ON GO-COMPACT SPACES

M. Caldas, S. Jafari, S. P. Moshokoa and T. Noiri

Abstract
The purpose of this paper is to offer some more properties of GO-compact spaces and to introduce and investigate some properties of \(g \)-continuous multifunctions. We also investigate GO-compact spaces in the context of multifunctions.

1 Introduction and preliminaries
Levine [11] introduced the concept of generalized closed sets of a topological space. Since the advent of these notions, several research papers with interesting results in different respects came to existence (see, [1], [3], [4], [5], [6], [8], [9], [10], [12]). Recently Caldas and Jafari [4] introduced and investigated the concepts of \(g \)-US spaces, \(g \)-convergency, sequential GO-compactness, sequential \(g \)-continuity and sequential \(g \)-sub-continuity.

Throughout the present paper \((X, \tau)\) and \((Y, \sigma)\) (or simply \(X\) and \(Y\)) denote topological spaces. Let \(A\) be a subset of \(X\). We denote the interior and the closure of \(A\) by \(\text{Int}(A)\) and \(\text{Cl}(A)\), respectively. \(A \subset X\) is called a generalized closed set (briefly \(g\)-closed set) of \(X\) [11] if \(\text{Cl}(A) \subset G\) holds whenever \(A \subset G\) and \(G\) is open in \(X\). The union of two \(g\)-closed sets is a \(g\)-closed set. A subset \(A\) of \(X\) is called a \(g\)-open set of \(X\), if its complement \(A^c\) is \(g\)-closed in \(X\). The intersection of all \(g\)-closed sets containing a set \(A\) is called the \(g\)-closure of \(A\) [10] and is denoted by \(\text{gCl}(A)\). If \(A \subset X\), then \(A \subset \text{gCl}(A) \subset \text{Cl}(A)\). The collection of all \(g\)-closed (resp. \(g\)-open) subsets of \(X\) will be denoted by \(\text{GC}(X)\) (resp. \(\text{GO}(X)\)). We set \(\text{GC}(X, x) = \{V \in \text{GC}(X) / x \in V\}\) for \(x \in X\). We define similarly \(\text{GO}(X, x)\). Let \(p\) be a point of \(X\) and \(N\) be a subset of \(X\). \(N\) is called a \(g\)-neighborhood of \(p\) in \(X\) [3] if there exists a \(g\)-open set \(O\) of \(X\) such that \(p \in O \subset N\).

A space \(X\) is \(GO\)-compact if every \(g\)-open cover of \(X\) has a finite subcover. Since every open sets is a \(g\)-open set, it follows that every \(GO\)-compact space is compact.
But, the converse may be false. Let \(X = \{ x \} \cup \{ x_i : i \in I \} \) where the indexed set
\(I \) is uncountable. Let \(\tau = \{ \emptyset, \{ x \}, X \} \) be the topology on \(X \). Evidently, \(X \) is a
compact space. However, it is not a \(GO \)-compact space because \(\{ \{ x, x_i \} : i \in I \} \) is
a \(g \)-open covering of \(X \) but it has no finite subcover. A subset \(A \) of a space \(X \) is said
to be \(GO \)-compact if \(A \) is \(GO \)-compact as a subspace of \(X \). If the product space
of two no-empty spaces is \(GO \)-compact, then each factor space is \(GO \)-compact \([1]\).
If \(A \) is \(g \)-open in \(X \) and \(B \) is \(g \)-open in \(Y \), then \(A \times B \) is \(g \)-open in \(X \times Y \) \([11]\).
A function \(f : X \rightarrow Y \) is said to be \(g \)-continuous \([1]\) if the inverse image of every
closed set in \(Y \) is \(g \)-closed in \(X \).

It is the purpose of this paper to offer some more characterizations of \(GO \)-
compact spaces. We also introduce the notion of \(g \)-complete accumulation points
by which we give some characterizations of \(GO \)-compact spaces. By introducing
the notion of 1-lower (resp. 1-upper) \(g \)-continuous functions and considering the
known notion of 1-lower (resp. 1-upper) compatible partial orders we investigate
some more properties of \(GO \)-compactness. We also investigate \(GO \)-compact spaces
in the context of multifunctions by introducing 1-lower(resp. 1-upper) \(g \)-continuous
multifunctions. Lastly we also obtain some characterizations of \(GO \)-compact spaces
by using lower (resp. upper) \(g \)-continuous multifunctions. In this paper we are
working in ZFC.

