This article can be cited before page numbers have been issued; to do this please use: Đurakić MR, Milankov VR. Carapace shape variation of genetically divergent populations of Testudo hermanni boettgeri (Reptilia: Testudines). Arch Biol Sci. 2019;https://doi.org/10.2298/ABS190604043D.

This is an Accepted Manuscript, which has been through the Archives of Biological Sciences peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance and proof reading, before technical editing and formatting. Using this service, authors can make their results available to the community, in citable form, before the edited article is published. This Accepted Manuscript will be replaced with the edited and formatted Published Article as soon as it is available.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. In no event shall the Archives of Biological Sciences be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Carapace shape variation of genetically divergent populations of Testudo hermanni boettgeri (Reptilia: Testudines)

Marko R. Đurakić and Vesna R. Milankov*

Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia

*Corresponding author: vesna.milankov@dbe.uns.ac.rs

Received: June 4, 2019; Revised: July 5, 2019; Accepted: July 15, 2019; Published online: July 25, 2019

Abstract: The published cytb mtDNA sequences from a previous phylogeographic study of Testudo hermanni and de novo genetic and phenotypic data of samples from the Pčinja River Valley (Serbia, Central Balkans) and Trebinje (Bosnia and Herzegovina) were used to: (i) genetically characterize samples from Pčinja, a region of great importance from the conservation standpoint due to its taxonomic diversity and biogeographical history, and Trebinje, a type locality of a disputed taxon “Testudo hercegoviensis” Werner, 1899; (ii) to study the link between gene genealogy and geographic distribution by implementing spatial genetic analyses, and (iii) to assess whether the distribution of carapace shape variation is in accordance with genetic clusters. The samples from Pčinja and Trebinje possessed divergent haplotypes that corresponded to east (HI) and west (HV) genetic clusters, respectively. Geometric morphometrics was found to be a suitable method to distinguish divergent genetic clusters, arguing for the reassessment of a subspecific ranking within the currently recognized eastern Hermann’s subspecies, T. h. boettgeri.

Keywords: cytb mtDNA; geometric morphometrics; landscape genetics; subspecies; turtle

INTRODUCTION

The rapid loss of biological diversity is indisputably linked to environmental perturbations and extensive habitat degradation caused by human activities [1]. For instance, global climate change, habitat loss and degradation, introduced invasive species, the pet trade, environmental pollution, disease and parasitism, and unsustainable exploitation are considered to be the main anthropogenic causes for the worldwide decline in reptiles [2]. However, many species that suffer from negative anthropogenic impact have neither been recognized nor consequently monitored due to the notable lack of sufficient data about their distribution and ecology, as well as their taxonomical and conservation status [2]. Within reptiles, the substantial declines in freshwater turtles and tortoises have been recognized as a global turtle survival crisis since 56.3% of 251 species with IUCN Red List status are considered as Threatened [3]. One of the key challenges in turtle conservation includes the disputed taxonomical status of taxa, which consequently underestimates the actual number of threatened taxa of the focal region [1-3].

The Hermann’s tortoise, Testudo hermanni (Gmelin, 1789), is one of three tortoise species that inhabit the European part of the Mediterranean basin [4,5], a region known for its significant levels of biodiversity and rich taxonomic uniqueness [6]. Currently, the Hermann’s tortoise is globally listed as Near Threatened according to the IUCN’s Red List [7], although an update of its IUCN conservation status has been suggested [4,8]. In addition, the species is protected under the CITES regulative (Appendix II), Habitat Directive (Annexes II and IV), and Bern Convention (Annex II), as well [8,9]. Major threats to the
species are habitat degradation, hazardous wildfires, harvesting for the pet trade and road mortality, as well as agriculture and urbanization in the coastal part of the Mediterranean region [4,10,11]. Even large and dense populations seem to be prone to an uncertain viability over the years [8].

