ACCEPTED MANUSCRIPT

This is an early electronic version of an as-received manuscript that has been accepted for publication in the Journal of the Serbian Chemical Society but has not yet been subjected to the editing process and publishing procedure applied by the JSCS Editorial Office.

This “raw” version of the manuscript is being provided to the authors and readers for their technical service. It must be stressed that the manuscript still has to be subjected to copyediting, typesetting, English grammar and syntax corrections, professional editing and authors’ review of the galley proof before it is published in its final form. Please note that during these publishing processes, many errors may emerge which could affect the final content of the manuscript and all legal disclaimers applied according to the policies of the Journal.
Theoretical investigation of the molecular structure and molecular docking of naratriptan

WENDOLYNE LÓPEZ-OROZCO¹, CLARA HILDA RIOS REYES²,
LUIS HUMBERTO MENDOZA HUIZAR¹,*

¹Universidad Autónoma del Estado de Hidalgo. Academic Area of Chemistry. Carretera Pachuca-Tulancingo Km. 4.5 Mineral de la Reforma, Hgo., México; ²Universidad Lasalle Pachuca, Calle Belisario Domínguez 202, Centro, 42000 Pachuca de Soto, Hgo. México

(Received 29 December 2019; revised 10 April 2020; accepted 11 May 2020)

Abstract: In this work, a computational chemical study of the naratriptan was carried out at the X/DGDZVP (where X=B3LYP, M06, M06L and oB97XD) level of theory, the results suggest the existence of two possible conformers in the aqueous phase. The evaluation of the global and local reactivity descriptors indicates that both conformers show the same chemical behavior. The docking studies reveal that both conformers bind to TYR359 residue of the 5HT₁B receptor. Also, the first conformer binds to the receptor through THR209 and THR213 while the second one through THR209 and SER 212.

Keywords: triptanes; reactivity; Fukui; docking; migraine.

INTRODUCTION

Migraine is a common neurovascular disorder,¹² characterized by moderate to severe headaches, which in some cases are accompanied by dizziness, nausea,²³ hypersensitivity to light, sounds, and odors². According to studies reported in the literature, migraine is considered a hereditary dysfunction of sensory modulation networks.¹⁴ In this sense, the mitigation of the discomfort caused by migraine can be done through drugs capable of reducing the activity of secondary neurons, which allows effective treatment of pain caused by this condition.⁴ In this sense, Naratriptan (N-methyl-3-(1-methyl-4-piperidinyl)-1H-indol-5-ethane) is a second generation triptan drug,⁵⁶ see Figure 1, selective for the 5-hydroxytryptamine1 (5HT) receptor subtype and is able of causing a therapeutic effect in migraine patients.⁷ Also, naratriptan has no clinical effects on blood pressure or heart rate,⁸ and has a long duration of action with very good tolerability and a high oral bioavailability. Moreover, naratriptan is excreted largely as unchanged drug in the urine,⁹ which eliminates the possibility to generate metabolites with undesirable side effects. Here, it is interesting to mention that some triptanes exhibit polymer-
phism, which generate structures with different physicochemical behavior in properties of pharmaceutical interest. \(^\text{10}\) However, for naratriptan only one principal conformation has been reported (National Center for Biotechnology Information. PubChem Database. Naratriptan, CID=4440, 2019), although, other investigations suggest the existence of polymorphic forms of naratriptan, in solid phase, but without report the structures. \(^\text{11}\) To our knowledge, a computational chemical study of naratriptan to evaluate its global and local reactivity descriptors in aqueous phase is still missing. We consider that this kind of study will contribute to get a better understanding of the chemical behavior, in the aqueous phase, of this important serotonergic agonist and a vasoconstrictor agent.

Figure 1. Naratriptan (N-methyl-3-(1-methyl-4-piperidinyl)-1H-indol-5-ethane) structure.

