ON EXTENDABILITY OF CAYLEY GRAPHS

Štefko Miklavič, Primož Šparl

Abstract

A connected graph Γ of even order is n-extendable, if it contains a matching of size n and if every such matching is contained in a perfect matching of Γ. Furthermore, a connected graph Γ of odd order is $n_{\frac{1}{2}}$-extendable, if for every vertex v of Γ the graph $\Gamma - v$ is n-extendable.

It is proved that every connected Cayley graph of an abelian group of odd order which is not a cycle is $1_{\frac{1}{2}}$-extendable. This result is then used to classify 2-extendable connected Cayley graphs of generalized dihedral groups.

1 Introductory remarks

Throughout this paper graphs are assumed to be finite and simple. A connected graph Γ of even order is n-extendable, if it contains a matching of size n and if every such matching is contained in a perfect matching of Γ. The concept of n-extendable graphs was introduced by Plummer [8] in 1980. Since then a number of papers on this topic have appeared (see [2, 10, 11, 12] and the references therein). In 1993 Yu [11] introduced an analogous concept for graphs of odd order. A connected graph Γ of odd order is $n_{\frac{1}{2}}$-extendable, if for every vertex v of Γ the graph $\Gamma - v$ is n-extendable.

The problem of n-extendability of Cayley graphs was first considered in [3] where a classification of 2-extendable Cayley graphs of dihedral groups was obtained. (For a definition of a Cayley graph see Section 2.) A few years later a classification of 2-extendable Cayley graphs of abelian groups was obtained in [2]. In this paper we generalize these results in two different ways. First, we consider $n_{\frac{1}{2}}$-extendability for Cayley graphs of abelian groups of odd order. In particular, we prove the following theorem.

Theorem 1 Let Γ be a connected Cayley graph on an abelian group of odd order $n \geq 3$. Then either Γ is a cycle, or Γ is $1_{\frac{1}{2}}$-extendable.
Second, using Theorem 1 we generalize the result of [3] to generalized dihedral groups as follows.

Theorem 2 Let Γ be a connected Cayley graph on a generalized dihedral group which is not a cycle. Then Γ is 2-extendable unless it is isomorphic to one of the following Cayley graphs on cyclic groups, also called circulants: $\text{Circ}(2n; \{\pm 1, \pm 2\}) (n \geq 3)$, $\text{Circ}(4n; \{\pm 1, 2n\}) (n \geq 2)$, $\text{Circ}(4n + 2; \{\pm 2, 2n + 1\})$ and $\text{Circ}(4n + 2; \{\pm 1, \pm 2n\})$.

2 Preliminaries

In this section we introduce the notation and some results needed in the rest of the paper.

A *Cayley graph* $\text{Cay}(G; S)$ of a group G with respect to the connection set $S \subseteq G \setminus \{1\}$, where $S^{-1} = S$, is a graph with vertex-set G in which $g \sim gs$ for all $g \in G$, $s \in S$. In the case that $G = \mathbb{Z}_n$ the graph $\text{Cay}(G; S)$ is called a circulant and is denoted by $\text{Circ}(n; S)$. Let M be a subset of edges of $\text{Cay}(G; S)$ and let $g \in G$. Then Mg denotes the set of all edges of the form $\{ug, vg\}$, where $\{u, v\} \in M$.

A *Hamilton path* of a graph is a path visiting all of its vertices. The question of existence of Hamilton paths in vertex-transitive graphs and in particular Cayley graphs has been extensively studied over the last forty years (see for instance [1, 5, 6, 7] and the references therein). The following result on this topic is of particular interest to us.

Proposition 3 [4] Let Γ be a connected Cayley graph of an abelian group and of valency at least three. If Γ is not bipartite then for any pair of its vertices u and v there exists a Hamilton path of Γ from u to v. If Γ is bipartite then for any pair of vertices u and v from different parts of bipartition of Γ there exists a Hamilton path of Γ from u to v.