The nomenclatural history of this species is complex [12], however two subspecies are currently recognized: T. h. hermanni (Gmelin, 1789) and T. h. boettgeri (Mojsisovics, 1889). Unlike T. h. hermanni, which occurs in eastern Spain, southern France and Italy (including the Balearic Islands, Corsica, Sardinia and Sicily), T. h. boettgeri inhabits the southern and central parts of the Balkan Peninsula [4]. The two-subspecies proposition was established by the work of Wermuth [13], but this division was later challenged. Due to the absence of inguinal scutes, populations of T. h. boettgeri along the Adriatic coast from northern Croatia to southern Montenegro (up to the River Bojana) were suggested as a distinct species, T. hercegovinensis [14,15]. The work of Perälä [14,15] was based on the previous study by Werner [16] who showed that individuals from the vicinity of Trebinje (Bosnia and Herzegovina) represent a distinct morphological variant of the nominal species and recognized them as Testudo graeca var. hercegovinensis [16]. Therefore, according to Perälä [14,15], nominal T. hermanni should be split into three species (T. hermanni, T. hercegovinensis and T. boettgeri), with some authors supporting this division [17-19]. Fritz et al. [20] used a model-based phylogenetic inference and parsimony network analysis to study the phylogeographic structure of the species based on molecular variation of cytb and the adjacent tRNA-Thr gene of mitochondrial DNA (mtDNA). Although the latter method has been shown to be more sensitive to detection of genetic structuring within the eastern subspecies T. h. boettgeri, the phylogenetic approach was used in defining the subspecies status as the presence/absence of monophyletic groups on a phylogenetic tree [20]. Therefore, the three-species model [14,15] has been discarded and the use of the traditional two-subspecies model [13] was suggested [20]. The Balkan populations were grouped in three allopatric haplogroups (B1-B7: central, eastern and southern parts of the Balkans; B8-B9: western slope of the Taygetos Mts., southern Peloponnese; and B10-B15: Adriatic coast from northern Croatia to Epirus in Greece), which were suggested as distinct Evolutionarily Significant Units (ESU) but without recognized taxonomical rank [20]. The same study claimed that the lack of inguinal scutes was not the unique feature of “T. hercegovinensis”, which additionally supported the two subspecies division as proposed by Wermuth [13,20].

The variation within T. hermanni has been studied by assessing geographically distinct samples using molecular markers and a traditional morphological approach (qualitative traits and linear morphometrics), given that the allopatric distribution, a certain degree of genetic divergence and morphological differentiation between characteristic sets of conspecific populations represent the hallmarks of a polytypic species [21-24]. However, in line with the proposition for further research on this taxon [4], a cutting-edge method such as geometric morphometrics, proven to be powerful in the detection of subtle phenotypic variation [25], has not been applied in studies of morphological differentiation of genetically recognized groups within this species. The study by Fritz et al. [20] is the most comprehensive phylogeographic study of this species and has consequently been widely used as a basis for the current taxonomical ranking of Hermann’s tortoise populations. However, due to the taxonomic ambiguity and putative cryptic diversity, both harboring consequences for conservation management strategy, the Balkan’s T. hermanni populations should be further investigated in greater detail.

Given the conservation and taxonomical importance of the detection of cryptic diversity within T. hermanni boettgeri, we addressed three specific aims. First, we studied the molecular variation of cytb mtDNA of T. h. boettgeri sampled from two populations (Pčinja
River Valley, Serbia and Trebinje, Bosnia and Herzegovina) that have not been included in
the rangewide phylogeography study by Fritz et al. [20]. The two chosen localities are of
importance since Trebinje is a type locality of the disputed taxon *T. greaca* var.
hercegoviensis (Werner, 1899), while Pčinja River Valley is a region of great importance
from the conservation perspective due to its taxonomic diversity and biogeographical history
[26-29]. Second, we analyzed a joint dataset (sequences are from Fritz et al. [20] and our *de
novo* cytb mtDNA sequences) using a spatially informed Bayesian clustering specifically
designed for individual- and population-level analyses [30,31] in order to complement the
current knowledge of the species’ phylogeography. Finally, by implementing comprehensive
morphometric analyses, we investigated whether the carapace shape sufficiently differs
between populations from Pčinja River Valley and Trebinje. Our data provide new insights
into the current knowledge of the intraspecific diversity within *T. hermanni* across its range,
with conservation implications.

MATERIALS AND METHODS

Sampling and field procedures
In this study, we analyzed 99 free-living adult specimens with fully developed and
undamaged shells, collected from two localities, Trebinje (Bosnia and Herzegovina) and
Pčinja River Valley (Serbia) (Supplementary Table S1). In order to infer the membership of
Trebinje and Pčinja specimens to previously described haplogroups, we also included 87
sequences reported by [20] (Supplementary Table S2).

Adult individuals are those whose straight carapace is longer than 100 mm [32], and
sexes were identified based on sex-specific macromorphological characteristics, such as tail
length, concavity of the plastron, anal notch width and the curvature of posterior peripheral
plates [5]. The collection and temporary handling of tortoises were regulated by permissions
issued by the Ministry of Environmental Protection of the Republic of Serbia (119-01-
5/17/2014-09), while such regulations were not required for Bosnia and Herzegovina due to a
lack of conservation status and protection of the species in Republika Srpska. The field
protocol included sex determination of specimens, labelling the individuals, image
acquisition, blood collection and georeferencing. In the field, each individual was
photographed twice from the dorsal (carapace) perspective in order to estimate imaging error.
Images were obtained using a hand-held NIKON COOLPIX S8000 camera with automatic
settings (14.2 MP resolutions), positioned perpendicular to each individual. Photographs were
obtained by the same person (MD). The imaging system was accompanied by a millimeter
scale, later used for size calibration, and a bubble level that ensured the absence of inclination
of the system relative to the field ground. Blood samples were obtained by puncturing the
jugular veins of the tortoises, collecting a small amount of blood (max 300 µL) and storing it
on FTA® cards (Whatman, Part of GE Healthcare, USA). For each individual, GPS
coordinates of the exact capturing location were obtained.

