ON A SECOND-ORDER STEP-SIZE ALGORITHM

Nada I. DJURANOVIĆ-MILIČIĆ

Department of Mathematics
Faculty of Technology and Metallurgy
University of Belgrade, Belgrade, Yugoslavia
nmilicic@elab.tmf.bg.ac.yu

Abstract: In this paper we present a modification of the second-order step-size algorithm. This modification is based on the so called "forcing functions". It is proved that this modified algorithm is well-defined. It is also proved that every point of accumulation of the sequence generated by this algorithm is a second-order point of the nonlinear programming problem. Two different convergence proofs are given having in mind two interpretations of the presented algorithm.

Keywords: Forcing function, step-size algorithm, second-order conditions.

1. INTRODUCTION

We are concerned with the following problem of the unconstrained optimization:

\[\min \{ \varphi(x) | x \in D \} \] (1)

where \(\varphi : D \subset \mathbb{R}^n \rightarrow \mathbb{R} \) is a twicecontinuously differentiable function on an open set \(D \).

We consider iterative algorithms to find an optimal solution to problem (1) generating sequences of points \(\{x_k\} \) of the following form:

\[x_{k+1} = x_k + \alpha_k s_k + \beta_k d_k, \quad k = 0, 1, \ldots, \] (2)

\[s_k, d_k \neq 0, \quad \langle \nabla \varphi(x_k), s_k \rangle \leq 0, \] (3)

and the steps \(\alpha_k \) and \(\beta_k \) are defined by a particular step-size algorithm.

* This research was supported by Science Fund of Serbia, grant number 04M03, through Institute of Mathematics, SANU. AMS Mathematics Subject Classification (1991): 90C30
Before we present the modified algorithm, we shall define the original second-order step-size algorithm.

The original McCormick-Armijo’s second order step-size algorithm \([4]\) defines \(\alpha_k\) in the following way: \(\alpha_k > 0\) is a number satisfying

\[
\alpha_k = 2^{-i(k)},
\]

where \(i(k)\) is the smallest integer from \(i = 0, 1, \ldots\), such that

\[
x_{k+1} = x_k + 2^{-i(k)} s_k + 2 \frac{\sigma}{2} d_k \in D
\]

and

\[
\varphi(x_k) - \varphi(x_{k+1}) \geq \gamma \left[-\langle \nabla \varphi(x_k), s_k \rangle - \frac{1}{2} \{H(x_k)d_k, d_k\} \right] 2^{-i(k)},
\]

where \(0 < \gamma < 1\) is a preassigned constant, \(H(x)\) - the Hessian matrix of the function \(\varphi\) at \(x, s_k, d_k\) - direction vectors satisfying relations \((3)\).

We begin with the definition which we need in the following text.

Definition (See\([5]\)). A mapping \(\sigma : [0, \infty) \rightarrow [0, \infty)\) is a forcing function if for any sequence \(\{t_k\} \subset [0, \infty)\)

\[
\lim_{k \rightarrow \infty} \sigma(t_k) = 0 \quad \text{implies} \quad \lim_{k \rightarrow \infty} t_k = 0
\]

and \(\sigma(t) > 0\) for \(t > 0\).

(The concept of the forcing function was introduced first by Elkin in [3]).

2. A MODIFICATION OF THE SECOND-ORDER STEP-SIZE ALGORITHM

The modified algorithm defines \(\alpha_k\) in the following way: \(\alpha_k > 0\) is a number satisfying

\[
\alpha_k = q^{-i(k)}, \quad q > 1,
\]

where \(i(k)\) is the smallest integer from \(i = 0, 1, \ldots\), such that

\[
x_{k+1} = x_k + q^{-i(k)} s_k + q \frac{\sigma}{2} d_k \in D
\]

and

\[
\varphi(x_k) - \varphi(x_{k+1}) \geq q^{-i(k)} \left[\sigma_1 (-\langle \nabla \varphi(x_k), s_k \rangle) + \sigma_2 \frac{1}{2} \{H(x_k)d_k, d_k\} \right]
\]
where \(\sigma_1 : [0, \infty) \to [0, \infty) \) and \(\sigma_2 : [0, \infty) \to [0, \infty) \) are the forcing functions such that
\[
\delta_1 t \leq \sigma_1(t) \leq \delta_1^t, \quad \delta_2 t \leq \sigma_2(t) \leq \delta_2^t \quad 0 < \delta_1 < \delta_1^2 < 1, \quad 0 < \delta_2 < \delta_2^2 < 1
\]
and \(s_k, d_k \) are the direction vectors satisfying (3) and \(\langle H(x_k)d_k, d_k \rangle \leq 0 \).