Note that it follows from this proposition that every connected Cayley graph of an abelian group is 1-extendable if the order of the group is even and is 02-extendable otherwise. However, as the following proposition (which will be used in the proofs of our main results) shows, not all Cayley graphs on abelian groups of even order are 2-extendable.

Proposition 4 [2] Let Γ be a connected Cayley graph of an abelian group of even order and valency at least three. Then Γ is 2-extendable if and only if it is not isomorphic to any of $\text{Circ}(2n; \{\pm 1, \pm 2\}) (n \geq 3)$, $\text{Circ}(4n; \{\pm 1, 2n\}) (n \geq 2)$, $\text{Circ}(4n + 2; \{\pm 2, 2n + 1\})$ and $\text{Circ}(4n + 2; \{\pm 1, \pm 2n\})$.

We remark that none of the exceptional graphs from Proposition 4 is bipartite. This fact will be used in the proof of Theorem 2.
3 Cayley graphs of abelian groups

In this section we prove Theorem 1. To do this, we first need the following result.

Proposition 5 Let G be an abelian group of odd order with identity 1, and let $S \subseteq G \setminus \{1\}$ be a nonempty set such that $S = S^{-1}$. Then $\Gamma = \text{Cay}(\langle S \cup \{g, g^{-1}\}; S \cup \{g, g^{-1}\} \rangle)$ is $1_{\frac{1}{2}}$-extendable for every $g \in G \setminus \langle S \rangle$.

Proof. Recall first that $\text{Cay}(\langle S \rangle; S)$ is $0_{\frac{1}{2}}$-extendable by the comment following Proposition 3. Let m be the smallest positive integer such that $g^m \in \langle S \rangle$. Note that the subgraphs of Γ induced on cosets $g^i \langle S \rangle$, $i \in \{0, 1, \ldots, m-1\}$ are all isomorphic to $\text{Cay}(\langle S \rangle; S)$. Furthermore, for every $i \in \{0, 1, \ldots, m-1\}$ and $s \in \langle S \rangle$, the vertex $g^i s$ of Γ is adjacent to the vertex $g^{i+1} s$. Finally, since the order of G is odd, both $|\langle S \rangle|$ and m are also odd and $m \geq 3$.

Pick an edge $e = \{g^i s_1, g^j s_2\}$, $i, j \in \{0, 1, \ldots, m-1\}$, $s_1, s_2 \in \langle S \rangle$, and a vertex x of Γ. We show that there exists a perfect matching of $\Gamma - x$ containing e. Since Γ is vertex-transitive, we can assume that $x = 1$. The proof is split into four cases depending on the numbers i and j. Note that we can assume $i \leq j$. Observe also that if $i \neq j$, then $s_1 = s_2$ and either $j - i = 1$ or $i = 0$, $j = m - 1$.

Case 1: $i = j = 0$. Since the subgraph of Γ induced on the coset $g^2 \langle S \rangle$ is isomorphic to $\text{Cay}(\langle S \rangle; S)$, which is $0_{\frac{1}{2}}$-extendable, there exists an almost perfect matching M of this subgraph missing the vertex g^2. But then

$$\{\{s_1, s_2\}, \{gs_1, gs_2\}, \{g, g^2\}\} \cup \{\{s, gs\} : s \in \langle S \rangle \setminus \{1, s_1, s_2\}\} \cup M \cup \{\{g^k s, g^{k+1} s\} : k \in \{3, 5, \ldots, m-2\}, s \in \langle S \rangle\}$$

is an almost perfect matching of Γ missing 1 and containing e.

Case 2: $i = j \neq 0$. Since $\text{Cay}(\langle S \rangle; S)$ is $0_{\frac{1}{2}}$-extendable, there exists an almost perfect matching M of $\text{Cay}(\langle S \rangle; S)$ missing 1. If i is odd, then

$$M \cup \{\{g^k s, g^{k+i} s\} : k \in \{1, 3, \ldots, i-2, i+2, \ldots, m-2\}, s \in \langle S \rangle\} \cup \{\{g^i s_1, g^j s_2\} \cup \{g^{i+1} s_1, g^{i+1} s_2\}\}$$

is an almost perfect matching of Γ missing 1 and containing e. If i is even, then

$$M \cup \{\{g^k s, g^{k+i} s\} : k \in \{1, 3, \ldots, i-3, i+1, \ldots, m-2\}, s \in \langle S \rangle\} \cup \{\{g^{i-1} s_1, g^i s_2\} \cup \{g^{i-1} s_1, g^{i-1} s_2\}\}$$

is an almost perfect matching of Γ missing 1 and containing e.

