INTRODUCTION

Vitamin C (L-ascorbic acid, ascorbate) is a simple glucose-related carbohydrate with rather unique properties. The presence of an enediol group in the molecule confers electron lability, which makes it a member of an oxidation-reduction system with electron-donating or accepting properties. A loss of the first electron results in formation of the ascorbate free radical (Mehlhorn et al., 1989), which can be further oxidized by another electron loss to give dehydroascorbic acid. Both ascorbic acid and ascorbate free radical have a reducing potential low enough to react with most of the physiologically important radicals and oxidants (Buehner, 1993), enabling vitamin C to act as a powerful hydrosoluble antioxidant in body fluids (Frei et al., 1989), scavenging reactive oxygen and nitrogen species (Halliwell, 1996). Vitamin C also acts as a cosubstrate for some hydroxylase and oxygenase enzymes, maintaining their active center metal ions in a reduced state for optimal enzyme activity (Carr and Frei, 1999).

The ascorbic acid biosynthetic pathway in rats involves the liver as the site of its synthesis (Stone, 1972), and it is to be expected that this is the way they satisfy normal daily needs for this nutrient. However, it is possible that additional vitamin C supplies may improve the antioxidative defense of these animals. In order to elucidate this effect, we studied the oxidative status of rats given two supplements of ascorbic acid over a four-week period of time. Our results confirmed that the additional intake of ascorbate improves the liver’s antioxidative defense in a dose-dependent manner. The explanation for the disproportion between the ratio of employed doses of vitamin C and their effects on the studied parameters probably lies in the mechanism of tissue accumulation of ascorbate and balance of its alimentary and endogenous availability.

MATERIALS AND METHODS

Design of experiment

Male rats of the Wistar strain (Rattus norvegicus) weighing 200±45 g were used for the experiments. The animals were acclimated to 22±1°C and maintained under conditions of 12-h periods of light and dark, with free access to tap water and commercial rat food.

The rats were divided into three groups, each consisting of six animals. The first group consisted of control rats, which drank tap water. The second and third groups were formed by animals whose...
diets were supplemented with a low or high dose of vitamin C dissolved in drinking water.

Vitamin C supplementation

The vitamin C doses chosen were 0.75 and 25 mg of ascorbic acid/kg of rat body weight per day (referred to as low and high doses).

According to our previous experiment performed on a group of six animals over a period of four weeks, the average consumption of water in rats was 240±5 ml of tap water/kg of body weight per day. Both doses of vitamin C were therefore administered every day dissolved in an appropriate volume of tap water and administered to the corresponding group of animals. This supplementation was constant throughout four weeks.

Sample preparation

At the end of the vitamin C supplementation period, animals were killed by decapitation with a Harvard guillotine without anesthesia according to the rules adopted by the Local Ethical Committee. After decapitation, livers were removed and blood was collected.

The tissue was excised and divided in two equal portions. One portion was homogenized in 25 mM phosphate-buffered saline (PBS), pH 7.0, and centrifuged at 9000 g in a semi-preparative Sorvall Super T21 centrifuge for 20 min at 4°C. The supernatants were used for determination of catalase, CuZnSOD, and MnSOD activities, as well as for measurement of the concentration of hydrogen peroxide and total lipid hydroperoxides (the level of lipid peroxidation). The other portion of livers and blood sera were used for determination of vitamin C concentration by a similar procedure, except that 6% trichloroacetic acid (TCA) was used instead of PBS.

Methods

Total content of vitamin C was determined by the method of Roe and Kuethe (1943) and calculated against its standard curve absorption values.

Total superoxide dismutase activity was determined in the tissue PBS samples by the adrenaline method of Misra and Fridovich (1972) using potassium cyanide as a CuZnSOD inhibitor for differential calculation of MnSOD activity (Weisiger and Fridovich, 1973).

Catalase activity was measured in the tissue PBS samples by the method of Beutler (1982), which is based on the rate of H₂O₂ degradation by the action of catalase contained in the examined samples.

Measurement of total lipid hydroperoxide and H₂O₂ content was in both cases based on the ferrous ion oxidation by xylene orange (FOX) assay (Gupta, 1973; Wolf, 1994). Two versions of FOX assays are described in the literature, FOX-1 and FOX-2 (Banerjee et al., 2003). The concentration of H₂O₂ was measured by the FOX-1 assay (Gay and Gebicki, 2000) and calculated against hydrogen peroxide standard curve absorption values.

The concentration of lipid hydroperoxides was measured by the FOX-2 assay (Jiang et al., 1991), with the level of lipid peroxidation in samples expressed as percent of the lipid peroxidation level of the control group.

Statistical analysis

The data are expressed as means ± SEM. The values obtained from rats without vitamin C supplementation were used as a control. One-way ANOVA was undertaken for multiple range comparison, while significant differences among groups were determined by the Tukey test. The probability of significance of differences was set at P < 0.05.

RESULTS

Vitamin C supplementation elevates the serum's total ascorbate content in a dose-dependent manner. This is not the case with the liver, in which only the low dose increases ascorbate tissue content. However, in this tissue both vitamin C doses reduce the level of lipid peroxidation (Fig. 1).