DNA extraction and amplification
From each individual blood sample stored on FTA® cards, we punched three to five 1.2-mm
disks using the Harris micro-punch and a cutting mat. Cross-contamination between punches
was prevented by rinsing the cutting mat and the micro-punch with ethanol between
sampling. Likewise, the micro-punch was dried by punching a disk from an unused FTA®
and common filter paper. Genomic DNA was extracted with a NucleoSpin® Tissue kit
(Macherey-Nagel, Germany) using a protocol for dried blood spots. A fragment of 750 bp,
containing both ends of the *cytb* mtDNA gene, was amplified using the following primers: L
14722 (forward direction; 5'-CGAAGCCTTGATATGAAAAACCATCGTGG-3') [33] and H
15231 (reverse direction; 5'-GCAAAATAGGAAGTATCATTCTGG-3') [34]. PCR
amplification was performed using the Illustra™ PuReTaq™ Ready-To-Go™ PCR kit (GE Healthcare, USA) under the following conditions: initialization at 94°C for 5 min, then 40 cycles of denaturation at 94°C for 45 s, annealing at 53 °C for 45 s, elongation at 72°C for 90 s, and a final elongation step at 72°C for 10 min [34].

Using horizontal electrophoresis (1.5% agarose gel with ethidium bromide), we checked the PCR products and afterwards purified them with ExoSAP-IT® (USB Corporation, USA) in a two-step reaction (37°C for 30 s and 80°C for 15 s), following the manufacturer’s protocol. Finally, purified PCR products were sequenced using the ABI prism Big Dye Terminator Cycle sequencing kit (version 3.1) on an ABI 3730xl DNA Analyzer (Applied Biosystems, USA). Each individual PCR product was sequenced in both the forward and reverse direction. DNA sequences were manually checked by the same person (VM) for errors in Chromas Lite (v.2.1.1.) (Technelysium Pty Ltd, http://www.technelysium.com.au).

DNA sequence analyses

All sequences were aligned by ClustalW algorithm in MEGA X [35]. Relative to the one reported in [20], the sequence frame we amplified was about 150 bp longer and approximately 400 bp shorter in the 5’ and 3’ directions, respectively. The shared sequence frame was about 600 bp long, and after trimming the alignment by excluding invariable sites at the both ends of the frame, the final length of all sequences analyzed was 518 bp. In order to infer affiliation of our samples relative to the four haplogroups provided in Fritz et al. [20], a haplotype network [36] in the pegas package v.0.11 [37,38] was constructed for the R statistical language. The landscape genetics of *T. hermanni* was assessed with the Geneland package v.4.0.8 [30,39] for the R statistical language, which is the Bayesian clustering method that can explicitly consider the spatial structure of the data. The main aim of this method was to determine the number of populations that maximize the Hardy-Weinberg equilibrium and the linkage equilibrium within them. Because of the lack of spatial information, the sequence AJ888364 [20] was excluded from the analysis and the whole input dataset consisted of 96 georeferenced samples. Variable substitutions found in our sequence alignment were extracted in MEGA X and nucleotides were coded as T=1, C=2, G=3, A=4. The latitude and longitude coordinates of each individual (spherical coordinates) were transferred to planar coordinates (UTM; Geneland requirements for the spatial structure inference). Allele frequencies in Geneland can be treated according to both uncorrelated and correlated models [30,39]. For the MCMC procedure, we set 10 independent runs, each with 100000 iterations, and the chains were thinned every 100 iteration; burning was set to 200; the maximum rate of the Poisson process was 96 (equal to the number of individuals); the maximum number of populations was set to 10; the maximum number of nuclei in the Poisson-Voronoi tessellation was 288 (three times the number of individuals, as suggested in the Geneland manual). We used the spatial model without assuming uncertainty of spatial coordinates and genetic data were treated as haploid data (standard procedure for mtDNA) [40]. A convergence of MCMC was tested by visual inspection of a trace plot of 10 independent runs for both uncorrelated and correlated models of allele frequencies. Likewise, we compared the consistency of the estimated number of populations (K) and individuals’ affiliation to those clusters across independent runs and two models.

