A METHOD FOR THE RAPID DETECTION AND IDENTIFICATION OF HALO BLIGHT PATHOGEN ON COMMON BEAN

TATJANA POPOVIĆ1*, JELICA BALAŽ2 and SLAVIŠA STANKOVIĆ3

1 Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
2 University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia
3 Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia

*Corresponding author: tanjaizbis@gmail.com

Abstract - A diagnostic method based on nested-PCR, followed by ELISA and conventional bacteriology tests, for the rapid and reliable detection of halo blight pathogen Pseudomonas savastanoi pv. phaseolicola (Psp) collected from infected bean leaves and seeds is described. Psp formed white, small and flat colonies on nutrient agar medium, creamy white, flat and circular on Milk-Tween agar medium and light yellow, convex and shiny on modified sucrose peptone agar medium. Eighteen Gram-negative, catalase-positive and oxidase-negative strains were subjected to nested PCR with primers P 5.1/P 3.1 and P 5.2/P 3.2, which directed the amplification of the 450 bp target DNA fragment in all tested strains. According to the results of DAS- and PTA-ELISA with respect to reactivity to specific antibodies, all analyzed strains belonged to Psp bacterium. Pathogenicity was tested on bean pods and cotyledon leaves, on which greasy spots were formed. Psp did not cause hypersensitive reaction on the leaves of tobacco and geranium. Strains produced levan, fluorescent pigment, oxidative metabolism of glucose, did not reduce nitrate, did not produce indole and H2S, did not hydrolyze starch, gelatin and esculin; they produced acid from glucose, mannose, sucrose and glycerol, and did not produce acid from maltose, starch, esculin, dulcite, sorbitol, inositol and erythritol.

Key words: Pseudomonas savastanoi pv. phaseolicola; halo blight; bean; identification

INTRODUCTION

Pseudomonas savastanoi pv. phaseolicola (Burkholder 1926) Gardan et al. 1992 (Psp), the causal agent of halo blight, is an economically important bacterium of beans all over the world (Bradbury, 1986; Franc, 1998) including Serbia (Balaž, 1985; Popović, 2008; Popović et al., 2012). The bacterium gained economic significance in the 1960-70s in the USA and some European countries, mainly due to the development of susceptible beans cultivars and intensive commercial exchange of seeds over long distances.

Yield reductions up to 43% were recorded in the UK and the USA (CPC, 2004). In response to the epiphytotic outbreak of the disease on beans, intensive selection work was started in the USA, which included the transfer of resistance genes from different bean genotypes (Zaumeyer and Meiners, 1975).

Halo blight was registered in Serbia during 1970-80s, when American and German varieties predominated in the domestic bean production (Balaž, 1985). In years with a cool and rainy spring, cases of complete destruction of string bean crops were recorded.
in the Vojvodina Province (Balaž, 1989). In recent years, however, this bacterium ceased being a major problem in bean production in our country, mainly because of favorable weather conditions (warm and dry weather during string bean emergence and initial stages of development) and growing of bean cultivars resistant to Psp.

Psp infects beans during their emergence, intensive growth, flowering and pod maturation. It may occur on bean leaves, stems, growing points, pods and seeds (Schwartz, 1989; Franc, 1998). Intensive chlorosis, the typical symptom of halo blight, is the result of the action of phaseolotoxin, a toxin containing N-phosphosulfamylornithine as the major functional component (Schwartz, 1989).

Psp can be easily isolated from halo spots on the leaves, stems or pods using a standard isolation medium (Schaad, 1988; Popović, 2008). As Psp is a seedborne pathogen, several semiselective media can be used for isolation from seed (Mohan and Schaad, 1987; Moser et al., 1994; Gozczynska and Serfontein, 1998; ISF, 2006; Kurowski and Remeeus, 2008). The aim of this study was to elaborate a rapid diagnosing method for the detection and identification of Psp strains from infected bean leaves and seeds that can be recommended for routine testing of this bacteria.