Case 3: $i = j - 1 \neq 0$. Recall that in this case $s_1 = s_2$. Since $\text{Cay}(\langle S \rangle; S)$ is $0_{\frac{1}{2}}$-extendable, there exists an almost perfect matching M of $\text{Cay}(\langle S \rangle; S)$ missing 1. If i is odd, then

$$M \cup \{\{g^k s, g^{k+i} s\} : k \in \{1, 3, \ldots, m-2\}, s \in \langle S \rangle\}$$

is an almost perfect matching of Γ missing 1 and containing e.

Case 4: $i = j - 2 \neq 0$. Recall that in this case $s_1 = s_2$. Since $\text{Cay}(\langle S \rangle; S)$ is $0_{\frac{1}{2}}$-extendable, there exists an almost perfect matching M of $\text{Cay}(\langle S \rangle; S)$ missing 1. If i is odd, then

$$M \cup \{\{g^k s, g^{k+i} s\} : k \in \{1, 3, \ldots, m-2\}, s \in \langle S \rangle\}$$

is an almost perfect matching of Γ missing 1 and containing e. Observe also that if $i \neq j$, then $s_1 = s_2$ and either $j - i = 1$ or $i = 0$, $j = m - 1$.

Finally, since the order of G is odd, both $|\langle S \rangle|$ and m are also odd and $m \geq 3$.
is an almost perfect matching of Γ missing 1 and containing e.

Assume now that i is even. Pick an edge $\{s, s'\}$ of M. Since subgraphs of Γ induced on the cosets $g(S)$ and $g^{m-1}(S)$ are $0\frac{1}{2}$-extendable, there exist almost perfect matchings M_1 and M_{m-1} of these subgraphs, which miss vertices gs and $g^{-1}s'$, respectively. But now

$$\left(M \setminus \{s, s'\} \right) \cup \{s, gs\} \cup \{s', g^{-1}s'\} \cup M_1 \cup M_{m-1} \cup \{g^k s, g^{k+1} s\} : k \in \{2, 4, \ldots, m-3\}, s \in \langle S \rangle$$

is an almost perfect matching of Γ missing 1 and containing e.

Case 4: $j = 0, j \in \{1, m-1\}$. Without loss of generality we can assume $j = 1$ (otherwise replace g by g^{-1}). Since a subgraph of Γ induced on the coset $g^2(S)$ is isomorphic to $Cay(G; S)$, there exist an almost perfect matching M of this subgraph missing the vertex g^2. But then

$$\{s, gs : s \in \langle S \rangle \setminus \{0\} \cup \{g, g^2\} \cup M \cup \{g^k s, g^{k+1} s\} : k \in \{3, 5, \ldots, m-2\}, s \in \langle S \rangle \}$$

is an almost perfect matching of Γ missing 1 and containing e.

Proof. [Of Theorem 1] Assume that $\Gamma = Cay(G; S)$ is not a cycle and note that this implies $|S| \geq 4$. We show that Γ is $1\frac{1}{2}$-extendable using induction on $|S|$.

Suppose first that $|S| = 4$. If for some $s \in S$ we have that $\langle s \rangle \neq G$, then $Cay(G; S)$ is $1\frac{1}{2}$-extendable by Proposition 5. We are left with the possibility that $S = \{s, s^{-1}, t, t^{-1}\}$ where $\langle s \rangle = \langle t \rangle = G$. Pick a vertex x and an edge e of $Cay(G; S)$. Let n denote the order of G. Without loss of generality we can assume that $x = 1$, that $s = t^\ell$ for some $\ell \in \{2, 3, \ldots, n-2\}$, and that $e = \{t^i, t^j s\}$ for some $i \in \{1, 2, \ldots, n - \ell - 1, n - \ell + 1, \ldots, n-1\}$. We now construct an almost perfect matching M of Γ containing e and missing x depending on the parity of i and ℓ.