Geometric morphometric analyses

On each image, 2D Cartesian coordinates of 28 fixed landmarks were digitized by the same person (MDj) using tpsDIG (v. 2.17) [41] (Supplementary Fig. S1). Landmarks were digitized on the intersections of dermal scutes (keratinized epidermal structures or dermal plates) and the distribution of landmarks covers vertebral (neural) and costal scutes of the carapace. Twenty-six landmarks were paired (1-26), while two (27, 28) were unpaired and
they define the longitudinal axis that divides paired landmarks. The carapace shape was
analyzed using landmark-based geometric morphometrics [42]. Shape variables (Procrustes
tangent coordinates) were obtained by generalized Procrustes superimposition [43], which
mathematically removes the effects of non-shape variation (position, orientation and
isometric size). As all individuals were photographed twice, prior to analyses of shape
variation, an assessment of the effect of imaging error was checked with Procrustes analysis
of variance (ANOVA) for object symmetry [44]. The symmetric component of shape
variation for each individual was extracted and used in subsequent analyses. The use of the
symmetric component of shape variation is particularly important for structures with object
symmetry, as it improves the accuracy of shape estimates by “averaging” between body sides
using mirror-reflection [25,44,45]. Centroid size (CS) was used as a geometric measure of
size. The superimposition, Procrustes ANOVA for bilateral symmetry and extraction of the
symmetric component of shape variation and CS for each specimen were performed in the
g geomorph package (v. 3.1.2) [46,47] in R (v. 3.6).

The relative contribution of the logarithm of centroid size (hereinafter referred by the
term “Size” for Log (CS)), Sex and Haplotype to the total shape variation was assessed using
the linear models performed in geomorph [46] and RRPP R packages applying randomized
residuals in a permutation procedure (RRPP) when applicable using 1000 iterations [47]. This
procedure is particularly appropriate for this study since it can evaluate the relative
contributions of each term in the linear model relative to the total amount of shape variation,
which is expressed as a coefficient of determination (R^2); this method is not sensitive to cases
where the number of variables is greater than the number of individuals; it provides Z scores
that are the measures of an effect size of particular term (e.g. the standard deviation of an
effect sum-of-squares relative to the random distribution of sum-of-squares generated by
permutations [48]). Using Z scores as an effect size allows for the comparison of results
across studies. It is important to note that the sum-of-squares of terms in the models was
assessed using Procrustes distances among specimens, rather than the explained covariance
matrices among variables. We performed principal component analysis (PCA) to observe
distribution of individuals in the morphospace defined by the first two PC vectors. Shape
changes between haplotypes within each sex were visualized by warped outline drawings
[49]. Accuracy of discrimination between haplotypes based on carapace shape was
established by discriminant function analysis (DFA) using leave-one-out cross-validation.
Warped outline drawings and the percentage of correct classification from DFA were
obtained in MorphoJ (v. 1.06d). PCA was conducted in R, while warped outline drawings and
the percentage of correct classification from DFA were obtained in MorphoJ (v. 1.06d) [50].

RESULTS
Molecular characterization and landscape genetics
Eleven cytb mtDNA haplotypes were found in T. hermanni species, three (HIX-HXI) and
eight (HI-HVIII) of which were registered in T. h. hermanni and T. h. boettgeri subspecies,
respectively (Supplementary Tables S1 and S2). Common haplotypes found in T. h. hermanni
were HIX and HXI. Common haplotypes in T. h. boettgeri characterize populations along the
eastern Adriatic Sea coast and northern Ionian Sea, including Croatia and Epirus in Greece
(HV), as well as the continental part of the Balkans with the majority of Greek populations
(HI). In T. h. hermanni, a unique haplotype (HX) was found in one out of seven individuals
from Apulia in Italy. In T. h. boettgeri, six unique haplotypes were identified, all registered in
Greece: Macedonia (HII), Evvia (HIII), Peloponnese (HIV), Parga (HVI, HVIII), and Corfu
(HVII). Haplotypes represented with a single individual in the present study were HII, HVII
and HVIII within T. h. boettgeri, as well as HIX within T. h. hermanni (Fig. 1). Eight tortoises
analyzed from the Pčinja River Valley (Serbia) belonged to the most prevalent haplotype found in the continental part of the Balkans (HI), while two individuals from Trebinje (Bosnia and Herzegovina) represented the HV haplotype, specific to the eastern Adriatic Sea coast (Fig. 1, and Supplementary Table S2).

Our reconstructed haplotype network showed the presence of three haplogroups, rather than the four as in [20] (Fig. 1). The Bayesian inference on the georeferenced cytb mtDNA dataset in Geneland showed the presence of three to five clusters across the range of Hermann’s tortoise (Supplementary Table S2 and Fig. 2). Namely, the model with uncorrelated allele frequencies systematically recovered three clusters in all 10 independent runs (Fig. 2b): (i) cluster A, which consisted of populations of T. h. hermanni found in Spain, France, and Italy; (ii) populations across Croatia and Bosnia and Herzegovina and northern Greece (Corfu and Epirus) in the proximity of the Adriatic and Ionian seas, respectively, were attributed to cluster B; (iii) populations from Romania, Serbia, Bulgaria, the Republic of North Macedonia and Greece were attributed to cluster C. In the model where allele frequencies were assumed to be correlated, four and five clusters were supported, each with five independent runs (Fig. 2b). In general, estimated clusters in uncorrelated and correlated models do match, but with slight differences. In five runs where four clusters were found, either the individual AM230530 from Corfu (four out of five runs) or two individuals from Saidhona in Peloponnese, Greece (AM230535 and AM230536; one out of five runs) were attributed to distinct clusters. Likewise, the same individuals were distributed to clusters D and E (Supplementary Table S2) in the remaining five runs under the correlated model of allele frequencies.