MATERIALS AND METHODS

Bacterial isolation

Isolation from leaves with halo blight symptoms was carried out on three samples of infected beans (varieties Oplenac, Zlatko and Slavonski žutozeleni), using macerated plant fragments obtained from the transition zone between healthy and diseased tissues plated on NA (nutrient agar). Isolation from seed was carried out on extracts obtained from two infected bean samples (varieties Dvadesetica and Oplenac), using two semiselective media, MT (Milk-Tween agar) described by Gozczynska and Serfontein (1998) and MSA (modified sucrose peptone agar) described by Mohan and Schaad (1987). Extraction was performed from whole bean seeds in a sterile extraction solution in the proportion of 1:2 (1 g of seed in 2 ml of solution) for 24 h at 5°C (ISF, 2006; Kurowski and Remeeus, 2008). A pure culture of Psp reference strain (Ps12) was also plated on used media. The Petri dishes were incubated at 28-30°C for five days. After this, the sample plates were visually assessed for the presence of colonies with typical Psp morphology by comparison with the reference strain. Suspected colonies, as well as the reference strain, were transferred onto a King’s B agar and incubated for 3-4 days at 27°C. Eighteen representative strains were selected for further work (Table 1). Throughout the study, 24- to 48-hour-old strains grown in NA were used.

Pathogenicity

Pathogenicity of the tested strains was checked by:

1. injection of a bacterial suspension (in the concentration of 10^7 CFU ml⁻¹) into young string bean pods with a hypodermic syringe (Balaž et al., 1995; Popović, 2008), and
2. toothpick wounding of cotyledons (ISF, 2006; Kurowski and Remeeus, 2008; Popović, 2008).

Hypersensitivity reaction was tested on tobacco and geranium leaves by injecting the bacterial suspension (in the concentration of 10^7-10^8 CFU ml⁻¹) with a hypodermic syringe (Klement et al., 1990).

Nested-PCR

Nested PCR (polymerase chain reaction) was conducted with DNA extracted from pure bacterial cultures (Schaad et al., 2001). Cells from 0.5 mL of bacterial suspension (3 × 10 CFU mL⁻¹) were used for DNA extraction. The modified method for the detection of phaseolotoxin genes was given by Güven et al. (2004). 0.5 mL of cell suspension were boiled for 15 min. The cell debris was removed by centrifugation for 10 min at 11 000 rpm. 2 μL of supernatant were used for amplification. For the first PCR primers P 5.1: 5’-AGCTTTCTCCTAACAACCTGG-3’ and P 3.1: 5’-TGTTCCGCCAGGCAGTG-CATG-3’ were used. Primers P 5.1 and P 3.1 directed the amplification of the 500-bp DNA fragment. For the second PCR, primers P 5.2: 5’-TCGAACAT-
CAATCTGCCAGCCA-3’ and P 3.2: 5’-GGCTTT-TATTATTGCCGTGGGC-3’ were used. Primers P 5.2 and P 3.2 directed the amplification of the 450-bp DNA fragment. A reference strain of *Psp* (Ps12) was used as a positive control and a reference strain of *Erwinia amylovora* NCPPB 595 was used as the negative control.

The PCR amplification assay was performed in a 25-μL reaction mixture containing Taq DNA polymerase 1.25 U, 50 mM KCl, 30 mM Tris-HCl, 1.5 mM Mg2+, 0.1 % igepal-CA630, 200 μM dNTP, 0.4 μM of primers and 1 μL of DNA. A Mastercycler ep gradient S (Eppendorf, Germany) was used for PCR with the following profile amplifications: an initial 3 min incubation at 94°C, a manual “hot start” step at 80°C, 25 cycles (1 min at 94°C, 1 min at 58°C and 1 min at 72°C), and a final extension step of 10 min at 72°C. After the first PCR, products were diluted 10-fold and 2 μL were used for the second PCR. The amplified DNA fragments were electrophoresed in 2 % agarose gels in 1xTBE buffer and visualized with ultraviolet light after ethidium bromide staining.

