BI-LIPSCHICITY OF QUASICONFORMAL HARMONIC MAPPINGS IN THE PLANE

Vesna Manojlović

Abstract

We show that quasiconformal harmonic mappings on the proper domains in \(\mathbb{R}^2 \) are bi-Lipschitz with respect to the quasihyperbolic metric.

1 Introduction

Continuity properties of quasiconformal mappings \(f : D \rightarrow D' \), where \(D \) and \(D' \) are domains in plane, with respect to various natural metrics have been studied extensively in [AKM], [KM], [KP] and [P].

Since the inverse of a \(K \)-quasiconformal mapping is also \(K \)-quasiconformal mapping, such results apply at the same time to \(f \) and \(f^{-1} \).

In this paper we deal with harmonic quasiconformal mappings \(f : D \rightarrow D' \), note that \(f^{-1} \) is not, in general, harmonic.

Our main result is that harmonic \(K \)-quasiconformal mapping \(f : D \rightarrow D' \) in plane is bi-Lipschitz with respect to quasihyperbolic metric.

We note that in [M] this result is proved in \(n \)-dimensional setting, but only in the case where \(D \) and \(D' \) are the upper half space in \(\mathbb{R}^n \).

In the case \(n = 2 \), in [M] this result is proved for \(D = D' = \mathbb{D} = \{ z : |z| < 1 \} \), with explicit bounds in terms of \(K \).

2 Result

Theorem 1. Suppose \(D \) and \(D' \) are proper domains in \(\mathbb{R}^2 \). If \(f : D \rightarrow D' \) is \(K \)-qc and harmonic, then it is bi-Lipschitz with respect to quasihyperbolic metrics on \(D \) and \(D' \).
We recall definition from [AG, Definition 1.5]

\[\alpha_f(z) = \exp \left(\frac{1}{n}(\log J_f)_{B_z} \right), \]

where

\[(\log J_f)_{B_z} = \frac{1}{m(B_z)} \int_{B_z} \log J_f \, dm, \quad B_z = B(z, d(z, \partial D)). \]

In the case \(n = 2 \) we have

\[\frac{1}{\alpha_f(z)} = \exp \left(\frac{1}{2} \frac{1}{m(B_z)} \int_{B_z} \frac{1}{J_f(w)} \, dm(w) \right). \quad (1) \]

We are going to use the following result:

Theorem 2. [AG, Theorem 1.8] Suppose that \(D \) and \(D' \) are domains in \(\mathbb{R}^n \) if \(f : D \rightarrow D' \) is \(K \)-qc, then

\[\frac{1}{c} \frac{d(f(z), \partial D')}{d(z, \partial D)} \leq \alpha_f(z) \leq c \frac{d(f(z), \partial D')}{d(z, \partial D)} \]

for \(z \in D \), where \(c \) is a constant which depends only on \(K \) and \(n \).

3 Proof of Theorem 1

Our proof is based on the theorem of Astala and Gehring.

Proof. Since \(f \) is harmonic we have a local representation

\[f(z) = g(z) + \bar{h}(z), \]

where \(g \) and \(h \) are analytic functions. Then Jacobian \(J_f(z) = |g'(z)|^2 - |h'(z)|^2 > 0 \) (note that \(g'(z) \neq 0 \)).

Further,

\[J_f(z) = |g'(z)|^2 \left(1 - \frac{|h'(z)|^2}{|g'(z)|^2} \right) = |g'(z)|^2 \left(1 - |\omega(z)|^2 \right), \]

where \(\omega(z) = \frac{h'(z)}{g'(z)} \) is analytic and \(|\omega| < 1 \). Now we have

\[\log \frac{1}{J_f(z)} = -2 \log |g'(z)| - \log(1 - |\omega(z)|^2). \]

The first term is harmonic function (it is well known that logarithm of moduli of analytic function is harmonic everywhere except where that analytic function vanishes, but \(g'(z) \neq 0 \) everywhere).
The second term can be expanded in series
\[\sum_{k=1}^{\infty} \frac{|\omega(z)|^{2k}}{k}, \]
and each term is subharmonic (note that \(\omega \) is analytic).

So, \(-\log(1 - |\omega(z)|^2) \) is a continuous function represented as a locally uniform sum of subharmonic functions. Thus it is also subharmonic.

Hence
\[\log \frac{1}{J_f(z)} \]

is a subharmonic function. \hfill (2)

Note that representation \(f(z) = g(z) + \overline{h(z)} \) is local, but that suffices for our conclusion (2).

From (2) we have
\[\frac{1}{m(B_z)} \int_{B_z} \log \frac{1}{J_f(w)} \, dm(w) \geq \log \frac{1}{J_f(z)}. \]
Combining this with (1) we have
\[\frac{1}{\alpha_f(z)} \geq \exp \left(\frac{1}{2} \log \frac{1}{J_f(z)} \right) = \frac{1}{\sqrt{J_f(z)}} \]
and therefore
\[\sqrt{J_f(z)} \geq \alpha_f(z). \]

Applying the first inequality from Theorem 2 we have
\[\sqrt{J_f(z)} \geq \frac{1}{c} \frac{d(f(z), \partial D')}{d(z, \partial D)}. \]

Note that
\[J_f(z) = |g'(z)|^2 - |h'(z)|^2 \leq |g'(z)|^2 \]
and by \(K \)-quasiconformality of \(f \), \(|h'| \leq k|g'| \), \(0 \leq k < 1 \), where \(K = \frac{1+k}{1-k} \).

This gives \(J_f \geq (1 - k^2)|g'|^2 \). Hence,
\[\sqrt{J_f} \asymp |g'| \asymp |g'| + |h'| = L(f, z), \]
where
\[L(f, z) = \max_{|h|=1} |f'(z)h|. \]

Finally (3) and the above asymptotic relation give
\[L(f, z) \geq \frac{1}{c} \frac{d(f(z), \partial D')}{d(z, \partial D)}, \quad c = c(k). \]
For the reverse inequality we again use $J_f(z) \geq (1 - k^2)|g'(z)|^2$, i.e.

$$\sqrt{J_f(z)} \geq \sqrt{1 - k^2}|g'(z)|$$

Further, we know that for $n = 2$

$$\alpha_f(z) = \exp \left(\frac{1}{m(B_z)} \int_{B_z} \log \sqrt{J_f(x)} \, dm(w) \right).$$

Using (4)

$$\frac{1}{m(B_z)} \int_{B_z} \log \sqrt{J_f(x)} \, dm(w) \geq \frac{1}{m(B_z)} \int_{B_z} \log \sqrt{1 - k^2} + \log |g'(w)| \, dm(w)$$

$$= \log \sqrt{1 - k^2} + \frac{1}{m(B_z)} \int_{B_z} \log |g'(w)| \, dm(w)$$

$$= \log \sqrt{1 - k^2} + \log |g'(z)|.$$
This pointwise result, combined with integration along curves, easily gives
\[k_D'(f(z_1), f(z_2)) \asymp k_D(z_1, z_2). \]

\[\square \]

Problem 1. Is Theorem 1 true in dimensions \(n \geq 3? \)

I wish to thank Prof. Miroslav Pavlović for the idea of using subharmonicity in this context.

References

Address:

University of Belgrade, Faculty of Organizational Sciences, Jove Ilića 154, Belgrade, Serbia

E-mail: vesnak@fon.bg.ac.yu