DUALITY FOR MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEMS INVOLVING d-TYPE-I -SET n - FUNCTIONS

I.M.STANCU-MINASIAN
The Romanian Academy, Institute of Mathematical Statistics and Applied Mathematics
Romania

Gheorghe DOGARU
“Mircea cel Bătrân”, Naval Academy
Romania

Andreea Mădălina STANCU
The Romanian Academy, Institute of Mathematical Statistics and Applied Mathematics
Romania

Received: December 2007 / Accepted: May 2009

Abstract: We establish duality results under generalized convexity assumptions for a multiobjective nonlinear fractional programming problem involving d-type-I n-set functions. Our results generalize the results obtained by Preda and Stancu-Minasian [24], [25].

Keywords: d-type-I set functions, multiobjective programming, duality results.

1. INTRODUCTION

Consider the multiobjective nonlinear fractional programming problem involving n-set functions
minimize \(F(S) = \left(\frac{F_i(S)}{G_i(S)} \right)_{i \in P} \) subject to

\[H_j(S) \leq 0, \ j \in M, S = (S_1, \ldots, S_n) \in \Gamma^n \]

where \(\Gamma^n \) is the \(n \)-fold product of a \(\sigma \)-algebra \(\Gamma \) of subsets of a given set \(X \), \(M = \{1, 2, \ldots, m\} \), \(F_i, G_i, \ i \in P = \{1, 2, \ldots, p\} \), and \(H_j, j \in M \) are differentiable real-valued functions defined on \(\Gamma^n \) with

\[F_i(S) \geq 0 \text{ and } G_i(S) > 0, \text{ for all } i \in P. \] (1)

Let \(S_0 = \{S | S \in \Gamma^n, H(S) \leq 0\} \) be the set of all feasible solutions to (P), where \(H = (H_1, \ldots, H_m) \).

The term “minimize” being used in Problem (P) is for finding efficient, weakly and properly efficient solutions.

A feasible solution \(S^0 \) to (P) is said to be an \textit{efficient solution} to (P) if there exists no other feasible solution \(S \) to (P) so that \(F_i(S) \leq F_i(S^0) \), for all \(i \in P \), with strict inequality for at least one \(i \in P \).

A feasible solution \(S^0 \) to (P) is said to be a \textit{weakly efficient solution} to (P) if there exists no other feasible solution \(S \) to (P) so that \(F_i(S) < F_i(S^0) \), for all \(i \in P \).

The analysis of optimization problems with set or \(n \)-set functions i.e. selection of measurable subsets from a given space, has been the subject of several papers. For a historical survey of optimality conditions and duality for programming problems involving set and \(n \)-set functions the reader is referred to Stancu-Minasian and Preda’s review paper [28]. These problems arise in various applications including fluid flow [3], electrical insulator design [8], regional design (districting, facility location, warehouse layout, urban planning etc.) [10], statistics [11], [21] and optimal plasma confinement [30]. The general theory for optimizing set functions was first developed by Morris [20]. Many results of Morris [20] are only confined to functions of a single set. Corley [9] started to give the concepts of partial derivatives and derivatives of real-valued \(n \)-set functions.

Starting from the methods used by Jeyakumar and Mond [12] and Ye [31], Suneja and Srivastava [29] defined some new classes of scalar or vector functions called \(d \)-\text{-type-I}, \(d \)-\text{-pseudo-type-I}, \(d \)-\text{-quasi-type-I} etc. for a multiobjective nondifferentiable programming problem and obtained necessary and sufficient optimality criteria. Also, they established duality between this problem and its Wolfe-type and Mond-Weir-type duals and obtained some duality results considering the concept of a weak minimum.

In particular, multiobjective fractional subset programming problems have been the focus of intense interest in the past few years, and resulted in many papers [1], [2], [4]-[7], [13]-[17], [22], [23], [28], [33]-[35].

In this paper we establish duality results under generalized convexity assumptions for a multiobjective nonlinear fractional programming problem involving
generalized \(d \)-type-1 \(n \)-set functions. Our results generalize the results obtained by Preda and Stancu-Minasian \([24],[25]\).

2. DEFINITIONS AND PRELIMINARIES

In this section we introduce the notation and definitions which will be used throughout the paper.