If i and ℓ are both odd, then

$$M = \{e\} \cup \{\{t^j, t^{j+1}\} : j \in J\},$$

where $J = \{1, 3, \ldots, i - 2, i + 1, i + 3, \ldots, i + \ell - 2, i + \ell + 1, i + \ell + 3, \ldots, n - 2\}$. If i is odd and ℓ is even, then

$$M = \{e, \{t^{i+1}, t^{i+\ell+1}\}\} \cup \{\{t^j, t^{j+1}\} : j \in J\},$$

where $J = \{1, 3, \ldots, i - 2, i + 2, i + 4, \ldots, i + \ell - 2, i + \ell + 2, i + \ell + 4, \ldots, n - 2\}$. If i and ℓ are both even, then

$$M = \{e, \{t^{i-1}, t^{i+\ell-1}\}\} \cup \{\{t^j, t^{j+1}\} : j \in J\},$$

where $J = \{1, 3, \ldots, i - 3, i + 1, i + 3, \ldots, i + \ell - 3, i + \ell + 1, i + \ell + 3, \ldots, n - 2\}$. Finally, if i is even and ℓ is odd, then

$$M = \{e, \{t^{i-1}, t^{i+\ell-1}\}, \{t^{i+1}, t^{i+\ell+1}\}\} \cup \{\{t^j, t^{j+1}\} : j \in J\},$$

where $J = \{1, 3, \ldots, i - 3, i + 2, i + 4, \ldots, i + \ell - 3, i + \ell + 2, i + \ell + 4, \ldots, n - 2\}$.
Now suppose $|S| \geq 6$ and pick a vertex x and an edge $e = \{u, us\}$, $s \in S$, of $Cay(G; S)$. We will show that there exists an almost perfect matching of $Cay(G; S)$ which contains e and misses x. Let $t \in S \setminus \{s, s^{-1}\}$, let $S' = S \setminus \{t, t^{-1}\}$ and consider the subgraph $\Gamma' = Cay(G'; S')$, which, by induction, is $1\frac{1}{2}$-extendable. If $\langle S' \rangle = G$, then an almost perfect matching of Γ', containing e and missing x, is also an almost perfect matching of Γ containing e and missing x. If however $\langle S' \rangle \neq G$, then Γ is $1\frac{1}{2}$-extendable by Proposition 5.

4 Cayley graphs of generalized dihedral groups

A group G containing an abelian subgroup H of index 2 and an involution $t \notin H$ such that $tht = h^{-1}$ for each $h \in H$ is called a generalized dihedral group. In this case we denote G by D_H. Observe that if $\Gamma = Cay(D_H; S)$ is a Cayley graph of a generalized dihedral group D_H and $h, t \in H$ then for any vertex x of Γ, $(x, xh, xh^{-1}t', xh')$ is a 4-cycle of Γ. Note also that for each $ta \in S$ and for each subgroup $H' \leq H$ the edges corresponding to ta introduce perfect matchings between components of the subgraph $Cay(D_H; S \cap H')$.

Proof. [Of Theorem 2] Let $\Gamma = Cay(D_H; S)$ and let $S_1 = H \cap S$ and $S_2 = S \setminus S_1$. Let Γ_1 be the subgraph of Γ induced by H on S_2 and let Γ_2 be the subgraph of Γ induced on tH. Furthermore pick any two disjoint edges e_1 and e_2 of Γ. We distinguish four cases depending on whether the edges e_i belong to Γ_1 or Γ_2 or neither of them.

Case 1: $e_1 \in \Gamma_1$ and $e_2 \notin \Gamma_1 \cup \Gamma_2$. (The case $e_1 \in \Gamma_2$, $e_2 \notin \Gamma_1 \cup \Gamma_2$ is done analogously.)