Recall that a function \(f : X \rightarrow Y \) is said to be \(g \)-continuous \([3]\) if the inverse
image of each open set in \(Y \) is \(g \)-open in \(X \).

Let \(\Lambda \) be a directed set. Now we introduce the following notions which will be
used in this paper. A net \(\xi = \{ x_\alpha \mid \alpha \in \Lambda \} \) \(g \)-accumulates at a point \(x \in X \) if
the net is frequently in every \(U \in GO(X, x) \), i.e. for each \(U \in GO(X, x) \) and for
each \(\alpha_0 \in \Lambda \), there is some \(\alpha \geq \alpha_0 \) such that \(x_\alpha \in U \). The net \(\xi \)
\(g \)-converges to a point \(x \) of \(X \) if it is eventually in every \(U \in go(X, x) \). We say that a filterbase
\(\Theta = \{ F_\alpha \mid \alpha \in I \} \) \(g \)-accumulates at a point \(x \in X \) if \(x \in \bigcap_{\alpha \in I} gCl(F_\alpha) \). Given a
set \(S \) with \(S \subset X \), a \(g \)-cover of \(S \) is a family of \(g \)-open subsets \(U_\alpha \) of \(X \)
for each \(\alpha \in I \) such that \(S \subset \bigcup_{\alpha \in I} U_\alpha \). A filterbase \(\Theta = \{ F_\alpha \mid \alpha \in I \} \) \(g \)-converges to a point
\(x \) in \(X \) if for each \(U \in GO(X, x) \), there exists an \(F_\alpha \) in \(\Theta \) such that \(F_\alpha \subset U \).

Recall that a multifunction (also called multivalued function \([2]\)) \(F \) on a set \(X
\) into a set \(Y \), denoted by \(F : X \rightarrow Y \), is a relation on \(X \) into \(Y \), i.e. \(F \subset X \times Y \).
Let \(F : X \rightarrow Y \) be a multifunction. The upper and lower inverse of a set \(V \) of \(Y \)
are denoted by \(F^+(V) \) and \(F^-(V) \):

\[F^+(V) = \{ x \in X \mid F(x) \subset V \} \quad \text{and} \quad F^-(V) = \{ x \in X \mid F(x) \cap V \neq \emptyset \} \]

2 Go-compact spaces

We begin with the following notions:

Definition 1 A point \(x \) in a space \(X \) is said to be a \(g \)-complete accumulation point
of a subset \(S \) of \(X \) if \(Card(S \cap U) = Card(S) \) for each \(U \in GO(X, x) \), where
Card(S) denotes the cardinality of S.

Example 2.1 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{a, b, c\}\}$. Observe that both b and c are g-complete accumulation points of $\{a, b\}$. Notice that a is not a g-complete accumulation point of $\{a, b\}$

Definition 2 In a topological space X, a point x is said to be a g-adherent point of a filterbase Θ on X if it lies in the g-closure of all sets of Θ.

Observe that the Frechet filter does not satisfy Definition 2. But take a topological space X such that $A \subset X$. Then any point of the g-closure of A is a g-adherent point of $\Omega = \{U \subset X \mid A \subset U\}$.

Theorem 2.2 A space X is GO-compact if and only if each infinite subset of X has a g-complete accumulation point.