Geometric morphometric assessment of populations from genetically divergent clusters

After characterizing the molecular variation of individuals from Pčinja (haplotype HI) and Trebinje (haplotype HV), we studied the pattern of carapace shape variation, employing geometric morphometric techniques. First, we checked the effect of measurement error (in this case an imaging error) using Procrustes ANOVA for the object symmetry. It appeared that the imaging error was negligible (3.3%) and with a lower magnitude relative to all hierarchically upstream effects in the model (4.7 and 11.2 times the effects of fluctuating asymmetry and individual variation were higher than the error term (Supplementary Table S3). Hence, the individual variation with 88.1% contributed the most to the total carapace shape variation, as well as having an 11.2-fold larger effect than that of fluctuating asymmetry (Supplementary Table S3). In all subsequent morphometric analyses, replicates were averaged within each individual, which is a standard procedure. The overall pattern of carapace shape variation was studied with a model that tests the effects of tortoise size, sexual shape dimorphism and haplotype membership, as well as their interactions. We found that size, haplotype and sex were significant terms in the fit1 linear model (Table 1). The profound effect on carapace shape was due to sexual dimorphism (29%), followed by differences between haplotypes (5.2%), while the common allometry was subtle (8.6%). We did not observe haplotype-specific or haplotype-sex-specific allometric trajectories (see the “Size:Haplotype” and “Size:Haplotype:Sex” interactions, respectively, in Table 1), but allometric trajectories were different between sexes, though very subtle (see the “Size:Sex” interaction in Table 1). The carapace sexual shape dimorphism was consistent in two haplotypes (populations) (see the “Haplotype:Sex” interaction in Table 1). Given the significant allometric effect as well as the presence of sexual shape dimorphism in the data (Table 1), we assessed whether haplotypes differ in shape after removing the shape variation explained by Size and Sex factors. After checking for both common allometry and common sexual shape dimorphism, haplotypes differed in their carapace shape (Procrustes distance=0.0259, Z=2.8, p=0.006). Additionally, we performed the same analyses within each
sex without considering allometric effect (Table 2) and considering common allometry (Table 3). Regardless of the models used, haplotypes consistently differed in their carapace shape (Tables 2 and 3) and haplotype-specific allometries were not observed in either sex (Table 3). Finally, it appeared that haplotype affiliation explained more carapace shape variance in females than in males (see R^2 values in Tables 2, 3), indicating that females were more divergent than males.

The distribution of the total carapace shape relative to sex and haplotype was depicted in the morphospace defined by the first two PC axes that accounted for around 60% of the total shape variation (Fig. 3). The sexual shape dimorphism was noticeably the main source of shape variation in the data as the PC1 vector (48.4%) separated the sexes. The shape variation explained by the haplotype was spanned along the PC2 vector that accounted for 11.2% of the total shape variation. The subtle, but significant difference between populations (haplotypes) that were magnified three times for the visualization purpose, is shown in Fig. 3. Females of the two populations differed in the posterior part of the carapace, where females from Trebinje (HV) had a wider posterior carapace relative to those from Pčinja (HI). In males, the differences between populations were mostly localized on the anteriodistal part of the carapace. In both sexes, it appeared that the first (landmarks 1, 2, 13, 14, 15, 26, 27) and fifth (landmarks 6, 7, 19, 20, 28) vertebral scutes were the most variable features in the carapaces of the two populations. Finally, the percentage of correct classification after leave-one-out cross-validation was higher in females (92%) than in males (81%).