In order to have a finite value \(i(k) \), it is sufficient that \(s_k \) and \(d_k \) satisfy (3) and, in addition, that
\[
\langle \nabla \phi(x_k), s_k \rangle < 0 \quad \text{whenever} \quad \nabla \phi(x_k) \neq 0 \tag{6A}
\]
and
\[
\langle H(x_k)d_k, d_k \rangle < 0 \quad \text{whenever} \quad \nabla \phi(x_k) = 0. \tag{6B}
\]

Now we shall prove the first convergence theorem.

Theorem 1. Let \(\phi : D \subset \mathbb{R}^n \to \mathbb{R} \) be a twicecontinuously differentiable function on the open set \(D \). Let the sequence \(\{x_k\} \) be defined by relations (2), (3), (4), (5), (6A) and (6B). Let \(\bar{x} \) be a point of accumulation of \(\{x_k\} \) and \(K_1 \) a set of indices such that \(x_k \to \bar{x} \) for \(k \in K_1 \).

Assume that:
1. the sequences \(\{s_k\} \) and \(\{d_k\} \) are uniformly bounded;
2. \(-\langle \nabla \phi(x_k), s_k \rangle \geq \mu_k(\| \nabla \phi(x_k) \|), \quad k \in K_1, \) where \(\mu_k : [0, \infty) \to [0, \infty), \ k \in K_1 \) are forcing functions;
3. there exists a value \(\beta > 0 \) such that
\[
-\langle H(x_k)d_k, d_k \rangle \geq \beta \langle H(x_k)e_k^{\min}, e_k^{\min} \rangle,
\]
where \(e_k^{\min} \) is an eigenvector of \(H(x_k) \) associated with its minimum eigenvalue.

Then \(\bar{x} \) is a stationary point, that is
\[
\nabla \phi(\bar{x}) = 0
\]
and \(H(\bar{x}) \) is a positive semidefinite matrix with at least one eigenvalue equal to zero.

Proof: There are two cases to consider.

a) The integers \(\{i(k)\} \) for \(k \in K_1 \) are uniformly bounded from above by some value \(I \).

Because of the descent property it follows that all points of the accumulation have the same function value and
\[
(0 \geq \phi(x_0) - \phi(\bar{x}) = \sum_{k \in K_1} [\phi(x_k) - \phi(x_{k+1})] \geq
\]
\[
\geq \sum_{k \in K_1} q^{-i(k)} \left[\sigma_1(-\langle \nabla \phi(x_k), s_k \rangle) + \sigma_2 \left(-\frac{1}{2} \langle H(x_k)d_k, d_k \rangle \right) \right] \geq
\]
\[
\geq q^{-I} \sum_{k \in K_1} \left[-\langle \nabla \phi(x_k), s_k \rangle - \frac{1}{2} \langle H(x_k)d_k, d_k \rangle \right] \quad (\delta = \max \{\delta_1, \delta_2\})
\]
\[\geq q^{-i} \delta \sum_{k \in K_1} \left[\mu_k \left(\| \nabla \varphi(x_k) \| \right) + \frac{1}{2} \beta \left(H(x_k) \theta_k^{\min} , e_k^{\min} \right) \right]. \]

Since \(\varphi(\bar{x}) \) is finite and since each term in the brackets is greater than, or equal to zero for each \(k \in K_1 \), it follows that \(\mu_k (\nabla \varphi(x_k)) \to 0 \Rightarrow \| \nabla \varphi(x_k) \| \to 0 \) (according to the definition of forcing functions) \(\Rightarrow \nabla \varphi(\bar{x}) = 0 \) and that \(\{ H(\bar{x}) \theta_k^{\min} , \bar{e}_k^{\min} \} = 0 \), where \(\bar{e}_k^{\min} \) is some accumulation point of \(\{ e_k^{\min} \} \) for \(k \in K_1 \).

b) There is a subset \(K_2 \subset K_1 \) such that \(\lim_{k \to \infty} i(k) = \infty \).

Because of the definition of \(i(k) \), then either
\[x_k + q^{-i(k)+1} s_k + q^{-i(k)+1} d_k \in D \]
or
\[\varphi(x_k) = \varphi \left(x_k + q^{-i(k)+1} s_k + q^{-i(k)+1} d_k \right) < \]
\[< q^{-i(k)+1} \left[\sigma_1 (-\langle \nabla \varphi(x_k), s_k \rangle) + \sigma_2 \left(-\frac{1}{2} \left(H(x_k) d_k , d_k \right) \right) \right]. \]

If the former condition held infinitely often, then because
\[x_k + q^{-i(k)+1} s_k + q^{-i(k)+1} d_k \to x, \quad k \in K_2, \]
it would follow that \(\bar{x} \) is on the boundary of \(D \). Since \(D \) is an open set, \(\bar{x} \notin D \), it contradicts the theorem hypothesis. Therefore, without the loss of generality (7) can be considered to hold for all \(k \in K_2 \).