Proof. Let the space X be GO-compact and S an infinite subset of X. Let K be the set of points x in X which are not g-complete accumulation points of S. Now it is obvious that for each point x in K, we are able to find $U(x) \in \Gamma(X, x)$ such that $Card(S \cap U(x)) \neq Card(S)$. If K is the whole space X, then $\Theta = \{U(x) \mid x \in X\}$ is a γ-cover of X. By the hypothesis X is GO-compact, so there exists a finite subcover $\Psi = \{U(x_i)\}$, where $i = 1, 2, \ldots, n$ such that $S \subset \bigcup\{U(x_i) \cap S \mid i = 1, 2, \ldots, n\}$. Then $Card(S) = \max\{Card(U(x_i) \cap S) \mid i = 1, 2, \ldots, n\}$ which does not agree with what we assumed. This implies that S has a g-complete accumulation point. Now assume that X is not GO-compact and that every infinite subset $S \subset X$ has a g-complete accumulation point in X. It follows that there exists a g-cover Ξ with no finite subcover. Set $\delta = \min\{Card(\Phi) \mid \Phi \subset \Xi$, where Φ is a g-cover of $X\}$. Fix $\Psi \subset \Xi$ for which $Card(\Psi) = \delta$ and $\bigcup\{U \mid U \in \Psi\} = X$. Let N denote the set of natural numbers. Then by hypothesis $\delta \geq Card(N)$. By well-ordering of Ψ by some minimal well-ordering $^\sim$ we have $Card(\{V \mid V \in \Psi, V \sim U\}) < Card(\{V \mid V \in \Psi\})$. Since Ψ can not have any subcover with cardinality less than δ, then for each $U \in \Psi$ we have $X \neq \bigcup\{V \mid V \in \Psi, V \sim U\}$. For each $U \in \Psi$, choose a point $x(U) \in X \setminus \bigcup\{V \cup \{x(V)\} \mid V \in \Psi, V \sim U\}$. We are always able to do this if not one can choose a cover of smaller cardinality from Ψ. If $H = \{x(U) \mid U \in \Psi\}$, then to finish the proof we will show that H has no g-complete accumulation point in X. Suppose that z is a point of the space X. Since Ψ is a g-cover of X then z is a point of some set W in Ψ. By the fact that $U \sim W$, we have $x(U) \in W$. It follows that $T = \{U \mid U \in \Psi \text{ and } x(U) \in W\} \subset \{V \mid V \in \Psi, V \sim W\}$. But $Card(T) < \delta$. Therefore $Card(H \cap W) < \delta$. But $Card(H) = \delta \geq Card(N)$ since for two distinct points U and W in Ψ, we have $x(U) \neq x(W)$. This means that H has no g-complete accumulation point in X which contradicts our assumptions. Therefore X is GO-compact.

Theorem 2.3 For a space X the following statements are equivalent:
1. X is GO-compact;
2. Every net in X with a well-ordered directed set as its domain g-accumulates to some point of X.
Proof. (1) ⇒ (2): Suppose that X is GO-compact and $\xi = \{x_\alpha \mid \alpha \in \Lambda\}$ a net with a well-ordered directed set Λ as domain. Assume that ξ has no g-adherent point in X. Then for each point x in X, there exist $V(x) \in GO(X, x)$ and an $\alpha(x) \in \Lambda$ such that $V(x) \cap \{x_\alpha \mid \alpha \geq \alpha(x)\} = \emptyset$. This implies that $\{x_\alpha \mid \alpha \geq \alpha(x)\}$ is a subset of $X \setminus V(x)$. Then the collection $C = \{V(x) \mid x \in X\}$ is a g-cover of X. By hypothesis of the theorem, X is GO-compact and so C has a finite subfamily $\{V(x_i)\}$, where $i = 1, 2, ..., n$ such that $X = \bigcup\{V(x_i)\}$. Suppose that the corresponding elements of Λ be $\{\alpha(x_i)\}$, where $i = 1, 2, ..., n$. Since Λ is well-ordered and $\{\alpha(x_i)\}$, where $i = 1, 2, ..., n$ is finite, the largest element of $\{\alpha(x_i)\}$ exists. Suppose it is $\{\alpha(x_i)\}$. Then for $\gamma \geq \{\alpha(x_i)\}$, we have $\{x_\delta \mid \delta \geq \gamma\} \subset \bigcap_{i=1}^{n} (X \setminus V(x_i)) = X \setminus \bigcup_{i=1}^{n} V(x_i) = \emptyset$ which is impossible. This shows that ξ has at least one g-adherent point in X.