Let $ta \in S_2$ be the unique element such that $e_2 = \{x, tx^{-1}a\}$ for some $x \in H$ and let $h \in S_1$ be such that $e_1 = \{y, yh\}$ for some $y \in H$. Then a perfect matching of Γ containing e_1 and e_2 is

$\{e_1, e_2\} \cup \{\{z, tz^{-1}a\} : z \in H \setminus \{y, yh, x\} \} \cup \{\{ty^{-1}a, ty^{-1}h^{-1}a\}\}$.

Case 2: $e_1, e_2 \in \Gamma_1$. (The case $e_1, e_2 \in \Gamma_2$ is done analogously.)

Since Γ is connected, S_2 is nonempty. With no loss of generality we can assume $t \in S_2$. Letting $h, h' \in S_1$ be such that $e_1 = \{x, xh\}$ and $e_2 = \{y, yh'\}$ for some $x, y \in H$ a perfect matching of Γ containing e_1 and e_2 is

$\{e_1, e_2\} \cup \{\{z, tz^{-1}\} : z \in H \setminus \{x, xh, yh'\} \} \cup \{\{tx^{-1}, xh^{-1}t\}, \{ty^{-1}, ty^{-1}h^{-1}t\}\}$.

Case 3: $e_1 \in \Gamma_1$, $e_2 \in \Gamma_2$.

If $H' = \langle S_1 \rangle$ is of even order, then each of the $[H : H']$ components of Γ_1 (and Γ_2), and thus Γ_1 (and Γ_2) itself, is 1-extendable by the remark following Proposition 3. Thus in this case Γ clearly contains a desired perfect matching. We can therefore assume that H' is of odd order. Moreover, we can also assume that $e_1 = \{1, h\}$ for some $h \in S_1$. Let $x, xh' \in H$ be such that $e_2 = \{tx, txh'\}$. If there exists an element
that each contradict a subset X

With no loss of generality we can assume that $x^{-1}a, x^{-1}h^{-1}a \in \Gamma$ and so a perfect matching of Γ containing e_1 and e_2 is

$$\{e_1, e_2\} \cup \{\{z, tz^{-1}a\} : z \in H \setminus \{1, h, x^{-1}a, x^{-1}h^{-1}a\}\} \cup \{\{ta, th^{-1}a\}, \{x^{-1}a, x^{-1}h^{-1}a\}\}.$$

Similarly, if for some $ta \in S_2$ we have that $e_2 = \{ta, th^{-1}a\}$, then a desired perfect matching of Γ is

$$\{e_1, e_2\} \cup \{\{z, tz^{-1}a\} : z \in H \setminus \{1, h\}\}.$$

We are left with the possibility that for each $ta \in S_2$ we have $\{ta, th^{-1}a\} \cap e_2 = \emptyset$.

In view of the connectedness of Γ this implies $H' = H$. Suppose first that $|S_1| > 2$. Then $|H| > 4$, and so there exists an edge $e = \{y, ty^{-1}a\}$ such that $e \cap (e_1 \cup e_2) = \emptyset$.

By Theorem 1 both Γ_1 and Γ_2 are 12-extendable, and so a desired perfect matching of Γ clearly exists. Suppose now that $S_1 = \{h, h^{-1}\}$. In this case each of Γ_1 and Γ_2 is isomorphic to a cycle of odd length, say $2n + 1$. Using the remarks from the beginning of this section it is easy to see that the above assumptions imply $|S_2| \leq 2$ and $\Gamma \cong \text{Cay}(\mathbb{Z}_{2n+1} \times \mathbb{Z}_2; \{(\pm 1, 0), (0, 1)\}) \cong \text{Circ}(4n + 2; \{(\pm 2, 2n + 1)\})$ in the case of $|S_2| = 1$, and $\Gamma \cong \text{Cay}(\mathbb{Z}_{2n+1} \times \mathbb{Z}_2; \{(\pm 1, 0), (\pm 1, 1)\}) \cong \text{Circ}(4n + 2; \{(\pm 1, \pm 2n)\})$ in the case of $|S_2| = 2$. Hence, in either case Γ is a Cayley graph of an abelian group, so that Proposition 4 applies.