As indicated by Figs. 2 and 3, the activity of CuZnSOD is elevated in the liver of rats fed vitamin C, MnSOD activity and hydrogen peroxide concen-
VITAMIN C SUPPLEMENTATION IN RATS

Fig. 1. Influence of low and high doses of vitamin C supplementation on endogenous concentration of vitamin C in the rat serum and liver (left), as well as on the level of liver lipid peroxidation (right). Statistically significant differences (P < 0.05) in relation to the control are marked with an asterisk above the columns, while statistically significant differences between the two doses of the vitamin C are marked with an asterisk inside the columns.

Fig. 2. Influence of low and high doses of vitamin C supplementation on activity of CuZnSOD (left) and MnSOD (right) in the rat liver. Statistically significant differences (P < 0.05) in relation to the control are marked with an asterisk above the columns, while statistically significant differences between the two doses of the vitamin C are marked with an asterisk inside the columns.

Fig. 3. Influence of low and high doses of vitamin C supplementation on activity of catalase (left) and concentration of H_2O_2 (right) in the rat liver. Statistically significant differences (P < 0.05) in relation to the control are marked with an asterisk above the columns.

DISCUSSION

Vitamin C supplementation dose-dependently increases ascorbate concentration in the blood. In the liver, an increase is present only in the case of a low vitamin C dose, which implies down-regulation of its hepatic synthesis under the influence of a high dose. This is in accordance with findings of Tsao and Young (1989; 1990), who showed that long-term feeding with vitamin C increases its concentration in circulation and reduces its synthesis in the liver (Banegyi et al., 1997).

Our results indicate that the activity of CuZnSOD is elevated in the liver of rats fed vitamin C. It is known that vitamin C increases hepatic activity of cP4502E1 (an isom form of cytochrome P450) and accompanying superoxide anion radical production, which suggests a possible pro-oxidant effect of ascorbate in the liver (Paolini et al., 1999). This cannot be concluded on the basis of our results, since apart of CuZnSOD activity, not one of the other studied parameters indicates increased oxidative stress. Moreover, the level of liver lipid peroxidation is even reduced, confirming the protective effect of vitamin C supplementation.

The disproportion between the employed vitamin C doses and their effects on the studied parameters needs to be emphasized. For example, the two ascorbate doses, which differ from each other more than 33-fold, cause far less different changes of serum ascorbate concentration (less than 20%). Similar results were obtained in a human study, where application of 200 mg of vitamin C daily caused about 80% of the plasma ascorbate saturation achieved with a dose of 2500 mg (Levine et al., 1996). A possible explanation could be the existence of a specific mechanism of tissue ascorbate accumulation. In one system, which is Na$^+$-independent, dehydroascorbic acid is transported by some members of the family of glucose transporters (Ver a et al., 1993). Ascorbic acid, on the other hand, is accumulated by Na$^+$-dependent transport realized by sodium-vitamin C co-transporters,
SVCTs (Tsukaguchi et al., 1999). It is clear that CVCTs have major influence on tissue vitamin C accumulation, since in normal conditions ascorbic acid represents more than 95% of the total body vitamin C content (Rose, 1988). Thus, the fact that SVCTs are fully saturated at low extracellular concentrations of ascorbic acid (Washko et al., 1989) probably explains the relative inefficiency of its high doses. Also, it has been demonstrated that the use of high doses of ascorbic acid causes strong decrease in expression of SVCT1 in the apical surface of the intestinal membrane (MacDonald et al., 2002), which supports the old thesis that the main factor limiting the bioavailability of vitamin C is its intestinal absorption (Hodges et al., 1969). In conclusion, our results confirm that additional intake of ascorbate improves the liver’s antioxidative defense. The dose-dependent nature of this protection emphasizes importance of the mechanisms governing tissue accumulation of ascorbate, as well as relevance of the balance of its alimentary and endogenous availability.

Acknowledgment — This work was supported by the Serbian Ministry of Science and Technology (Grant No. 143050).

REFERENCES

Roe, J. H., and C. A. Kaeither (1943). The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenylhydrazine derivative of dehydroascorbic acid. J. Biol. Chem. 147, 399-407.

Tsukaguchi, H., Tokui, T., Mackenzie, B., Berger, U. V., Chen, X.

ПРОМЕНЕ ОКСИДАТИВНОГ СТАТУСА ЈЕТРЕ ПАОВА ПРЕХРАЊИВАНИХ ВИТАМИНОМ C

С. Ф. ЂУРАШЕВИЋ, ЈЕЛЕНА ЂОРЂЕВИЋ, ТАМАРА ДРЕНЧА, Н. ЈАСНИЋ И ГОРДАНА ЦВИЈИЋ

Институт за физиологију и биохемију, Биолошки факултет, Универзитет у Београду, 11000 Београд, Србија

Испитиван је ефекат прекршане пацове са две дозе витамина C на оксидативни статус јетре. Одређиване су активност и бакар цинк супероксид дисмутазе, манган супероксид дисмутазе и каталазе, ниво липидне пероксидације и концентрација водоник пероксида и укупног витамина C у јетри експерименталних животиња, као и концентрација витамина C у серуму. Добијени резултати указују да егзогени витамин C повећава антиоксидативну заштиту у јетри пацова, на начин који указује на специфичан значај механизма његове ткивне акумулације и баланса.