(2) ⇒ (1): Now it is enough to prove that each infinite subset has a g-complete accumulation point by utilizing Theorem 3.1. Suppose that $S \subset X$ is an infinite subset of X. According to Zorn’s Lemma, the infinite set S can be well-ordered. This means that we can assume S to be a net with a domain which is a well-ordered index set. It follows that S has a g-adherent point z. Therefore z is a g-complete accumulation point of S. This shows that X is GO-compact.

Theorem 2.4 A space X is GO-compact if and only if each family of g-closed subsets of X with the finite intersection property has a nonempty intersection.

Proof. Straightforward.

Question 2.5 Which condition or conditions should be imposed on a topological space X such that the following statements are equivalent:
(1) X is GO-compact;
(2) Each filterbase on X with at most one g-adherent point is g-convergent.

3 GO-compactness and 1-lower and 1-upper g-continuous functions

In this section we further investigate properties of GO-compactness by 1-lower and 1-upper g-continuous functions. We begin with the following notions and in what follows R denotes the set of real numbers.

Definition 3 A function $f : X \rightarrow R$ is said to be 1-lower (resp. 1-upper) g-continuous at the point y in X if for each $\lambda > 0$, there exists a g-open set $U(y) \in GO(X, y)$ such that $f(x) > f(y) - \lambda$ (resp. $f(x) > f(y) + \lambda$) for every point x in $U(y)$. The function f is 1-lower (resp. 1-upper) g-continuous in X if it has these properties for every point x of X.

Example 3.1 Take $f : (R, \tau_u) \rightarrow (R, \tau)$, where τ_u is the usual topology and τ is the family of sets $\tau = \{(\eta, \infty) \mid \eta \in R\} \cup R$. Such a function is 1-lower g-continuous. Now take $f : (R, \tau_u) \rightarrow (R, \sigma)$, where τ_u is the usual topology and σ is the family of sets $\sigma = \{(-\infty, \eta) \mid \eta \in R\} \cup R$. Such a function is 1-upper g-continuous.
Theorem 3.2 A function $f : X \to R$ is 1-lower g-continuous if and only if for each $\eta \in R$, the set of all x such that $f(x) \leq \eta$ is g-closed.

Proof. It is obvious that the family of sets $\tau = \{(\eta, \infty) : \eta \in R\} \cup R$ establishes a topology on R. Then the function f is 1-lower g-continuous if and only if $f : X \to (R, \tau)$ is g-continuous. The interval $(-\infty, \eta]$ is closed in (R, τ). It follows that $f^{-1}((-\infty, \eta])$ is g-closed. Therefore the set of all x such that $f(x) \leq \eta$ is equal to $f^{-1}((-\infty, \eta])$ and thus is g-closed.

Corollary 3.3 A subset S of X is GO-compact if and only if the characteristic function X_S is 1-lower g-continuous.

Theorem 3.4 A function $f : X \to R$ is 1-upper g-continuous if and only if for each $\eta \in R$, the set of all x such that $f(x) \geq \eta$ is g-closed.

Corollary 3.5 A subset S of X is GO-compact if and only if the characteristic function X_S is 1-upper g-continuous.

Question 3.6 Is it true that if the function $G(x) = \inf_{i \in I} f_i(x)$ exists, where f_i, are 1-upper g-continuous functions from X into R, then $G(x)$ is 1-upper g-continuous?

Theorem 3.7 Let $f : X \to R$ be a 1-lower g-continuous function, where X is GO-compact. Then f assumes the value $m = \inf_{x \in X} f(x)$.

Proof. Suppose $\eta > m$. Since f is 1-lower g-continuous, then the set $K(\eta) = \{x \in X : f(x) \leq \eta\}$ is a non-empty g-closed set in X by infimum property. Hence the family $\{K(\eta) : \eta > m\}$ is a collection of non-empty g-closed sets with finite intersection property in X. By Theorem 2.4 this family has non-empty intersection. Suppose $z \in \bigcap_{\eta > m} K(\eta)$. Therefore $f(z) = m$ as we wished to prove.