THEORY

Global reactivity parameters

Global reactivity parameters such as the electronic chemical potential (\(\mu\)), electrophilicity (\(\chi\)), hardness (\(\eta\)) and the electrophilicity index (\(\omega\)) are used to understand the general chemical behavior of a molecule. \(^\text{12,13}\) They can be evaluated within the framework of the DFT through equations (1)-(4), respectively. \(^\text{14-17}\)

\[
\mu = \left(\frac{\partial E}{\partial N} \right)_{v(r)} = -\frac{1}{2}(I + A) = \frac{1}{2}(\varepsilon_L + \varepsilon_H) \quad (1)
\]

\[
\chi = -\mu \quad (2)
\]

\[
\eta = \left(\frac{\partial \mu}{\partial N} \right)_{v(r)} = \left(\frac{\partial^2 E}{\partial N^2} \right)_{v(r)} = (I - A) = (\varepsilon_L - \varepsilon_H) \quad (3)
\]

\[
\omega = \frac{\mu^2}{2\eta} \quad (4)
\]

In these equations, the variables \(E, N\) and \(v(r)\) are the energy, number of electrons and the external potential exerted by the nuclei, respectively. \(I\) is the ionization potential while \(A\) corresponds to the electronic affinity. Also, some reports suggest that the Koopmans’ theorem may become valid for calculations of the global reactivity parameters at the DFT level. \(^\text{15,18,19}\) Under this approximation, \(A\) is related to the minus Lowest Unoccupied Molecular Orbital (LUMO) energy (-\(\varepsilon_L\)), while \(I\) is associated with the minus Highest Occupied Molecular Orbital (HOMO) energy (-\(\varepsilon_H\)). \(^\text{15,18,19}\) On the other hand, the electronic chemical potential is associated to the escaping tendency of an electron. \(^\text{18}\) \(\eta\) is related to the stability of the molecular system; \(^\text{14,15}\) while \(\omega\) measures the susceptibility of chemical species to accept electrons. \(^\text{19}\) Thus, low values of
\(\omega \) suggest a good nucleophile while higher values indicate the presence of a good electrophile. Besides, it is possible to define the electrodonating \((\omega^-)\) and electroaccepting \((\omega^+)\) powers as:\(^{19}\)

\[
\omega^\pm = \frac{\langle \mu \rangle^2}{2\eta \pm \left(\frac{1}{4}(3I + A) \right)^2} = \frac{\langle \mu \rangle^2}{2(I - A)} = \frac{1}{2}(e_i - e_n)
\]

\[
(5)
\]

\[
(6)
\]

Local reactivity parameters

Probably, the Fukui function \((f(r))\) is one of the local parameters most used to identify the more reactive regions or sites on a molecular system,\(^{20,21}\) which is defined as:\(^{22}\)

\[
f(r) = \left(\frac{\partial \rho(r)}{\partial N} \right)_{\nu(r)} = \left(\frac{\partial \mu(r)}{\partial \nu(r)} \right)
\]

where \(\rho(r)\) is the electronic density. From equation (7), it is clear that FF indicates the regions where a chemical species will change its electronic density, when the number of electrons is modified, which is useful to identify the preferred either molecular regions, susceptible to electrophilic or nucleophilic attacks.\(^{21}\) In this sense, FF can be evaluated by using different approximations, but the more employed are: a) frozen core approximation (FC),\(^{22}\) b) finite differences (FD),\(^{22}\) and c) atomic charges.\(^{23}\) In the FC approximation, FF for electrophilic and nucleophilic attacks can be evaluated through the equation (8) and (9), respectively.

\[
f^-(r) = \phi^+_H(r) \rho_H(r) = \rho_H(r)
\]

\[
f^+(r) = \phi^-_L(r) \phi_L(r) = \rho_L(r)
\]

In these equations \(\rho_H(r)\) is the electronic density of the HOMO, while \(\rho_L(t)\) is the electronic density of the LUMO.

In the FD approximation, FF the electrophilic, nucleophilic and free radical attacks can be evaluated by equations (10), (11) and (12), respectively.

\[
f^- (r) = \rho_n (r) - \rho_{N-1} (r)
\]

\[
f^+ (r) = \rho_{N+1} (r) - \rho_n (r)
\]

\[
f^0 (r) = \frac{1}{2} [\rho_{N-1} (r) - \rho_{N+1} (r)]
\]

where \(\rho_{N+1} (r)\), \(\rho_n (r)\), and \(\rho_{N-1} (r)\) correspond to the electronic density of the anion, neutral and cationic chemical species, respectively.