PTA- and DAS-ELISA

Double-antibody sandwich (DAS)-ELISAs and plate trapped antigen (PTA)-ELISAs were performed with commercial kits by Loewa Biochemica GmbH, Germany and ADGEN Phytodiagnostics, Neogen Europe Ltd., Scotland, U.K., respectively. The assays followed the manufacturer’s instructions. An ELISA reader (BIO-TEK ELx800UV), at a wavelength of 405 nm, was used for reading the results. Results for each tested strain were calculated as an average of two replications (two wells). Samples were considered positive if their absorption value was two or more times greater than that of the negative control.

Phenotypic characterization

All strains of *Pseudomonas syringae* pv. *syringae* van

**Table 1. Isolation of *Pseudomonas savastanoi* pv. *phaseolicola*.

<table>
<thead>
<tr>
<th>Strains</th>
<th>Bean variety</th>
<th>Isolation from</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP5</td>
<td>Oplenac</td>
<td>Leaf</td>
<td>NA</td>
</tr>
<tr>
<td>TP6</td>
<td>Oplenac</td>
<td>Leaf</td>
<td>NA</td>
</tr>
<tr>
<td>TP11</td>
<td>Slavonski žutozeleni</td>
<td>Leaf</td>
<td>NA</td>
</tr>
<tr>
<td>TP12</td>
<td>Slavonski žutozeleni</td>
<td>Leaf</td>
<td>NA</td>
</tr>
<tr>
<td>TP16</td>
<td>Zlatko</td>
<td>Leaf</td>
<td>NA</td>
</tr>
<tr>
<td>TP17</td>
<td>Zlatko</td>
<td>Leaf</td>
<td>NA</td>
</tr>
<tr>
<td>TP106</td>
<td>Dvadesetica</td>
<td>Seed</td>
<td>MSP</td>
</tr>
<tr>
<td>TP108</td>
<td>Dvadesetica</td>
<td>Seed</td>
<td>MSP</td>
</tr>
<tr>
<td>TP127</td>
<td>Dvadesetica</td>
<td>Seed</td>
<td>MT</td>
</tr>
<tr>
<td>TP114</td>
<td>Dvadesetica</td>
<td>Seed</td>
<td>MT</td>
</tr>
<tr>
<td>TP117</td>
<td>Dvadesetica</td>
<td>Seed</td>
<td>MT</td>
</tr>
<tr>
<td>TP118</td>
<td>Dvadesetica</td>
<td>Seed</td>
<td>MT</td>
</tr>
<tr>
<td>TP232</td>
<td>Oplenac</td>
<td>Seed</td>
<td>MSP</td>
</tr>
<tr>
<td>TP233</td>
<td>Oplenac</td>
<td>Seed</td>
<td>MSP</td>
</tr>
<tr>
<td>TP234</td>
<td>Oplenac</td>
<td>Seed</td>
<td>MSP</td>
</tr>
<tr>
<td>TP229</td>
<td>Oplenac</td>
<td>Seed</td>
<td>MT</td>
</tr>
<tr>
<td>TP230</td>
<td>Oplenac</td>
<td>Seed</td>
<td>MT</td>
</tr>
<tr>
<td>TP231</td>
<td>Oplenac</td>
<td>Seed</td>
<td>MT</td>
</tr>
</tbody>
</table>
Hall (Pss) were characterized by the following tests: KOH test, oxidase activity, catalase activity, oxidative/fermentative (O/F) metabolism of glucose, levan production on NA with 5% sucrose - NSA, nitrate reduction, gelatin, starch and esculin hydrolysis, H2S production, indole production and acid production from carbohydrates (Goszczynska et al., 2000). Psp and Pss were distinguished by the following differential tests: esculin hydrolysis, gelatin hydrolysis and use of sorbitol, inositol and erythritol as carbon sources (Goszczynska et al., 2000). Reference strain of the bacterium Pss GSPB 1142 was used as control in these tests.