Since \(\varphi \in C^2 \), and since the sequences \(\{ s_k \} \) and \(\{ d_k \} \) are assumed to be uniformly bounded, the left-hand side of inequality (7) can be written as
\[-q^{-i(k)+1} \langle \nabla \varphi(x_k), s_k \rangle - q^{-i(k)+1} \langle \nabla \varphi(x_k), d_k \rangle - \]
\[-\frac{1}{2} H(x_k) \left(q^{-i(k)+1} s_k + q^{-i(k)+1} d_k \right) q^{-i(k)+1} s_k + q^{-i(k)+1} d_k \]
\[< q^{-i(k)+1} \left[\sigma_1 (-\langle \nabla \varphi(x_k), s_k \rangle) + \sigma_2 \left(-\frac{1}{2} \left(H(x_k) d_k , d_k \right) \right) \right] < \]
\[< q^{-i(k)+1} \left[\sigma_1 \langle \nabla \varphi(x_k), s_k \rangle - \sigma_2 \langle H(x_k) d_k , d_k \rangle \right]. \]

Combining terms and incorporating a term where appropriate into \(o(q^{-i(k)+1}) \) yields (using the fact that \(-\langle \nabla \varphi(x_k), s_k \rangle \geq 0 \) :}
\[o(q^{-i(k)+1}) > q^{-i(k)+1} \left[(-1 + \delta_1) \langle \nabla \varphi(x_k), s_k \rangle - (-\delta_2 + 1) \frac{1}{2} \langle H(x_k)d_k, d_k \rangle \right]. \]

Using the theorem hypothesis 3 we obtain
\[o(q^{-i(k)+1}) > q^{-i(k)+1} \left[(-1 + \delta_1) \langle \nabla \varphi(x_k), s_k \rangle + (-\delta_2 + 1) \frac{\beta}{2} \langle H(x_k)e_k^{\min}, e_k^{\min} \rangle \right] \]

Dividing by \(q^{-i(k)+1} \) yields
\[
\frac{o(q^{-i(k)+1})}{q^{-i(k)+1}} > (-1 + \delta_1) \langle \nabla \varphi(x_k), s_k \rangle + (-\delta_2 + 1) \frac{\beta}{2} \langle H(x_k)e_k^{\min}, e_k^{\min} \rangle \geq \nabla \varphi(x_k) + e_k^{\min}.
\]

Since each term is, according to the assumptions, greater than or equal to zero, taking the limit as \(k \to \infty \) for \(k \in K_2 \) yields
\[
\mu_k(\| \nabla \varphi(x_k) \|) \to 0 \Rightarrow \| \nabla \varphi(x_k) \| \to 0 \Rightarrow \nabla \varphi(x) = 0
\]
and
\[
\langle H(x_k)e_k^{\min}, e_k^{\min} \rangle \to \langle H(x)e_k^{\min}, e_k^{\min} \rangle = 0.
\]

To prove the second convergence theorem we shall follow Y. Amaya [1]. Namely, we are going to show that the trajectory
\[
f(t, x_k) = x_k + t^2 s_k + t d_k \quad (8)
\]
proposed by the presented algorithm (i.e. satisfying the relations (2), (3), (4), (5), (6A) and (6B)) and
\[
\langle \nabla \varphi(x_k), s_k \rangle < 0
\]
\[
\langle \nabla \varphi(x_k), d_k \rangle \leq 0 \quad (9)
\]
and
\[
\langle H(x_k)d_k, d_k \rangle = 0
\]
if \(H(x_k) \) is positive semidefinite, and
\[
\langle \nabla \varphi(x_k), s_k \rangle \leq 0
\]
\[
\langle \nabla \varphi(x_k), d_k \rangle \leq 0
\]
and
\[
\langle H(x_k)d_k, d_k \rangle < 0 \quad (10)
\]
if \(H(x_k) \) is not positive semidefinite, has the properties set out in Amaya's paper.

Firstly, we shall briefly present Amaya's algorithm [1].
Let $\phi: D \subset \mathbb{R}^n \rightarrow \mathbb{R}$ be a twice continuously differentiable function on the open set D (i.e. $\phi \in C^2$) which we want to minimize, and $h: \mathbb{R}^+ \times D \rightarrow \mathbb{R}^n$ is a function such that, for all $x \in D$, $h(0,x) = x$. We suppose that for every $x \in D$, $h(t,x)$ is C^2 for $t \geq 0$.