Also, it is possible to condense the FF to an atomic position, employing the values of the atomic charges, as is shown in equations (13), (14) and (15).

\[
f^-_j (r) = q_{j(N+1)} - q_{j(N)}
\]

\[
f^+_j (r) = q_{j(N)} - q_{j(N+1)}
\]
where q_j is the atomic charge (evaluated from Löwdin, Mulliken or Hirshfeld population analysis, electrostatic derived charge, etc.) at the jth atomic site in the neutral (N), anionic (N+1) or cationic (N-1) chemical species. In the present work, Hirshfeld population have been used to evaluate the values of the Condensed Fukui function (CFF), because Hirshfeld charges are less sensitive to the basis set size employed, in comparison to the Löwdin or Mulliken charges. Additionally, the CFF values obtained through Hirshfeld charges are consistent when different electronic structure methods are employed.

COMPUTATIONAL METHODOLOGY

The conformational analysis of naratriptan was carried out using molecular mechanics, and molecular dynamics (not shown). The optimal conformations of naratriptan were subjected to full geometry optimization in the aqueous phase employing the X/DGDZVP25 (where X=B3LYP,26,27 M06,28 M06L,29 and oB97XD30) level of theory. Solvent phase optimization were carried out using the polarizable continuum model (PCM) developed by Tomasi and coworkers.31,32 In all cases the vibrational frequencies were computed to make sure that the stationary points were minima in the potential energy surface. All the quantum calculations reported here were performed with the package Gaussian 09,33 and visualized with the GaussView V.3.09,34 Arguslab,35 Gabedit,36 and Multwfn37 packages. Docking study was done through the PYRX,38 and Autodock Vina39 packages and visualized employing Chimera,40 Pymol,41 and LigPlot+.42

RESULTS AND DISCUSSION

Geometry optimization

From the conformational analysis, it was possible to identify two lowest energy conformations of naratriptan, see Figure 2. These conformations were optimized without restrictions at the X/DGDZVP25 (where X=B3LYP,26,27 M06,28 M06L,29 and oB97XD30) level of theory, in the gas and aqueous phases. Here, it is important to mention that were not obtained significant differences, neither in distances nor angles, when the solvent effect was considered at the different levels of theory employed in this work. All frequency values calculated at the X/DGDZVP25 (where X=B3LYP,26,27 M06,28 M06L,29 and oB97XD30) level of theory, in the aqueous phase were positive and are in good agreement with the values reported in the literature;43 which suggests that the level of theory employed is able to predict the electronic properties of naratriptan. A summary of the main bands is depicted in Fig. S-1 as supplementary material.

The total energy calculated, at the B3LYP/DGDZVP level of theory, in the gas phase, for the conformer I (Nar-I) is -1375.77174094 hartrees, while its HOMO-LUMO gap is 4.97 eV. The energy for conformer II (Nar-II) is -1375.77163113 hartrees and its HOMO-LUMO gap is 4.95 eV. An energy difference of 0.067 Kcal mol-1 suggests that both structures are equivalent. In aqueous phase, the energies of Nar-I and Nar-II are -1375.79387626 and -1375.79377903 hartrees respectively, with a difference of 0.061 Kcal mol-1. Also,
the energy difference between the naratriptan in the gas phase in comparison to
the same molecule in aqueous phase is 13.9 Kcal mol$^{-1}$, in both cases, which
suggests that Nar-I and Nar-II have the same solvation energy.