4 GO-compactness and g-continuous multifunctions

In this section, we give some characterizations of GO-compact spaces by using lower (resp. upper) g-continuous multifunctions.

Definition 4 A multifunction $F : X \to Y$ is said to be lower (resp. upper) g-continuous if $X \setminus F^{-}(S)$ (resp. $F^{-}(S)$) is g-closed in X for each open (resp. closed) set S in Y.

For the following two lemmas we shall assume that if $gCl(A) = A$, then A is g-closed”.

Lemma 4.1 For a multifunction $F : X \to Y$, the following statements are equivalent:
(1) F is lower g-continuous;
(2) If \(x \in F^{-}(U) \) for a point \(x \) in \(X \) and an open set \(U \subset Y \), then \(V \subset F^{-}(U) \) for some \(V \in GO(x) \);

(3) If \(x \notin F^{+}(D) \) for a point \(x \) in \(X \) and a closed set \(D \subset Y \), then \(F^{+}(D) \subset K \) for some \(g \)-closed set \(K \) with \(x \notin K \);

(4) \(F^{-}(U) \in GO(X) \) for each open set \(U \subset Y \).

Proof. (1) \(\Rightarrow \) (4): Let \(U \) be any open set in \(Y \). By (1), \(X - F^{-}(U) \) is \(g \)-closed in \(X \) and hence \(F^{-}(U) \in GO(X) \).

(4) \(\Rightarrow \) (2): Let \(U \) be any open set of \(Y \) and \(x \in F^{-}(U) \). By (4), \(F^{-}(U) \in GO(X) \).

Put \(V = F^{-}(U) \). Then \(V \in GO(X) \) and \(V \subset F^{-}(U) \).

(2) \(\Rightarrow \) (3): Let \(D \) be closed in \(Y \) and \(x \notin F^{+}(D) \). Then \(Y - D \) is open in \(Y \) and \(x \in X - F^{+}(D) = F^{-}(X - D) \).

Therefore, there exists \(V \in GO(x) \) such that \(V \subset F^{-}(U) \). Now, put \(K = X - V \), then \(x \notin K \), \(K \) is \(g \)-closed and \(K = X - V \subset X - F^{-}(Y - D) = F^{+}(D) \).

(3) \(\Rightarrow \) (1): We show that \(F^{+}(H) \) is \(g \)-closed for any closed set \(H \) of \(Y \). Let \(H \) be any closed set and \(x \notin F^{-}(H) \). By (3) there exists a \(g \)-closed set \(K \) such that \(x \notin K \) and \(F^{+}(H) \subset K \); hence \(F^{+}(H) \subset gCl(F^{+}(H)) \subset K \). Since \(x \notin K \), we have \(x \notin gCl(F^{+}(H)) \). This implies that \(gCl(F^{+}(H)) \subset F^{+}(H) \). In general, we have \(F^{+}(H) \subset gCl(F^{+}(H)) \) and hence \(F^{+}(H) = gCl(F^{+}(H)) \). Hence \(F^{+}(H) \) is \(g \)-closed for any closed set \(H \) of \(Y \).

Lemma 4.2 For a multifunction \(F : X \rightarrow Y \), the following statements are equivalent:

(1) \(F \) is upper \(g \)-continuous;

(2) If \(x \in F^{+}(V) \) for a point \(x \) in \(X \) and an open set \(V \subset Y \), then \(F(U) \subset V \) for some \(U \in GO(x) \);

(3) If \(x \notin F^{-}(D) \) for a point \(x \) in \(X \) and a closed set \(D \subset Y \), then \(F^{-}(D) \subset K \) for some \(g \)-closed set \(K \) with \(x \notin K \);

(4) \(F^{+}(U) \in GO(X) \) for each open set \(U \subset Y \).

Proof. (1) \(\Rightarrow \) (4): Let \(U \) be any open set in \(Y \). Then \(Y - U \) is closed. By (1), \(F^{-}(Y - U) = X - F^{+}(U) \) is \(g \)-closed in \(X \) and hence \(F^{+}(U) \in GO(X) \).