RESULTS AND DISCUSSION

Bacterial isolation

Psp was successfully isolated from infected bean leaves on NA and from infected seeds on semiselective media MT and MSP (Fig. 1). After three days of growth on NA, Psp colonies were white, small and flat, about 2 mm in diameter. After four days of incubation on MT medium, the colonies were creamy white, flat and circular unequal in size (3-5 mm in diameter). According to ISF (2006), Psp colonies on this medium could contain light blue fluorescent pigment. After four days of growing on MSP medium, the colonies were light yellow, convex and shiny, about 2-3 mm in diameter. Many authors recommended the semiselective medium MT and MSP for Psp isolation (Jansing and Rudolph, 1996; NSHS, 2002; ISF, 2006; Kurowski and Remeeus, 2008; Popović et al., 2012). Psp isolation from bean seeds was also performed with King B medium, KBC medium and LPGA medium (NSHS, 2002).

All tested strains were Gram-negative; they produced levan and green fluorescent pigment. These characteristics corresponded to those reported for Psp by Schaad et al. (2001) and CPC (2004).

Pathogenicity

On bean pods, wet and oily spots could be seen on the inoculated tissue after three days. A whitish bacterial exudate formed several days after inoculation, and the edge of the spots became reddish in color. Lelliott and Stead (1987) reported inoculation of immature bean pods for testing the pathogenicity of isolates of Psp, reporting the occurrence of wet spots as a typical positive reaction. To test the pathogenicity of Psp isolates, Balaž (1985) used a method of wounding the pod pericarp before the grain filling stage with a syringe needle and a method of spraying of young bean pods. The latter method showed that the youngest pods were most sensitive.
Bean cotyledons showed disease symptoms five days after the inoculation. These were dark green, greasy spots around the wounded place. Ten days after inoculation, entire cotyledons were covered with small oily spots. According to the ISF (2006), chlorotic halo may develop on first true leaves of inoculated bean plants because of the activity of phaseolotoxin. Chlorotic halos were not observed in our study, which may be due to elevated temperatures in the climate chamber (20°C). According to Nüske and Fritsche (1989), the optimum temperature for the development of phaseolotoxin is 18°C.

The examined strains caused hypersensitive reaction on tobacco and geranium leaves, which developed within 24 h after inoculation. This was consistent with the results of other authors (Balaž, 1985; Van Vuurde and Van den Bovenkamp, 1989).

 Nested-PCR

The results of the nested-PCR assay showed that using primer pairs P5.1/P 3.1 and P 5.2/P 3.2 directed the amplification of the 450-bp target DNA fragment (Fig. 2). The advantages of identification of Psp strains by PCR were also mentioned by Rico et al. (2003). According to Audy et al. (1996), there was a possibility of using PCR to detect Psp directly from bean seeds. The method involves rapid DNA extraction, a shorter period of seed setting, with a solution of sodium hydroxide, and the application of specific primers. With this method, it is possible to detect a single or several infected seeds in a sample of 10 000, so it can be used for easy and direct detection of Psp in commercial seed lots of beans (Audy et al., 1996).

 PTA- and DAS-ELISA

The PTA- and DAS-ELISA tests showed that all of the examined strains reacted with antibodies specific for Psp. Using the ELISA test for Psp identification, Wyatt et al. (1989) detected 10^6 cells mL^-1, whereas other authors claimed to have detected 80 cells ml^-1 in seed extract (Trigalet et al., 1978) or 10^2 (Bazzi and Calzolari, 1982). In addition, other serological methods of Psp identification can be found in the literature, such as the agglutination test (Guthrie et al., 1965) and the agar diffusion test (Guthrie et al., 1965). Various serological tests for Psp identification (for pure cultures or plant material) are presently available on the market (Express, Identikit, Fluorescan-IF, ELISA).