![Figure 2. Naratriptan conformers a) Nar-I and b) Nar-II, optimized at the B3LYP/DGDZVP level of theory in the aqueous phase employing the PCM solvation model. Bond distances are given in Angstroms, DA=Dihedral Angle.](image)

From Figure 2, it is possible to observe a different orientation of the
sulfonamide group in Nar-I in comparison to Nar-II, which may be caused by the
presence of noncovalent interactions. In this sense, it is possible to determine
these interactions through the NCI index proposed by Johnson et al.,44 through the
plot of the reduced density gradient ($s(r)$) versus $\rho(r)$, where $s(r)$ is given by:

$$s(r) = \frac{1}{2(3\pi)^{1/3}} \left[\nabla \rho(r) \right] \rho(r)^{4/3}$$

(16)

According to the NCI index, in regions far from the molecule, the density
decays to zero exponentially and in consequence the reduced gradient will have
large positive values, while in regions of covalent bonding and non-covalent
interactions, the reduced gradient will have values close to zero.44 Figure S-2 show a 2D NCI plot for Nar-I and Nar-II, note that, at the low reduced gradient
region, both plots are exhibiting a similar number of spikes, but at 0.009, for
Nar-I, there is an additional interaction which is not present in Nar-II. This
interaction may be related to a noncovalent interaction. In order to elucidate the
nature of this interaction the $s(r)$ isosurfaces of Nar-I and Nar-II were plotted, see
Figure S-3, note that the additional interaction observed in the 2D NCI plot is
corresponding to a hydrogen bond.

Global reactivity Parameters

The global reactivity descriptors for Nar-I and Nar-II were evaluated
employing the equations (1)-(6) and they are reported in Table 1. Note that the
values of all the descriptors for Nar-I and Nar-II are similar when they are
compared at the same level of theory, which suggests the same global chemical
behavior of the two conformers.
Table 1. Global reactivity parameters, for Nar-I and Nar-II, evaluated at the X/DGDZVP²⁵ (where X=B3LYP, M06, M06L, and oB97XD²⁶) level of theory and in the aqueous phase, employing equations (1)-(6). The values between parentheses corresponds to the values calculated employing the Koopmans’ theorem.

<table>
<thead>
<tr>
<th></th>
<th>I / eV</th>
<th>A / eV</th>
<th>μ / eV</th>
<th>η / eV</th>
<th>χ / eV</th>
<th>ω / eV</th>
<th>Δω / eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nar-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3LYP</td>
<td>5.59</td>
<td>0.89</td>
<td>-3.24</td>
<td>4.69</td>
<td>3.24</td>
<td>1.12</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>(5.69)</td>
<td>(0.75)</td>
<td>(-3.22)</td>
<td>(4.94)</td>
<td>(3.22)</td>
<td>(1.05)</td>
<td>(0.40)</td>
</tr>
<tr>
<td>M06</td>
<td>5.68</td>
<td>0.95</td>
<td>-3.32</td>
<td>4.73</td>
<td>3.32</td>
<td>1.16</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>(5.98)</td>
<td>(0.59)</td>
<td>(-3.29)</td>
<td>(5.39)</td>
<td>(3.29)</td>
<td>(1.00)</td>
<td>(0.35)</td>
</tr>
<tr>
<td>M06L</td>
<td>5.37</td>
<td>0.86</td>
<td>-3.11</td>
<td>4.51</td>
<td>3.11</td>
<td>1.07</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>(5.01)</td>
<td>(1.20)</td>
<td>(-3.10)</td>
<td>(3.81)</td>
<td>(3.10)</td>
<td>(1.26)</td>
<td>(0.61)</td>
</tr>
<tr>
<td>oB97XD</td>
<td>5.79</td>
<td>0.82</td>
<td>-3.31</td>
<td>4.97</td>
<td>3.31</td>
<td>1.10</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>(7.62)</td>
<td>(-1.08)</td>
<td>(-3.27)</td>
<td>(8.70)</td>
<td>(3.27)</td>
<td>(0.62)</td>
<td>(0.07)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nar-II</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP</td>
<td>5.58</td>
<td>0.89</td>
<td>-3.23</td>
<td>4.69</td>
<td>3.23</td>
<td>1.12</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>(5.68)</td>
<td>(0.74)</td>
<td>(-3.21)</td>
<td>(4.94)</td>
<td>(3.21)</td>
<td>(1.04)</td>
<td>(0.40)</td>
</tr>
<tr>
<td>M06</td>
<td>5.67</td>
<td>0.93</td>
<td>-3.30</td>
<td>4.74</td>
<td>3.30</td>
<td>1.15</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>(5.97)</td>
<td>(0.57)</td>
<td>(-3.27)</td>
<td>(5.40)</td>
<td>(3.27)</td>
<td>(0.99)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>M06L</td>
<td>5.36</td>
<td>0.84</td>
<td>-3.10</td>
<td>4.52</td>
<td>3.10</td>
<td>1.06</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>(5.00)</td>
<td>(1.18)</td>
<td>(-3.09)</td>
<td>(3.83)</td>
<td>(3.09)</td>
<td>(1.25)</td>
<td>(0.59)</td>
</tr>
<tr>
<td>oB97XD</td>
<td>5.78</td>
<td>0.81</td>
<td>-3.30</td>
<td>4.98</td>
<td>3.30</td>
<td>1.09</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>(7.61)</td>
<td>(-1.09)</td>
<td>(-3.26)</td>
<td>(8.71)</td>
<td>(3.26)</td>
<td>(0.61)</td>
<td>(0.07)</td>
</tr>
</tbody>
</table>