(4) \(\Rightarrow \) (2): Let \(V \) be any open set of \(Y \) and \(x \in F^{+}(V) \). By (4), \(F^{+}(V) \in GO(X) \).

Put \(U = F^{+}(V) \). Then \(U \in GO(X) \) and \(F(U) \subset V \).

(2) \(\Rightarrow \) (3): Let \(D \) be closed in \(Y \) and \(x \notin F^{-}(D) \). Then \(Y - D \) is open and \(x \in X - F^{-}(D) = F^{+}(Y - D) \).

By (2), there exists \(U \in GO(X) \) such that \(F(U) \subset Y - D \). Now, put \(K = X - U \), then \(x \notin K \), \(K \) is \(g \)-closed and \(K = X - U \Rightarrow X - F^{+}(Y - D) = F^{-}(D) \).

(3) \(\Rightarrow \) (1): We show that \(F^{-}(H) \) is \(g \)-closed for any closed set \(H \) of \(Y \). Let \(H \) be any closed set and \(x \notin F^{-}(H) \). By (3), there exists a \(g \)-closed set \(K \) such that \(x \notin K \) and \(F^{-}(H) \subset K \); hence \(F^{-}(H) \subset gCl(F^{-}(H)) \subset K \). Since \(x \notin K \), we have \(x \notin gCl(F^{-}(H)) \). This implies that \(gCl(F^{-}(H)) \subset F^{-}(H) \). In general, we have \(F^{-}(H) \subset gCl(F^{-}(H)) \) and hence \(F^{-}(H) = gCl(F^{-}(H)) \). Hence \(F^{-}(H) \) is \(g \)-closed for any closed set \(H \) of \(Y \).

Theorem 4.3 The following two statements are equivalent for a space \(X \):

(1) \(X \) is \(GO \)-compact.
(2) Every lower g-continuous multifunction from X into the closed sets of a space assumes a minimal value with respect to set inclusion relation.

Proof. (1) \Rightarrow (2): Suppose that F is a lower g-continuous multifunction from X into the closed subsets of a space Y. We denote the poset of all closed subsets of Y with the set inclusion relation "\subseteq" by Λ. Now we show that $F : X \to \Lambda$ is a lower g-continuous function. We will show that $N = F^{-}(\{S \subseteq Y \mid S \in \Lambda \text{ and } S \subseteq C\})$ is g-closed in X for each closed set C of Y. Let $z \notin N$, then $F(z) \neq S$ for every closed set S of Y. It is obvious that $z \in F^{-}(Y \setminus C)$, where $Y \setminus C$ is open in Y. By Lemma 4.1 (2), we have $W \subseteq F^{-}(Y \setminus C)$ for some $W \in \text{GO}(z)$. Hence $F(w) \cap (Y \setminus C) \neq \emptyset$ for each w in W. So for each w in W, $F(w) \setminus C \neq \emptyset$. Consequently, $F(w) \setminus S \neq \emptyset$ for every closed subset S of Y for which $S \subseteq C$. We consider that $W \cap N = \emptyset$. This means that N is g-closed. Thus we observe that F assumes a minimal value.