Given $x \in D$, the function $h(t,k)$ describes a trajectory in $D \subset \mathbb{R}^n$ originating at x. The minimizing algorithm defines a sequence $\{x_k\}$ in the following way:

$$x_{k+1} = \begin{cases} x_k & \text{if } x_k \in M, \\ h(t_k, x_k) & \text{if } x_k \notin M, \end{cases}$$

(11)

where $M = \{x \in D | \nabla \phi(x) = 0 \text{ and } \langle H(x)p, p \rangle \geq 0, p \in \mathbb{R}^n \}$.

For $x \in D$, we define the C^2-class function $f_x: \mathbb{R}^+ \rightarrow \mathbb{R}^n$ by

$$f_x(t) = \phi[h(t,x)], \ t \in \mathbb{R}^+.$$

This function is shown to satisfy

$$f_x'(0) = \langle \nabla \phi(x_k), h(0,x_k) \rangle \quad \text{and} \quad f_x''(0) = \langle H(x_k)h(0,x_k), h(0,x_k) + \langle \nabla \phi(x_k), \dot{h}(0,x_k) \rangle \rangle,$$

where \dot{h} and \ddot{h} denote respectively the first and second derivatives of h with respect to t.

The following assumptions are made:

- **A1.** $L = \{x \in D | \phi(x) \leq \phi(x_0)\}$ is bounded;
- **A2.** $f_x'(0) \leq 0$ for all $x \notin M$;
- **A3.** if $x \notin M$ and $f_x'(0) = 0$, then $f_x''(0) < 0$.

Amaya in Theorem 3.1 in [1] proves the convergence of a subsequence of points of $\{x_k\}$ defined by (11) to $\bar{x} \in M$, provided that $\phi \in C^2$ and that assumptions A1, A2, A3 hold.

Now we can present the second convergence theorem for the modified McCormick-Armijo’s algorithm.

Theorem 2. Under assumptions A1, A2 and A3 every point of accumulation \bar{x} of the sequence $\{x_k\}$ generated by the modified McCormick-Armijo’s algorithm and additionally, satisfying (9) and (10) belongs to M, that is, the second-order necessary conditions are satisfied at \bar{x}.

Proof: Let us suppose that $x_k \notin M$ for $k = 0, 1, 2, \ldots$. From the choice of $t_k = \alpha_k$ by relations (2), (3), (4), (5), (6A) and (6B) we have that $f_{x_k}(t_k) \leq f_{x_k}(0)$, i.e. the sequence $\{\phi(x_k)\}$ is decreasing; hence $\{x_k\} \subset L$. Due to the assumption A1, the sequence $\{x_k\}$ has a point of accumulation \bar{x}.

For the trajectory (8) we have:
\[
\begin{align*}
f'_{x_k}(0) &= \langle \nabla \varphi(x_k), \dot{h}(0, x_k) \rangle, \quad \dot{h}(0, x_k) = d_k, \\
f''_{x_k}(0) &= \left\{ H(x_k) \dot{h}(0, x_k), \dot{h}(0, x_k) + \langle \nabla \varphi(x_k), \dot{h}(0, x_k) \rangle \right\}, \quad \dot{h}(0, x_k) = s_k, \quad \text{i.e.} \\
f_{x_k}^\perp(0) &= \langle \nabla \varphi(x_k), d_k \rangle, \\
f_{x_k}^\parallel(0) &= \left\{ H(x_k) d_k, d_k \right\} + \langle \nabla \varphi(x_k), s_k \rangle.
\end{align*}
\]

From (6A) it follows that the assumption A2 holds. Let us examine the assumption A3. Assuming \(f'_{x_k}(0) = 0 \), we have two cases:

a) if \(H(x_k) \) is positive semidefinite, by applying (9) to the relation (11), we obtain

\[f''_{x_k}(0) < 0. \]

b) if \(H(x_k) \) is not positive semidefinite, by applying (10) to the relation (11), we obtain

\[f_{x_k}^\perp(0) < 0. \]

Following Amaya's proof of theorem 3.1 in [1] we conclude that \(\exists \in M \).

3. CONCLUSION

Because of general assumptions on the objective function \(\varphi \), the modified algorithm can be used for solving a wide class of unconstrained optimization problems. Also, the choice of forcing functions \(\sigma_1(t) \) and \(\sigma_2(t) \), with the property

\[\delta_1 t \leq \sigma_1(t) \leq \delta_1 t, \quad \delta_2 t \leq \sigma_2(t) \leq \delta_2 t, \quad 0 < \delta_1 < \delta_1 < 1, \quad 0 < \delta_2 < \delta_2 < 1 \]

is wide.

Finally, this modified algorithm can be used for solving constrained optimization problems (see [2]) when constraints are adequately considered.

REFERENCES