Case 4: $e_1, e_2 \notin \Gamma_1 \cup \Gamma_2$.

With no loss of generality we can assume that $e_1 = \{1, t\}$ and $e_2 = \{x, tx^{-1}a\}$ for some $x, a \in H$. If $a = 1$ then a perfect matching of Γ containing e_1 and e_2 is $$\{\{z, tz^{-1}\} : z \in H\}.$$ We can thus assume $a \neq 1$ (implying that $|S_2| \geq 2$). We distinguish two subcases depending on whether $|S_2| = 2$ or not.

Subcase 4.1: $|S_2| \geq 3$.

We show that in this case a desired perfect matching of Γ can be constructed using just some of the edges corresponding to elements of S_2. Now, if $x \notin \langle a \rangle$ then a desired perfect matching of Γ is given by

$$\{\{z, tz^{-1}\} : z \in H \setminus \langle a \rangle\} \cup \{\{z, tz^{-1}a\} : z \in \langle a \rangle\}.$$

so that we can assume $x \in \langle a \rangle$. Let $tb \in S_2 \setminus \{t, ta\}$, let $H' = \langle a, b \rangle \leq H$ and consider the subgraph Γ' of Γ induced on $H' \cup H't$ by the edges corresponding to t, ta and tb.

Note that it suffices to prove that Γ' is 2-extendable. To prove this we use a result of [9] that a bipartite graph with bipartition $A \cup B$, where $|A| = |B|$, is 2-extendable if and only if for each subset $X \subset A$ with $|X| \leq |A| - 2$ we have that $|N(X)| \geq |X| + 2$ (here $N(X)$ denotes the set of neighbours of vertices from X). Suppose there exists a subset X of H' of cardinality at most $|H'| - 2$ for which $|N(X)| \leq |X| + 1$. Since $tx^{-1} \in N(X)$ for each $x \in X$, there cannot exist distinct $x_1, x_2 \in X$ with $x_1a^{-1}, x_2a^{-1} \notin X$ (in this case $\{tx^{-1} : x \in X\} \cup \{tx_1^{-1}a, tx_2^{-1}a\} \subseteq N(X)$ would contradict $|N(X)| \leq |X| + 1$). Hence, except possibly with one exception, for each $x \in X$ we have that $xa^{-1} \in X$. Similarly, except possibly with one exception, for each $x \in X$ we have that $xb^{-1} \in X$. It is easy to see that these two conditions imply that $|X| \geq |H'|-1$, a contradiction, showing that Γ' and thus Γ is 2-extendable.
Suppose first that \(x \notin \langle S_1 \rangle \) and \(tx^{-1}a \notin t\langle S_1 \rangle \). Then a desired perfect matching of \(\Gamma \) is obtained by taking \(\{z, tz^{-1} \} : z \in \langle S_1 \rangle \} \cup \{xz, txz^{-1}a : z \in \langle S_1 \rangle \} \) together with perfect matchings of the remaining \(2[(H : \langle S_1 \rangle) - 2] \) components of \(\Gamma_1 \cup \Gamma_2 \) (which exist as they are Cayley graphs of an abelian group of even order).