(2) \Rightarrow (1): Suppose that X is not GO-compact. It follows that we have a net $\{x_i \mid i \in \Lambda\}$, where Λ is a well-ordered set with no g-accumulation point by ([8], Theorem 3.2). We give Λ the order topology. Let $M_j = g\text{Cl}\{x_i \mid i \geq j\}$ for every j in Λ. We establish a multifunction $F : X \to \Lambda$ where $F(x) = \{i \in \Lambda \mid i \geq j_x\}$, j_x is the first element of all those j’s for which $x \notin M_j$. Since Λ has the order topology, $F(x)$ is closed. By the fact that $\{j_x \mid x \in X\}$ has no greatest element in Λ, then F does not assume any minimal value with respect to set inclusion relation. We now show that $F^{-}(U) \in \text{GO}(X)$ for every open set U in Λ. If $U = \Lambda$, then $F^{-}(U) = X$ which is g-open. Suppose that $U \subseteq \Lambda$ and $z \in F^{-}(U)$. It follows that $F(z) \cap U \neq \emptyset$. Suppose $j \in F(z) \cap U$. This means that $j \in U$ and $j \in F(z) = \{i \in \Lambda \mid i \geq j_x\}$. Therefore $M_j \geq M_{j_x}$. Since $z \notin M_{j_x}$, then $z \notin M_j$. There exists $W \in \text{GO}(z)$ such that $W \cap \{x_i \mid i \in \Lambda\} = \emptyset$. This means that $W \cap M_j = \emptyset$. Let $w \in W$. Since $W \cap M_j = \emptyset$, it follows that $w \notin M_j$ and since j_w is the first element for which $w \notin M_j$, then $j_w \leq j$. Therefore $j \in \{i \in \Lambda \mid i \geq j_w\} = F(w)$. By the fact that $j \in U$, then $j \in F(w) \cap U$. It follows that $F(w) \cap U \neq \emptyset$ and therefore $w \in F^{-}(U)$. So we have $W \subseteq F^{-}(U)$ and thus $z \in W \subseteq F^{-}(U)$. Therefore $F^{-}(U)$ is g-open. This shows that F is lower g-continuous which contradicts the hypothesis of the theorem. So the space X is GO-compact.

Theorem 4.4 The following two statements are equivalent for a space X:

1. X is GO-compact.
2. Every upper g-continuous multifunction from X into the subsets of a T_1-space attains a maximal value with respect to set inclusion relation.

Proof. Its proof is similar to that of Theorem 4.3.

The following result concerns the existence of a fixed point for multifunctions on GO-compact spaces.

Theorem 4.5 Suppose that $F : X \to Y$ is a multifunction from a GO-compact domain X into itself. Let $F(S)$ be g-closed for S being a g-closed set in X. If $F(x) \neq \emptyset$ for every point $x \in X$, then there exists a nonempty, g-closed set C of X such that $F(C) = C$.
Proof. Let $\Lambda = \{ S \subset X \mid S \neq \emptyset, S \in GC(X) \text{ and } F(S) \subset S \}$. It is evident that x belongs to Λ. Therefore $\Lambda \neq \emptyset$ and also it is partially ordered by set inclusion. Suppose that $\{ S_\gamma \}$ is a chain in Λ. Then $F(S_\gamma) \subset S_\gamma$ for each γ. By the fact that the domain is GO-compact and by ([8], Theorem 3.3), $S = \bigcap_\gamma S_\gamma \neq \emptyset$ and also $S \in GC(X)$. Moreover, $F(S) \subset F(S_\gamma) \subset S_\gamma$ for each γ. It follows that $F(S) \subset S_\gamma$. Hence $S \in \Lambda$ and $S = \inf \{ S_\gamma \}$. It follows from Zorn’s lemma that Λ has a minimal element C. Therefore $C \in GC(X)$ and $F(C) \subset C$. Since C is the minimal element of Λ, we have $F(C) = C$.

We close with the following open question:

Question 4.6 Give a nontrivial example of a GO-compact space?

Acknowledgment. S. P. Moshokoa acknowledges the support by the South African National Research Foundation under Grant number 2053847. Parts of this paper were written while S. Jafari was a visitor to the Department of Mathematical Sciences of the University of South Africa during October 2005.

References

Addresses:

M. Caldas
Departamento de Matemática Aplicada,
Universidade Federal Fluminense,
Rua Mário Santos Braga, s/n
24020-140, Niterói, RJ BRAZIL.
E-mail: gmamccs@vm.uff.br

S. Jafari
College of Vestsjaelland South,
Herrestraede 11
4200 Slagelse, DENMARK.
E-mail: jafari@stofanet.dk

S. P. Moshokoa
Department of Mathematical Sciences,
University of South Africa,
P.O. Box 392, Pretoria 0003, SOUTH AFRICA.
E-mail: moshosp@unisa.ac.za

T. Noiri
2949-1 Shiokita-cho, Hinagu,
Yatsushiro-shi, Kumamoto-ken,
869-5142 JAPAN
E-mail: t.noiri@nifty.com