Let \(\mathbb{R}^n \) be the \(n \)-dimensional Euclidean space and \(\mathbb{R}_+^n \) its positive orthant, i.e.

\[
\mathbb{R}_+^n = \{ x = (x_j) \in \mathbb{R}^n, x_j \geq 0, \ j = 1,\ldots,n \}.
\]

For \(x = (x_1,\ldots,x_n), y = (y_1,\ldots,y_n) \in \mathbb{R}^n \) we put \(x \leq y \) iff \(x_i \leq y_i \) for each \(i \in M \); \(x \leq y \) iff \(x \leq y \) each \(i \in M \), with \(x \neq y \); \(x < y \) iff \(x_i < y_i \) for each \(i \in M \) while \(x \neq y \) is the negation of \(x < y \). We write \(x \in \mathbb{R}_+^n \) iff \(x \geq 0 \).

Let \((X,\Gamma,\mu)\) be a finite non-atomic measure space with \(L_1(X,\Gamma,\mu) \) separable, and let \(d \) be the pseudometric on \(\Gamma^n \) defined by:

\[
d(S,T) = \left[\sum_{i=1}^{n} \mu^2(S_i \Delta T_i) \right]^{1/2}
\]

for \(S = (S_1,\ldots,S_n), T = (T_1,\ldots,T_n) \in \Gamma^n \), where \(\Delta \) denotes the symmetric difference. Thus \((\Gamma^n,d)\) is a pseudometric space, which will serve as the domain for most of the functions that will be used in this paper.

For \(h \in L_1(X,\Gamma,\mu) \), the integral \(\int h \, d\mu \) will be denoted by \(\langle h, I_S \rangle \), where \(I_S \) is the indicator (characteristic) function of \(S \in \Gamma \).

We next introduce the notion of differentiability for \(n \)-set functions. This was originally introduced by Morris \([20]\) for set functions and subsequently extended by Corley \([9]\) to \(n \)-set functions.

A function \(\varphi: \Gamma \to \mathbb{R} \) is said to be differentiable at \(S^0 \in \Gamma \) if there exist \(D\varphi(S^0) \in L_1(X,\Gamma,\mu) \), called the derivative of \(\varphi \) at \(S^0 \), and \(\psi: \Gamma \times \Gamma \to \mathbb{R} \) such that for each \(S \in \Gamma \),

\[
\varphi(S) = \varphi(S^0) + \langle D\varphi(S^0), I_S - I_{S^0} \rangle + \psi(S,S^0),
\]

where \(\psi(S,S^0) \) is \(o(d(S,S^0)) \), that is, \(\lim_{d(S,S^0) \to 0} \frac{\psi(S,S^0)}{d(S,S^0)} = 0 \).

A function \(F: \Gamma^n \to \mathbb{R} \) is said to have a partial derivative at \(S^0 = (S_1^0,\ldots,S_n^0) \) with respect to its \(k \)-th argument if the function

\[
\varphi(S_k) = F(S_1^0,\ldots,S_{k-1}^0,S_k^0,S_{k+1}^0,\ldots,S_n^0)
\]

has derivative \(D\varphi(S_k^0) \) and we define \(D_k F(S^0) = D\varphi(S_k^0) \). If \(D_k F(S^0), 1 \leq k \leq n \), all exist, then we put \(DF(S^0) = (D_1 F(S^0),\ldots,D_n F(S^0)) \).
A function $F: \Gamma^* \to \mathbb{R}$ is said to be differentiable at S^0 if there exist $DF(S^0)$ and $\psi: \Gamma^* \times \Gamma^* \to \mathbb{R}$ such that

$$F(S) = F(S^0) + \sum_{i=1}^{n} \left\{ D_i F(S^0), I_{S_i} - I_{S_i^0} \right\} + \psi(S, S^0),$$

where $\psi(S, S^0)$ is $o(d(S, S^0))$, for all $S \in \Gamma^*$.