Local reactivity Parameters

The local reactivity of a molecular system can be evaluated through the Fukui Function, employing different approximations. Figure S-4, in supplementary material, shows the distribution of the electrophilic sites on Nar-I and Nar-II, employing the FC approximation. For both conformers the HOMO’s distribution is located on the piperidinyl-indole section, while that LUMO’s distribution is located on the indole ring. On the other hand, the Fukui function evaluated for Nar-I, employing the FD approximation (equations (10)-(12)) is reported in Figures 3. For the case of Nar-I, the more nucleophilic active sites are 2C, 3C and 11C, Figure 3a, located on the piperidinyl-indole section; while the more electrophilic active sites are on the 10C, 12N and 16N atoms, see Figure 3b. The more reactive sites to free radical attacks are located on 2C, 3C and 11C see Figure 3c. For the case of Nar-II, the more nucleophilic active sites are located on 2C, 3C and 11C (see Figure S-5a). For electrophilic attacks, the more reactive sites are located on 10C, 12N and 16N positions (Figure S-5b), while for free radical attacks the more reactive sites are 2C, 3C and 11C (Figure S-5c). From these results, it is clear that the more reactive sites are located on the same positions in both conformers, which is indicative that they are exhibiting the same reactivity at the local level to the different kind of attacks. Similar results to those obtained in Figures 3 and S-5
CHEMICAL REACTIVITY OF NARATRIPTAN

were obtained at the level of theory X/DGDZVP25 (where X=B3LYP,26,27 M06,28 M06L,29 and oB97XD30).

Figure 3. Isosurfaces of the Fukui Functions for Nar-I according to equations (10), (11) and (12) at the B3LYP/DGDZVP level of theory employing the PCM solvation model. In the case of (a) nucleophilic, (b) electrophilic and (c) free radical attacks. In all cases the isosurfaces were obtained at 0.004 e/au.3, dashed circles show the more reactive zones in each molecule.

Also, it is possible to condense the Fukui function through equations (13)-(15) to identify the point point distribution of the active sites, because the higher values of CFF correspond to the more reactive atoms in the molecule of reference.45 In the case of equations (13)-(15), we used the Hirshfeld population to evaluate the values of CFF because the values obtained are non-negative.20,46 The values of CFF for electrophilic, nucleophilic and free radical attacks at the B3LYP/DGDZVP level of theory employing the PCM solvation model, for Nar-I are reported in Figure 4. From this figure it is possible to observe that Nar-I exhibit the more nucleophilic sites on 3C, 2C and 11C. In the electrophilic case, the more reactive sites are 10C, 11C and 12N while that for free radical attacks the more reactive sites are 2C, 3C and 11C. For the case of Nar-II, the more reactive sites, at the B3LYP/DGDZVP level of theory, are identical to those reported for Nar-I. Moreover, these results are coincident with those derived from the FF reported in Figures 3 and S-5, which suggests that a change on the orientation of the sulfonamide group is not modifying the position of the more reactive sites on Nar-I and Nar-II.
Figure 4. Condensed Fukui function values for nucleophilic attacks on Nar-I at the X/DGDZVP (where X=B3LYP, M06, M06L and WB97XD) level of theory, in the aqueous phase employing Hirshfeld population and equations (13)-(15).