DISCUSSION
Our study confirmed the genetic and morphological distinctiveness of the two populations of *T. hermanii boettgeri* on the Balkan Peninsula. Available 87 cytb mtDNA sequences from GenBank [20] that covered the whole range of *T. hermanni*, and the eight and two sequences obtained in this study from the Pčinja River Valley and Trebinje, respectively, were used to test the link between gene genealogy and geographic distribution, as well as to define classifiers for our morphometric analyses. Herewith, the network analysis based on 518-bp-long cytb mtDNA sequences identified 11 haplotypes grouped in three main haplogroups. Namely, HI-HIV and HV-HVIII haplogroups were found within the eastern subspecies *T. h. boettgeri*, while the haplogroup HIX-HXI was found within the western subspecies, *T. h. hermanni*. Using the same sequences but with the length of 1150 bp, Fritz et al. [20] reported 22 haplotypes distributed in four haplogroups. For instance, two individuals found in Saidhona (western slopes of Taygetos Mountain, Southern Peloponnese, Greece) were outlined as the haplogroup B8-B9 [20], while in our study they appeared as a tributary haplotype (HIV) to the most frequent haplotype HI found in *T. h. boettgeri* without forming alternative reticulation with both the HV-HVIII and HIX-HXI haplogroups. Four (36%) and 15 (68%) haplotypes have been defined based on single specimens in this study and that of Fritz et al. [20], respectively. As we trimmed the original sequence alignment [20] for about 50% of its length, the number of haplotypes represented by a single specimen decreased by around 50%, as well. Such an observation is favorable as it supports the argument that (i) the trimming likely did not significantly influence our analyses, e.g. the ability to recover the major patterns in the data reported by Fritz et al. [20], and/or (ii) the molecular characterization of our samples would be simply influenced by shortening the sequence frame. All the samples from the Pčinja River Valley possessed HI haplotype (B1-B7 haplogroup according to Fritz et al. [20]) that widely occurred in *T. h. boettgeri* from Bulgaria, Romania, Republic of North Macedonia and the majority of Greece (Macedonia, Thessaly, Thrace, Thessaly and Peloponnese, except its southern part). Specimens from Trebinje possessed the HV haplotype (B10-B15 haplogroup according to Fritz et al. [20])
which was a common haplotype in populations from the eastern Adriatic coast. We observed a lack of cytb mtDNA variation in sample locations from the Pčinja River Valley and Trebinje, which is in agreement with the majority of populations of *T. hermanni* analyzed by Fritz et al. [20]. Hence, our results showed that populations from Pčinja and Trebinje belong to the divergent genetic clusters within the nominally eastern subspecies *T. h. boettgeri*.

As regards to the second aim of this study, landscape genetics was performed to test whether gene genealogy is linked to the geographic distribution of the taxon. By using the uncorrelated model of allele frequencies, three distinct genetic clusters were found that were fully concordant with our haplotype network reconstruction. For instance, clusters A, B and C found in Geneland matched haplogroups HIX-HXI, HV-HVIII and HI-HIV, respectively. Analysis based on the correlated model uncovered two additional genetic clusters within the clusters B and C due to the presence of the unique haplotypes in Corfu (HVII) and Saidhona, Peloponnese (HIV), respectively. It has been shown that the correlated model of allele frequencies is more suitable for recent and subtle genetic subdivisions between populations [39]. However, the correlated model assumes that proximal populations share similar allele frequencies or rare haplotypes among populations, which was not the case in the dataset we analyzed (see previous paragraph). Furthermore, the correlated model is more sensitive to departure from model assumptions such as presence of isolation-by-distance (IBD), which seemed unlikely as the analyzed populations were allopatrically distributed, showing clear phylogeographic structure. In light of these arguments, we conclude that the uncorrelated model of allele frequencies is more suitable for this dataset than the correlated one.

The reported spatial distribution of molecular variation of *T. hermanni* is probably influenced by the biogeographical history of southern Europe. Indeed, the Alps and the Dinaric mountain systems divided populations of the two studied subspecies, as well as western (HV-HVIII) and eastern (HI-HIV) haplogroups within *T. h. boettgeri*. It is worth mentioning that populations from Croatia, Bosnia and Herzegovina and Montenegro were considered as both separate species and subspecies [12]. Furthermore, it has already been suggested that geological history and dramatic climatic changes during the Pleistocene influenced the fragmentation of the ancestral area of *T. hermanni* [20]. As seen in the case of *T. hermanni*, geological barriers accompanied by dramatic climatic perturbations during the Pliocene and Pleistocene are considered to be important factors for biological diversification of the European biota [51,52].