Definition 1. [24] We say that (F, G) is of d-type-I at $S^0 \in \Gamma^*$ if there exist functions $\alpha, \beta: \Gamma^* \times \Gamma^* \to \mathbb{R} \setminus \{0\}$, $i \in P, j \in M$, such that for all $S \in S_0$, we have

$$F_i(S) - F_i(S^0) \geq \alpha_i(S, S^0) \sum_{j=1}^{n} \left\{ D_j F_i(S^0), I_{S_j} - I_{S_j^0} \right\}, \quad i \in P$$

and

$$-H_j(S^0) \geq \beta_j(S, S^0) \sum_{i=1}^{n} \left\{ D_i H_j(S^0), I_{S_i} - I_{S_i^0} \right\}, \quad j \in M.$$

We say that (F, H) is of d-semistrictly type-I at S^0 if in the above definition we have $S \neq S^0$ and (2) is a strict inequality.

Now, we introduce

Definition 2. [32] A feasible solution S^0 to (P) is said to be a regular feasible solution if there exists $\hat{S} \in \Gamma^*$ such that

$$H_j(S^0) + \sum_{i=1}^{n} \left\{ D_i H_j(S^0), I_{S_i} - I_{S_i^0} \right\} < 0, \quad j \in M.$$

Now, for each $\lambda = (\lambda_1, \ldots, \lambda_p) \in \mathbb{R}^p_+$ we consider the parametric problem

minimize$(F_i(S) - \lambda_i G_i(S), \ldots, F_p(S) - \lambda_p G_p(S))$

subject to

$$H_j(S) \leq 0, \quad j \in M, S = (S_1, \ldots, S_n) \in \Gamma^*.$$

The problem (P_{λ}) is equivalent to the problem (P) in the sense that for particular choices of $\lambda_i, \ i \in P$, the two problems have the same set of efficient solutions. This equivalence is stated in the following lemma which is well known in fractional programming [27].
Lemma 3. An \(S^0 \) is an efficient solution to \((P)\) if and only if is an efficient solution to \((P_{\lambda^0})\) with \(\lambda^0 = \frac{F_i(S^0)}{G_i(S^0)}, \ i = 1, ..., p. \)

In this paper the proofs of the duality results for Problem \((P) \) will invoke the following necessary efficiency result for \((P_{\lambda^0})\) (see Zalmai [32], Theorem 3.2).

Theorem 4. [32] Let \(S^0 \) be a regular efficient (or weakly efficient) solution to \((P)\) and assume that \(F_i, G_i, \ i \in P \) and \(H_j, \ j \in M \), are differentiable at \(S^0 \). Then there exist \(u^0 \in \mathbb{R}^p_+, \sum_{i=1}^p u^0_i = 1, \ v^0 \in \mathbb{R}^m_+, \) and \(\lambda^0 \in \mathbb{R}^p_+ \) such that

\[
\sum_{i=1}^p \left(\sum_{j=1}^m u^0_i \left(D_i F_i(S^0) - \lambda^0_i D_i G_i(S^0) \right) + \sum_{j=1}^m v^0_j D_j H_j(S^0), I_{\lambda_i} - I_{\lambda_i} \right) \geq 0, \text{ for all } S \in \Gamma^0 \tag{4}
\]

\[
u^0_i (F_i(S^0) - \lambda^0_i G_i(S^0)) \geq 0, \ i \in P \tag{5}
\]

\[
u^0_j H_j(S^0) = 0, \ j \in M. \tag{6}
\]

3. DUALITY

In this section, in the differentiable case, based on the equivalence of \((P)\) and \((P_{\lambda^0})\) a dual for \((P_{\lambda^0})\) is defined and some duality results in \(d\)-type-I assumptions are stated. With \((P_{\lambda^0})\) we associate a dual stated as

\[
\text{maximize} \ (\lambda_1, \ldots, \lambda_p) \tag{D}
\]

subject to

\[
\sum_{i=1}^p \left(\sum_{j=1}^m u_j \left(D_i F_i(T) - \lambda_i D_i G_i(T), I_{\lambda_i} - I_{\lambda_i} \right) + \sum_{j=1}^m v_j D_j H_j(T), I_{\lambda_i} - I_{\lambda_i} \right) \geq 0, \quad S \in \Gamma^0 \tag{7}
\]

\[
u_i (F_i(T) - \lambda_i G_i(T)) \geq 0, \quad i \in P, \tag{8}
\]

\[
u_j H_j(T) \geq 0, \quad j \in M, \tag{9}
\]

\[
u \in \mathbb{R}^m_+, \sum_{i=1}^p u_i = 1, \nu \in \mathbb{R}^m_+, \lambda \in \mathbb{R}^p_+. \tag{10}
\]

Let \(D_0 \) be the set of feasible solutions to \((D) \). Let us prove the duality theorems.