In Figures S-6, S-7 and S-8 of the supplementary material, are reported the CFF of Nar-I for the nucleophilic, electrophilic and free radical attacks, respectively, at the X/DGDZVP (where X=B3LYP, M06, M06L and WB97XD) level of theory, in the aqueous phase employing Hirshfeld population. For Nar-II the results are reported in Figures S-9, S-10 and S-11, for the nucleophilic, electrophilic and free radical attacks, respectively. The local reactivity of Nar-I and Nar-II through the evaluation of the Fukui function employing the FC and FD approximations are coincident with the CFF values.

Also, the chemical reactivity of Nar-I and Nar-II was analyzed through maps of the molecular electrostatic potential (MEP). In Figure S-12 are depicted the MEP for Nar-I and Nar-II. In these images, areas of negative potential (red color), are characterized by an abundance of electrons while areas of positive potential (blue color), are characterized by a relative lack of electrons. In the case of Nar-I and Nar-II the nitrogen atoms exhibit the lowest values of potential in comparison to the other atoms; consequently, have a higher electron density around it, and shows that the oxygen atoms as the places with the lowest potential and therefore they are the more electrophilic active sites. Additionally, in order to analyze the possible influence of the naratriptan confromers in their role as receptor agonists for treatment of migraine attacks, the optimal ligand/protein configuration and the binding affinity for Nar-I and Nar-II with
CHEMICAL REACTIVITY OF NARATRIPTAN

5HT_{1B} was analyzed. Since the receptor 5HT_{1B} has been identified as the target of triptane receptor agonists, Figure S-13 shows the Nar-I/5HT_{1B} configuration, where the binding energy is -9.3 kcal mol\(^{-1}\), interestingly, Nar-II is interacting with 5HT_{1B} with the same binding energy. In order to identify the residues in 5HT_{1B} which are interacting with naratriptan conformers, a 2D ligand interaction diagram was plotted employing the LigPlot+ software, see Figure S-14. Note that Nar-I establishes hydrogen bonds with Tyr359[O-H.....N], Thr213[O.....N], Thr209[O...N] with a distance of 3.12, 3.07 and 3.18 Å, and hydrophobic interactions with the residues Asp352, Val201, Thr355, Phe330, Ile130, Ser212. On the other hand, Nar-II is forming hydrogen bonds with Tyr359[O-H.....N], Ser212[O.....N], Thr209[O...N] with a distance of 3.04, 2.97 and 3.24 Å, and hydrophobic interactions with the residues Asp129, Leu126, Val200, Asp352, Ile130, Thr213 and Phe331. In both cases Nar-I and Nar-II are interacting with 5HT_{1B} in the same active site, suggesting the same agonist effect.

CONCLUSION

In this work, we analyzed the chemical reactivity of two conformers of naratriptan in aqueous phase. According to the global descriptors both conformers exhibit the same global and local reactivity. The docking study indicates that Nar-I and Nar-II are binding with the 5HT_{1B} receptor through TYR359 residue. Additionally, Nar-I binds to the receptor through THR209 and THR213 while Nar-II through THR209 and SER 212.

SUPPLEMENTARY MATERIAL

Supplementary Material are available electronically from journal web site: http://www.shd.org.rs/JSCS/, or from the corresponding author on request.

Acknowledgement: Authors gratefully acknowledge financial support from CONACYT (project CB2015-257823) and to the Universidad Autónoma del Estado de Hidalgo. Guanajuato National Laboratory (CONACyT 123732) is acknowledged for supercomputing resources. LHMH acknowledges to the SNI for the distinction of his membership and the stipend received.
рецептора. Дакле, први конформер се везује за рецептор преko THR209 и THR213 док се други везује преко THR209 и SER 212.