Regarding the utility of geometric morphometrics in distinguishing genetically diverged populations, Pčinja (haplotype HI) and Trebinje (haplotype HV), we showed that they statistically differ in carapace shape although the magnitude of the differences was subtle (overall 5.2%). The upper part of the carapace is a modified rib cage since the vertebral (except anterior and posterior parts of the first and fifth scutes, respectively) and costal (except their distal parts) plates are fused with the axial skeleton (vertebrae and thoracic ribs) [53]. This is considered to be developmentally conserved across vertebrates [54]. Therefore, subtle divergence in carapace shape between genetically diverged populations might be explained by developmental conservatism of the vertebral and costal bones in turtles that are preserved more than 245 MYA [53]. In addition, we observed that in both sexes divergent genetic units differed the most in the first and fifth vertebral scutes, as well as in the margins of the costal plates. As already mentioned, these carapace regions include some parts that were not directly fused with the axial skeleton, and as such could be more prone to shape modifications. However, much more extensive morphological examinations should be performed to confirm this assumption about constraints that might produce the observed pattern of carapace shape variation. Additionally, future studies could illuminate a possible link between environmental factors and carapace shape variation and evaluate if differences
between populations of the same haplotype would be smaller than those between genetically divergent populations. Studying variation in relative body proportions in *T. hermanni boettgeri*, Djordjevic et al. [55] showed that the rear portion of the tortoises’ shell and free body parts (e.g. legs, head and tail) were not variable across populations in both sexes. Although partially in agreement with the pattern we observed, their study is not directly analogous with ours due to the following. They compared populations without known genetic background and, based on the provided sampling design, it is likely that they analyzed interpopulation differences within a single genetic cluster (presumably our HI genetic cluster). Finally, morphometric analyses of two studies were different, e.g. univariate vs. multivariate. As such, we emphasize two important aspects of geometric morphometrics: (i) a high potential to detect subtle interpopulation differences due to its conceptual and rigorous statistical properties [25,42], and (ii) the ability to visualize shape changes in an anatomical context that promotes better and more straightforward scientific communication [49]. Furthermore, previous studies disagree on the utility of qualitative characters in the identification of allopatric genetic clusters within *T. h. boettgeri*. Namely, it was proposed that the lack of inguinal scutes might discriminate populations from historical Dalmatia (our HV haplotype) from other allopatric populations of *T. hermanni boettgeri* [14]. However, it appeared that this qualitative character is not informative in systematically distinguishing respective populations [20]. Therefore, our study demonstrates for the first time a usefulness of quantitative data such as carapace shape in the discrimination of genetically diverged populations in any *Testudo* species.

In summary, Fritz et al. [20] performed the first and the most comprehensive phylogeographic study on this species, and as such provided the core base for the currently accepted subspecific taxonomical ranking in this species [4]. After analyzing the dataset of Fritz et al. [20], along with additional sequences reported in this study using a spatially informed Bayesian inference in Geneland, our results provide additional insights into genetic and morphological variability of Hermann’s tortoise. The spatial genetic analysis we performed is more appropriate for individual- or population-based research, which might be more informative in the detection of subtle genetic variation below species level [56]. Finally, our results advocate the need for the taxonomic evaluation of *T. hermanni* complex taxa by integrating multilocus phylogenetic and geometry-oriented morphometrics in order to fully understand the subspecific diversity of the species [57].

Funding: The authors were financed by the Ministry of Education, Science and Technological Development of Serbia (Dynamics of gene pool, genetic and phenotypic variability of populations, determined by the environmental changes, No. 173012).

Acknowledgments: We are grateful to Dr Ljubinka Francuski Marčetić and Nemanja Ristić who helped collecting the material and to Nemanja Gojković for language editing and comments on the early version of the manuscript. We are grateful to Mike Collyer (Chatham University) for valuable discussions related to usage of the RRPP R package. We thank two anonymous reviewers for their helpful suggestions that improved the manuscript.

Conflict of interest disclosure: The authors declare no conflict of interests.

REFERENCES

Table 1. Carapace shape variation of *Testudo hermanni boettgeri* structured across two factors (Haplotype and Sex affiliation) and their interaction where logarithm of centroid size (Log (CS)) was used as covariate. Statistical significance of the linear model was evaluated by residual randomization in permutation procedures (RRPP) with 1000 iterations.

<table>
<thead>
<tr>
<th>Term</th>
<th>Df</th>
<th>SS</th>
<th>MS</th>
<th>R²</th>
<th>F</th>
<th>Z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log (CS)</td>
<td>1</td>
<td>0.0173</td>
<td>0.0173</td>
<td>0.086</td>
<td>14.47</td>
<td>3.69</td>
<td>0.001</td>
</tr>
<tr>
<td>Haplotype</td>
<td>1</td>
<td>0.0106</td>
<td>0.0106</td>
<td>0.052</td>
<td>8.83</td>
<td>3.12</td>
<td>0.002</td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>0.0585</td>
<td>0.0585</td>
<td>0.290</td>
<td>48.93</td>
<td>5.81</td>
<td>0.001</td>
</tr>
<tr>
<td>Log (CS) : Haplotype</td>
<td>1</td>
<td>0.0008</td>
<td>0.0008</td>
<td>0.004</td>
<td>0.70</td>
<td>-0.46</td>
<td>0.675</td>
</tr>
<tr>
<td>Log (CS) : Sex</td>
<td>1</td>
<td>0.0036</td>
<td>0.0036</td>
<td>0.018</td>
<td>2.99</td>
<td>2.52</td>
<td>0.01</td>
</tr>
<tr>
<td>Haplotype : Sex</td>
<td>1</td>
<td>0.0010</td>
<td>0.0010</td>
<td>0.005</td>
<td>0.79</td>
<td>-0.11</td>
<td>0.567</td>
</tr>
<tr>
<td>Log (CS) : Haplotype : Sex</td>
<td>1</td>
<td>0.0009</td>
<td>0.0009</td>
<td>0.005</td>
<td>0.78</td>
<td>-0.10</td>
<td>0.538</td>
</tr>
<tr>
<td>Residuals</td>
<td>91</td>
<td>0.1088</td>
<td>0.0012</td>
<td>0.540</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>98</td>
<td>0.2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Df – degrees of freedom; SS – sum of squares; MS – mean squares; R² – coefficient of determination; F – F value; Z – Z scores; P – significance after 1,000 permutations
Table 2. Total carapace shape difference between haplotypes of *Testudo hermanni boettgeri* within each sex (without considering allometric effect) inferred by permutation procedure using 1000 iterations.