Theorem 5. (Weak duality) Let \(S \) and \((T, u, v, \lambda) \) be feasible solutions to problem \((P)\) and \((D)\), respectively such that \((i,j) \) for each \(i \in P \) and \(j \in M \), \((F_i(\cdot) - \lambda_i G_i(\cdot), H_j(\cdot)) \) is
of d-type-I at T; (i2) $u_i > 0$ for any $i \in P$, and for some $i \in P$ and $j \in M$, $(F_i(\cdot) - \lambda G_i(\cdot), H_j(\cdot))$ is of d-semistrictly type-I at T.

Then for any $S \in S_0$ one cannot have

$$\frac{F_i(S)}{G_i(S)} \leq \lambda_i \text{ for any } i \in P,$$

$$\frac{F_j(S)}{G_j(S)} < \lambda_j \text{ for some } j \in P. \tag{11} \tag{12}$$

Proof: Let us suppose the contrary that (11) and (12) hold. Then there exists S, a feasible solution for (P_λ), such that (11) and (12) hold.

If hypothesis (i2) holds, then $u_i > 0$ for any $i = 1, \ldots, p$. From (1), (11) and (12) we get

$$\sum_{i=1}^{n} u_i (F_i(S) - \lambda_i G_i(S)) < 0. \tag{13}$$

Using the feasibility of S, and the relations (9) and (10), we have

$$v_j H_j(S) \leq 0 \leq v_j H_j(T) \forall j = 1, \ldots, m. \tag{14}$$

Since $\alpha_i(S,T) > 0, i \in P$, and $\beta_j(S,T) > 0, j \in M$, combining (8), (13) and (14) we obtain

$$\sum_{i=1}^{n} \frac{u_i}{\alpha_i(S,T)} (F_i(S) - \lambda_i G_i(S)) < \sum_{i=1}^{n} \frac{u_i}{\alpha_i(S,T)} (F_i(T) - \lambda_i G_i(T)) \tag{15}$$

$$+ \sum_{i=1}^{n} \frac{v_j H_j(T)}{\beta_j(S,T)}.$$

We claim that $S \neq T$ for if it is not true, then, from $u_i > 0, i \in P$, the feasibility of S and (8) we obtain a contradiction with (11) and (12).

One the other hand, from $S \neq T$, (i1) and (i2), it follows that

$$(F_i(S) - \lambda_i G_i(S)) - (F_i(T) - \lambda_i G_i(T)) \geq$$

$$\alpha_i(S,T) \sum_{k=1}^{n} \{ D_k F_i(T) - \lambda D_k G_i(T), I_{k_i} - I_{i_k} \} \tag{16}$$

for any $i \in P$, with strict inequality for some i, and

$$-H_j(T) \geq \beta_j(S,T) \sum_{k=1}^{n} \{ D_k H_j(T), I_{k_j} - I_{j_k} \}, j \in M. \tag{17}$$

By dividing by $\alpha_i(S,T) > 0$ and $\beta_j(S,T) > 0$, respectively, the above inequalities reduce to the following
\[
\frac{F_i(S) - \lambda_i G_i(S)}{\alpha_i(S,T)} - \frac{F_i(T) - \lambda_i G_i(T)}{\alpha_i(S,T)} \geq \sum_{i=1}^{n} \left\{ D_i F_i(T) - \lambda_i D_i G_i(T), I_{S_i} - I_{T_i} \right\}
\]

(18)

for any \(i \in P \), with strict inequality for some \(i \), and

\[
-\frac{H_j(T)}{\beta_j(S,T)} \geq \sum_{i=1}^{n} \left\{ D_j H_j(T), I_{S_j} - I_{T_j} \right\}, \quad j \in M
\]

(19)