(Примљено 29. децембра 2019; ревидирано 10 априла; прихваћено 11. маја 2020)

REFERENCES
CHEMICAL REACTIVITY OF NARATRIPTAN

33. Gaussview Rev. 3.09, Windows version, Gaussian Inc., Pittsburgh, PA.
On Line First
SUPPLEMENTARY MATERIAL TO

Theoretical investigation of the molecular structure and molecular docking of naratriptan

WENDOLYNE LÓPEZ-OROZCO¹, CLARA HILDA RIOS REYES², LUIS HUMBERTO MENDOZA HUIZAR³

¹Universidad Autónoma del Estado de Hidalgo. Academic Area of Chemistry, Carretera Pachuca-Tulancingo Km. 4.5 Mineral de la Reforma, Hgo., México; ²Universidad Lasalle Pachuca, Calle Belisario Domínguez 202, Centro, 42000 Pachuca de Soto, Hgo. México

Figure S-1. Theoretical IR spectra of Nar–I (solid line) and Nar-II (dashed line) in the aqueous phase obtained at the B3LYP/DGDZVP level of theory
Figure S-2. Plots of the reduced density gradient vs. $\text{sign}(\lambda_2)\rho$ for a) Nar-I and b) Nar-II. Dashed circles indicate the main differences between both plots.

Figure S-3. NCI Isosurfaces $\rho = 0.2$ for a) Nar-I and (b) Nar-II in the aqueous phase.

Figure S-4. HOMO and LUMO’s distributions on Nar-I and Nar-II obtained at the B3LYP/DGDZVP level of theory in the aqueous phase employing the PCM solvation model.
In all cases the isosurfaces were obtained at 0.08 e.u.a.³
Figure S-5. Isosurfaces of the Fukui Functions for Nar-II according to equations (10), (11) and (12) at the B3LYP/DGDZVP level of theory employing the PCM solvation model. In the case of (a) nucleophilic, b) electrophilic and c) free radical attacks. In all cases the isosurfaces were obtained at 0.004 e/u.a.\(^3\), dashed circles show the more reactive zones in each molecule.
Figure S-6. Condensed Fukui function values for nucleophilic attacks on Nar-I at the X/DGDZVP (where X=B3LYP, M06, M06L and oB97XD) level of theory, in the aqueous phase employing Hirshfeld population and equations (13)-(15), dashed circles show the more reactive zones in each molecule.

Figure S-7. Condensed Fukui function values for electrophilic attacks on Nar-I at the X/DGDZVP (where X=B3LYP, M06, M06L and oB97XD) level of theory, in the aqueous phase employing Hirshfeld population and equations (13)-(15), dashed circles show the more reactive zones in each molecule.
Figure S-8. Condensed Fukui function values for free radical attacks on Nar-I at the X/DGDZVP (where X=B3LYP, M06, M06L and oB97XD) level of theory, in the aqueous phase employing Hirshfeld population and equations (13)-(15), dashed circles show the more reactive zones in each molecule.

Figure S-9. Condensed Fukui function values for nucleophilic attacks on Nar-II at the X/ DGDZVP (where X=B3LYP, M06, M06L and oB97XD) level of theory, in the aqueous phase employing Hirshfeld population and equations (13)-(15), dashed circles show the more reactive zones in each molecule.
Figure S-10. Condensed Fukui function values for electrophilic attacks on Nar-II at the X/DGDZVP (where X=B3LYP, M06, M06L and ωB97XD) level of theory, in the aqueous phase employing Hirshfeld population and equations (13)-(15), dashed circles show the more reactive zones in each molecule.

Figure S-11. Condensed Fukui function values for free radical attacks on Nar-II at the X/DGDZVP (where X=B3LYP, M06, M06L and ωB97XD) level of theory, in the aqueous phase employing Hirshfeld population and equations (13)-(15), dashed circles show the more reactive zones in each molecule.
Figure S-12. Mapping of the electrostatic potentials evaluated at the b3lyp/DGDZVP level of theory employing the PCM solvation model, onto a density isosurface (value = 0.002 e/a.u.) for a) Nar-I, b) Nar-II.

Figure S-13. Binding site of Nar-I on the 5HT_{1B} receptor.
Figure S-14. 2D ligand interaction diagram for a) Nar-I/SHT_{1B} and b) Nar-II/SHT_{1B}