<table>
<thead>
<tr>
<th></th>
<th>Term</th>
<th>Df</th>
<th>SS</th>
<th>MS</th>
<th>R²</th>
<th>F</th>
<th>Z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>Haplotype</td>
<td>1</td>
<td>0.0182</td>
<td>0.0182</td>
<td>0.25</td>
<td>15.58</td>
<td>4.96</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Residuals</td>
<td>47</td>
<td>0.0550</td>
<td>0.0012</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>48</td>
<td>0.0732</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>Haplotype</td>
<td>1</td>
<td>0.0098</td>
<td>0.0098</td>
<td>0.14</td>
<td>7.67</td>
<td>3.88</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Residuals</td>
<td>48</td>
<td>0.0616</td>
<td>0.0013</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>49</td>
<td>0.0714</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Df – degrees of freedom; SS – sum of squares; MS – mean squares; R² – coefficient of determination; F – F value; Z – Z scores; P – significance after 1,000 permutations
Table 3. Carapace shape difference between haplotypes of *Testudo hermanni boettgeri* within each sex (considering common allometry). Statistical significance after 1000 permutations.

<table>
<thead>
<tr>
<th></th>
<th>Term</th>
<th>Df</th>
<th>SS</th>
<th>MS</th>
<th>R²</th>
<th>F</th>
<th>Z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>log (Size)</td>
<td>1</td>
<td>0.0081</td>
<td>0.0081</td>
<td>0.111</td>
<td>7.22</td>
<td>3.34</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Haplotype</td>
<td>1</td>
<td>0.0141</td>
<td>0.0141</td>
<td>0.193</td>
<td>12.53</td>
<td>4.60</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>log (Size) : Haplotype</td>
<td>1</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.004</td>
<td>0.27</td>
<td>-2.28</td>
<td>0.984</td>
</tr>
<tr>
<td></td>
<td>Residuals</td>
<td>45</td>
<td>0.0507</td>
<td>0.0011</td>
<td>0.692</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>48</td>
<td>0.0732</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>log (Size)</td>
<td>1</td>
<td>0.0052</td>
<td>0.0052</td>
<td>0.073</td>
<td>4.10</td>
<td>2.75</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Haplotype</td>
<td>1</td>
<td>0.0073</td>
<td>0.0073</td>
<td>0.102</td>
<td>5.78</td>
<td>3.61</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>log (Size) : Haplotype</td>
<td>1</td>
<td>0.0008</td>
<td>0.0008</td>
<td>0.011</td>
<td>0.61</td>
<td>-0.60</td>
<td>0.741</td>
</tr>
<tr>
<td></td>
<td>Residuals</td>
<td>46</td>
<td>0.0581</td>
<td>0.0013</td>
<td>0.814</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>49</td>
<td>0.0714</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Df – degrees of freedom; SS – sum of squares; MS – mean squares; R² – coefficient of determination; F – F value; Z – Z scores; P – significance after 1,000 permutations.
Figure Legends

Fig. 1. The haplotype network, based on *cytb* mtDNA sequence variability of *Testudo hermanni boettgeri*, showing the positions of the Pčinja and Trebinje samples relative to the four haplogroups of *Testudo hermanni* defined in Fritz et al. [20], depicted with different colors. Dashed lines indicate alternative reticulation between individual haplotypes and vertical lines represent the number of substitutions between haplotypes.

Fig. 2. The posterior probability of population membership of *Testudo hermanni* samples inferred by Geneland depicted on the map of Europe found through (a) an uncorrelated model and (b) a correlated model. Purple and red arrows indicate the locations of samples from the Pčinja River Valley and Trebinje, respectively. Blue and green arrows indicate individuals from Corfu and Saidhona in Greece, respectively. Colors match with the haplogroup depiction in Fig. 1.

Fig. 3. The carapace shape variation of Pčinja and Trebinje samples depicted with a morphospace defined by the first two PC axes. Vertical dashed line separates the sexes in the morphospace and haplotypes within each sex of *Testudo hermanni boettgeri* are connected by a solid line. The shape differences between haplotypes within each sex are represented with warped outline drawings.

Supplementary Information
Available at:
http://serbiosoc.org.rs/NewUploads/Uploads/Djurakic%20and%20Milankov_4345_Supplementary%20Information.pdf
Fig. 1.
Fig. 2.
Fig. 3.