Multiplying the inequality (18) by \(u_i > 0 \), \(\forall i \in P \), and (19) by \(v_j \geq 0 \), \(\forall j \in M \), and summing after all \(i \) and \(j \), respectively, yields

\[
\sum_{i=1}^{n} u_i \left\{ D_i F_i(T) - \lambda_i D_i G_i(T), I_{S_i} - I_{T_i} \right\} + \sum_{j=1}^{m} v_j \left\{ D_j H_j(T), I_{S_j} - I_{T_j} \right\} > 0
\]

(20)

Now, by (15) it follows

\[
\sum_{i=1}^{n} u_i \left\{ D_i F_i(T) - \lambda_i D_i G_i(T), I_{S_i} - I_{T_i} \right\} + \sum_{j=1}^{m} v_j \left\{ D_j H_j(T), I_{S_j} - I_{T_j} \right\} < 0
\]

This inequality contradicts (7). Thus the theorem is proved.

Corollary 6. Let \(S^0 \) and \((S^0, u^0, v^0, \lambda^0)\) be feasible solutions to \((P_x)\) and \((D)\), respectively. If the hypotheses of Theorem 5 are satisfied, then \(S^0 \) is an efficient solution to \((P_x)\) and \((S^0, u^0, v^0, \lambda^0)\) is an efficient solution to \((D)\).

Proof: We proceed by contradiction. If \(S^0 \) is not an efficient solution to \((P_x)\) then there exists a feasible solution \(S' \) to \((P_x)\) such that

\[
F_i(S') \leq \lambda_i G_i(S'), \quad \forall i \in P,
\]

and

\[
F_i(S') < \lambda_i^0 G_i(S'), \quad \text{for some } j \in P.
\]

(21)

Since \((S^0, u^0, v^0, \lambda^0)\) is a feasible solution to \((D)\) by (21), and Theorem 5 we obtain a contradiction. Hence \(S^0 \) is an efficient solution to \((P_x)\). In the same way we obtain that \((S^0, u^0, v^0, \lambda^0)\) is an efficient solution to \((D)\).

Theorem 7. *(Strong duality)* Let \(S^0 \) be a regular efficient solution to \((P)\). Then there exist \(u^0 \in \mathbb{R}^n_+ \), \(\sum_{i=1}^{n} u^0_i = 1 \), \(v^0 \in \mathbb{R}^m_+ \), and \(\lambda^0 \in \mathbb{R}^p_+ \), such that \((S^0, u^0, v^0, \lambda^0)\) is a feasible solution to \((D)\). Further, if the conditions of Weak Duality Theorem 5 also hold, then
\((S^0, u^0, v^0, \lambda^0)\) is an efficient solution to (D) and the values of the objective functions of (P) and (D) are equal at \(S^0\) and \((S^0, u^0, v^0, \lambda^0)\) respectively.

Proof: Using Theorem 4 we obtain that there exist \(v^0 \in \mathbb{R}_{+}^n, \sum_{i=1}^{n} v_i^0 = 1, v^0 \in \mathbb{R}_{+}^n\), and (4) and (5) hold. Thus, \((S^0, u^0, v^0, \lambda^0)\) satisfies (7) – (10). Hence, \((S^0, u^0, v^0, \lambda^0)\) is a feasible solution to (D). Further, if Theorem 5 holds then, by Corollary 6 we obtain that this solution \((S^0, u^0, v^0, \lambda^0)\) is also an efficient solution to (D), and the values of the objective functions of (P) and (D) are equal at \(S^0\) and \((S^0, u^0, v^0, \lambda^0)\) respectively.

Now we give a strict converse duality theorem of Mangasarian type [19] for (P\(_1\)) and (D).