 Phenotypic characterization

All strains were Gram-negative, aerobic, catalase-positive and oxidase-negative bacterium. Strains produced levan, did not reduce nitrates, did not produce indole or H2S, did not hydrolyze gelatin, starch or es-
culin. All strains produced acid from glucose, man-
nose, sucrose, and glycerol, and did not produce acid
from maltose, starch, esculin, dulcit, sorbitol, inosi-
tol and erythritol. The results suggest that the strains
appear phenotypically similar. The obtained results
were in agreement with those published for Psp by
Balaž (1985, 1989), Lelliott and Stead (1987), Van
Vuurde and Van den Bovenkamp (1989) and Schaad
et al. (2001). Based on the responses to the differ-
etial tests described by Lelliott and Stead (1987), it
was concluded that the examined strains belonged to
Psp because they did not hydrolyze esculin or gelatin,
and did not use sorbitol, inositol and erythritol as
sources, while the control strain of Pss GSPB
1142 hydrolyzed esculin and gelatin and used sorbi-
tol, erythritol, and inositol as carbon sources.

This study describes a rapid, reliable and practical
method for the routine detection and identification of
Psp from infected bean plant and seed material.

REFERENCES

Audy, P., Braat, C.E., Saindon, G., Huang, H.C. and A. Laroche
(1996). A rapid and sensitive PCR-based assay for specific
targeting of genes coding for bacterial blights in bean seed.
Phytopathology 86(4), 361-366.

Balaž, J. (1985). Otpornost i priroda otpornosti boranije i pasulja
prema Pseudomonas phaseolicola Burkholder (Dowson).
Novi Sad, Serbia: University of Novi Sad, PhD thesis.

Balaž, J. (1989). Bakteriološke karakteristike i fiziološke rase
Pseudomonas savastanoi pv. phaseolicola (Burkholder)
Young, Dye and Wilkie. J. Basic. Microbiol 188, 187-
194.

metoda za dokazivanje Pseudomonas savastanoi pv. phaseo-
ciola na semenu pasulja. Pesticidi i fitomedicina 23(2),
81-88.

CPC - Crop Protection Compendium (2004). Crop Protection
Compendium 2004 Edition. CAB International, Walling-
ford, UK.

tension Service, University of Wyoming.

Semiselective Medium for Isolation and Differentiation of
Pseudomonas syringae pv. syringae, Pseudomonas syringae
pv. phaseolicola and Xanthomonas axonopodis pv. phaseo-

Goszczynska, T., Serfontein, J.J. and S. Serfontein (2000). Intro-
duction to Practical Phytopathobiology. A Manual for Phy-
tobacteriology by Safrinet, the Southern African (SADC)

Phenotypic and Genetic Diversity among Pseudomonas
syringae pv. phaseolicola. J. Phytopathology 152, 658-666.

of Pseudomonas savastanoi pv. phaseolicola on Bean seed.
Nyon, Switzerland.

Health Testing. Working Sheet 66 (Pseudomonas sy-
ingae pv. phaseolicola).

Phytobacteriology. No. 9, Akadémiai Kiadó, Budapest.

Karowska, I. and P.M. Lyle (2008). Detection of Pseudo-
omas savastanoi pv. phaseolicola on Phaseolus vulgaris.
International Seed Testing Association (ISTA), Bassersdorf,
Switzerland.

bacterial diseases of plants. Blackwell Scientific Publica-
tions, Oxford, UK.

assay for detecting Pseudomonas syringae pv. syringae and
P. s. pv. phaseolicola in contaminated bean seed. Phytopa-
thology 77, 1390-1395.

plating assay for detection and differentiation of bacterial
blight of bean and pea. Annual Report of the Bean Improve-
ment Cooperative 37, 25-26.

NSHS - National Seed Health System (2002). Seed Health Testing
and PhytoSanitary Field Inspection Methods Manual. Refe-

Pseudomonas syringae pv. phaseolicola: the influence of

bean seed and cultivar susceptibility. Novi Sad, Serbia: Uni-
versity of Novi Sad, PhD thesis.

Rasprostranjenost i karakterizacija fitopatogenih bakterija
na merkantilnim usevim pasulj na Vojvodini. Zasštita bilja
268, 101-125.

Popović, T., Milovanović, P., Aleksić, G., Gavrilović, V., Starović,
M., Vasić, M. and J. Balaž (2012). Application of semi-se-
lective mediums in routine diagnostic testing of Pseudomo-
nas savastanoi pv. phaseolicola on common bean seeds.
Scientia Agricola 69(4), 265-270.

