aqueous phase without HNO\(_3\) was selected for further study for high \(D_{Sr}\) and the stability of solvent extraction systems. Interestingly, the \(D_{Sr}\) values increased modestly when the HNO\(_3\) concentration was more than 4 mol·L\(^{-1}\). The same phenomenon has been found before. Visser\(^27\) studied the dependence of \(D_{Sr}\) on HNO\(_3\) concentration using 0.1 mol·L\(^{-1}\) Dtb18C6 in C\(_{6}\)mimPF\(_6\) and noticed that the \(D_{Sr}\) value increased with the increase of HNO\(_3\) concentration at the high HNO\(_3\) feed. This change has been thought to be due to much more water being extracted into the organic phase which resulted in the higher \(D_{Sr}\).

However, taking into account the reality of HLLW that the feed contained 3~4 mol·L\(^{-1}\) HNO\(_3\), the ILs solvent extraction systems showed a less-than-ideal result compared to the binary diluent systems.

Effect of the DCH18C6 concentration

Fig. 6 shows the effect of the crown ether concentration on the Sr\(^{2+}\) extraction. As presented, the \(D_{Sr}\) values in these systems increased along with the increase of DCH18C6 concentration and reached a plateau thereafter where the DCH18C6 concentration was 15 mmol·L\(^{-1}\), 10 mmol·L\(^{-1}\) and 20 mmol·L\(^{-1}\), respectively. Moreover, with C\(_{2}\)mimNTf\(_2\) and C\(_{4}\)mimNTf\(_2\) used as the diluents, much improved Sr\(^{2+}\) extraction efficiency was observed compared with C\(_{6}\)mimNTf\(_2\) as the diluent.

![Graph showing the effect of DCH18C6 concentration on Sr\(^{2+}\) extraction.](image)

Fig 6. The effect of the DCH18C6 concentration. Organic phase: 0.01 mol·L\(^{-1}\) DCH18C6.
Feed: 0.1 g·L\(^{-1}\) Sr\(^{2+}\), A/O=2

These extraction behaviors should be ascribed to the different extraction mechanisms. Sr\(^{2+}\) formed the neutral complex with NO\(_3^-\), followed by solvating
complex with DCH18C6 in traditional diluents, so DCH18C6 scarcely extracted Sr\(^{2+}\) from the pure water medium. Nevertheless, Sr\(^{2+}\) was extracted into the organic phase by the ion exchange with \([\text{C}_n\text{mim}]^+\), and the lower carbon chain lead to the better hydrophilic, so that \(D_{\text{C}_2\text{mimNTf}_2}>D_{\text{C}_4\text{mimNTf}_2}>D_{\text{C}_6\text{mimNTf}_2}\).

CONCLUSIONS

In this paper, the extraction behaviors and mechanisms of Sr\(^{2+}\) using DCH18C6 as extractant and the ionic liquids along with the mixture of n-octanol and TCA as diluents were investigated. Compared with the frequently-used pure n-octanol solvent, lower acidity of \(D_{\text{Sr(max)}}\), higher extraction and stripping efficiency of Sr\(^{2+}\) could be obtained using 0.01 mol·L\(^{-1}\) DCH18C6 in the binary diluents, 70/30 v/v\% n-octanol/TCA or 50/50 v/v\% n-octanol/TCA. Furthermore, compared with the investigated traditional solvent extraction systems, higher extraction efficiency of Sr\(^{2+}\) could be gained using 0.01 mol·L\(^{-1}\) in DCH18C6-C\(_n\)mimNTf\(_2\) \((n=2, 4, 6)\) from low concentration HNO\(_3\) medium, and a conclusion of \(D_{\text{C}_2\text{mimNTf}_2}>D_{\text{C}_4\text{mimNTf}_2}>D_{\text{C}_6\text{mimNTf}_2}\) could be drawn based on these experiments. It was explained that shorter carbon chain of the ILs cation benefited increasing Sr\(^{2+}\) extraction efficiency. Adding certain amount of TCA to the n-octanol could create a significant increase in extraction and stripping which has the great potential of industrial application, as compared to the much more expensive ILs of the limited economic value and industrial value.

In fact, the real HLLW formed during the reprocessing of the spent nuclear fuel would be at high temperatures due to the radiation energy. Thermodynamic data are necessary in order to predict the \(^{90}\text{Sr}\) extraction behavior at high temperatures. Besides, during the extraction stage, the solvent system suffers radiation and chemical degradation, resulting in the formation of a series of degradation products, which would affect the extraction behavior of Sr\(^{2+}\). Yuan et al.\(^{33}\) studied the extraction of Sr\(^{2+}\) using irradiated C\(_4\)mim PF\(_6\) in the presence of DCH18C6 and found that Sr\(^{2+}\) partitioning in irradiated C\(_4\)mimPF\(_6\) decreases as the absorption dose increases. And because of the complicated components of HLLW, other ions may affect separation of \(^{90}\text{Sr}\) by competitive extraction. Luo et al.\(^{26}\) found that the extraction selectivity order for DCH18C6 in C\(_4\)mimNTf\(_2\) was K\(^+\)>Sr\(^{2+}\)>Cs\(^+\)>Na\(^+\). Further research will be made on the effect of the temperature, irradiation and the separation performance from the simulated HLLW. Some different phenomena are expected to be uncovered.

Acknowledgement: The work was supported from Special Fund of Central University Basic Scientific Research Fee under Grant (GK2150260176).
ИЗВОД
ЕКСТРАКЦИЈА Sr²⁺ СА ДИЦИКЛОХЕКСАНО-18-КРАУН-6 ЕТРОМ ПРИМЕНОМ КОНВЕНЦИОНАЛНОГ ОРГАНСКОГ РАСТВАРАЧА И ЈОНСКИХ ТЕЧНОСТИ
ZHENG WEI¹, YANG GAO², YU ZHOU², CAISHAN JIAO³, MENG ZHANG⁴, HONGGUO HOU⁴ и WEI LIU⁵

¹Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin, Heilongjiang Province, China, 150001; ²Nuclear Power Institute of China, Chengdu, Sichuan Province, China, 610005

⁸⁰Sr (t₁/₂=28.8 a), један од најзначајних фисионих производа у течном отпаду високог нивоа radioактивности (HLLW), у великој мери доприноси нивоу топлоте и зрачења. Уклањање ⁸⁰Sr из HLLW је важно за конечну температуру radioактивног отпада. У овом раду, екстракција Sr²⁺ је вршена коришћењем дициклохексано-18-краун-6 етра (DCH18C6) у већем броју раствараца укључујући конвенционалне органске раствараце и нове раствараце-јонске течности. Утицај неколико фактора на екстракцију Sr²⁺, као што су концентрација азотне киселине, концентрација јонских течности, почетна концентрација стронцијума, су добијени за бинарне раствараце који су чинили октанол и акетилен тетрахлорид у поређењу са применом чистог октанола као раствараца. У случају C₄mimNTf₂, система јонских течности, екстрактивни однос Sr²⁺ је био много већи од средине са малом концентрацијом азотне киселине као и традиционално коришћених система раствараца. Резултати показују да D₂C₄mimNTf₂ > D₄C₄mimNTf₂ > D₆C₄mimNTf₂, што указује да краћи ланац угљеника доприноси екстракцији Sr²⁺.

(Примењено 17. априла; ревијизовано 16 октобра; прихваћено 18. октобра 2019)

REFERENCES