Theorem 8. (Strict converse duality) Let \(S^0\) and \((S^0, u^0, v^0, \lambda^0)\) be efficient solutions to (P\(_1\)) and (D), respectively. Assume that

\[
(j_1) \sum_{i=1}^{n} \frac{u_i^0}{\alpha_i(S^0, S^0)}(F_i(S^0) - \lambda^0_i G_i(S^0)) \leq \sum_{i=1}^{n} \frac{u_i^0}{\alpha_i(S^0, S^0)}(F_i(S^0) - \lambda^0_i G_i(S^0));
\]

\[
(j_2) \text{for any } i \in P \text{ and } j \in M, \quad (F_i(\cdot) - \lambda^0_i G_i(\cdot), H_j(\cdot)) \text{ is of } d\text{-semistrictly type-I at } S^0. \quad \text{Then, } S^0 = S^*.
\]

Proof: We assume that \(S^0 \neq S^*\) and exhibit a contradiction. Using \((j_2)\) we obtain

\[
(F_i(S^0) - \lambda^0_i G_i(S^0)) - (F_i(S^0) - \lambda^0_i G_i(S^0)) > \alpha_i(S^0, S^0) \sum_{k=1}^{n} \left\{ D_k F_i(S^0) - \lambda^0_i D_k G_i(S^0), I_{S^0} - I_{S^0} \right\}
\]

for any \(i \in P\) and

\[
-H_i(S^0) \geq \beta_i(S^*, S^0) \sum_{k=1}^{n} \left\{ D_i H_j(T), I_{S^0} - I_{S^0} \right\}, \quad j \in M.
\]

By dividing by \(\alpha_i(S^0, S^0) > 0\) and \(\beta_i(S^*, S^0) > 0\), respectively, the above inequalities reduce to the following

\[
\frac{F_i(S^0) - \lambda^0_i G_i(S^0)}{\alpha_i(S^0, S^0)} - \frac{F_i(S^0) - \lambda^0_i G_i(S^0)}{\alpha_i(S^0, S^0)} > \sum_{k=1}^{n} \left\{ D_k F_i(S^0) - \lambda^0_i D_k G_i(S^0), I_{S^0} - I_{S^0} \right\}
\]

(22)

for any \(i \in P\) and

\[
-\frac{H_i(S^0)}{\beta_i(S^*, S^0)} \geq \sum_{k=1}^{n} \left\{ D_i H_j(S^0), I_{S^0} - I_{S^0} \right\}, \quad j \in M.
\]

(23)
Multiplying the inequality (22) by $u^0_i \geq 0$, $\forall i \in P$, and (23) by $v^0 \geq 0$, $\forall j \in M$, and summing after all i and j, respectively, yields

$$
\sum_{i=1}^{p} \frac{u^0_i}{\alpha_i(S^*, S^0)} (F_i(S^*) - \lambda^0_i G_i(S^*)) - \sum_{i=1}^{p} \frac{u^0_i}{\alpha_i(S^*, S^0)} (F_i(S^0) - \lambda^0_i G_i(S^0))
$$

$$
- \sum_{j=1}^{m} \frac{v^0_j H(S_j)}{\beta_j(S^*, S^0)} > \sum_{i=1}^{p} \sum_{k=1}^{n} v^0_j \left(D_j F_i(S^0) - \lambda^0_j D_j G_i(S^0), I_{S_j} - I_{S^0} \right)
$$

(24)

$$
\sum_{j=1}^{m} \sum_{k=1}^{n} v^0_j \left(D_j H_j(S^0), I_{S_j} - I_{S^0} \right).
$$

Now, because $(S^0, u^0, v^0, \lambda^0)$ is a feasible solution to (D) by (7) we get

$$
\sum_{i=1}^{p} \frac{u^0_i}{\alpha_i(S^*, S^0)} (F_i(S^*) - \lambda^0_i G_i(S^*)) - \sum_{i=1}^{p} \frac{u^0_i}{\alpha_i(S^*, S^0)} (F_i(S^0) - \lambda^0_i G_i(S^0)) -
$$

$$
- \sum_{j=1}^{m} \frac{v^0_j H(S^0)}{\beta_j(S^*, S^0)} > 0.
$$

(25)

Since $v^0_j H_j(S^0) \geq 0$ for any $j \in M$, by (25) we obtain

$$
\sum_{i=1}^{p} \frac{u^0_i}{\alpha_i(S^*, S^0)} (F_i(S^*) - \lambda^0_i G_i(S^*)) > \sum_{i=1}^{p} \frac{u^0_i}{\alpha_i(S^*, S^0)} (F_i(S^0) - \lambda^0_i G_i(S^0))
$$

which contradicts the assumption (j_1). Thus the theorem is proved.

REFERENCES