Next, suppose \(x \in \langle S_1 \rangle \) but \(tx^{-1}a \notin t\langle S_1 \rangle \) (the case \(x \notin \langle S_1 \rangle \), \(tx^{-1}a \in t\langle S_1 \rangle \) is dealt with analogously). If \(|S_1| = 1 \) (that is, \(S_1 \) consists of a single involution), then either \(\langle a \rangle = H \) or \(|H : \langle a \rangle| = 2 \). Hence either \(\Gamma \cong \text{Circ}(4n; \{\pm 1, 2n\}) \) (the cycle of length \(4n \) corresponding to \(\pm 1 \) is given by the edges corresponding to \(t \) and \(ta \)) or \(\Gamma \cong \text{Cay}(\mathbb{Z}_{2n} \times \mathbb{Z}_2; \{(\pm 1, 0), (0, 1)\}) \), depending on whether \(\langle a \rangle = H \) or not, respectively. This shows that \(\Gamma \) is a Cayley graph of an abelian group of even order and valency three, so Proposition 4 applies. We can thus assume that \(|S_1| \geq 2 \) implying that there exists some \(h \in S_1 \setminus \{x\} \). Since \(\Gamma' = \text{Cay}(\langle S_1 \rangle; S_1) \) is 1-extendable, there exists a perfect matching \(M \) of \(\Gamma' \) containing \(\{1, h\} \). Let \(h' \in H \) be such that \(\{x, xh'\} \in M \). Taking \(M_1 = Mt \setminus \{t, th^{-1}\} \) and \(M_2 = Mta \setminus \{tx^{-1}a, tx^{-1}h^{-1}a\} \) a desired perfect matching of \(\Gamma \) is obtained by taking

\[
M \setminus \{1, h\} \cup \{x, xh'\} \} \cup \{e_1, e_2\} \cup \{(h, th^{-1}), \{xh', tx^{-1}h^{-1}a\}\} \cup M_1 \cup M_2
\]

together with perfect matchings of the remaining \(2[H : \langle S_1 \rangle) - 3 \) components of \(\Gamma_1 \cup \Gamma_2 \), each of which is isomorphic to \(\Gamma' \). Finally, suppose \(x \in \langle S_1 \rangle \) and \(tx^{-1}a \in t\langle S_1 \rangle \) (note that this implies \(\langle S_1 \rangle = H \)). We can clearly assume \(|S_1| > 1 \) (otherwise \(\Gamma = K_4 \)). Now, if \(|S_1| = 2 \), then each of \(\Gamma_1 \) and \(\Gamma_2 \) is isomorphic to a cycle of length \(2n \) for some \(n \). We can thus identify the vertex set of \(\Gamma \) with the set \(V = \mathbb{Z}_{2n} \times \mathbb{Z}_2 \) in such a way that \((i, j) \sim (i + 1, j) \) for each \(i \in \mathbb{Z}_{2n} \) and \(j \in \{0, 1\} \), \((i, 0) \sim (i, 1) \) for each \(i \in \mathbb{Z}_{2n} \) and \((i, 0) \sim (i + k, 1) \) for each \(i \in \mathbb{Z}_{2n} \) and some fixed nonzero \(k \in \mathbb{Z}_{2n} \). If \(k = 2k_1 \) for some \(k_1 \), then (relabeling the vertices \((i, 1) \) by \((i - k_1, 1) \) for \(i \in \mathbb{Z}_{2n} \)) we can thus identify \(\Gamma \cong \text{Cay}(\mathbb{Z}_{2n} \times \mathbb{Z}_2; \{(\pm 1, 0), (\pm k_1, 1)\}) \). If on the other hand \(k = 2k_1 - 1 \) for some \(k_1 \), then the permutation \(\rho \) of the vertex set \(V \) defined by \(\rho(i, 0) = (i + k_1, 1) \) and \(\rho(i, 1) = (i - k_1 + 1, 0) \) for every \(i \in \mathbb{Z}_{2n} \) easily seen to be an automorphism of \(\Gamma \) of order \(4n \), so that \(\Gamma \) is a circulant in this case (in particular, \(\Gamma \cong \text{Circ}(4n; \{\pm 2, \pm k\}) \)). In either case \(\Gamma \) is a Cayley graph of an abelian group, so that Proposition 4 applies. We can thus assume \(|S_1| \geq 3 \), and so Proposition 3 applies to \(\Gamma_1 \) and \(\Gamma_2 \). If \(\Gamma_1 \) is not bipartite, there is a Hamilton path of \(\Gamma_1 \) between \(1 \) and \(x \) and there is a Hamilton path of \(\Gamma_2 \) between \(t \) and \(tx^{-1}a \). Together with \(e_1 \) and \(e_2 \) this gives a Hamilton cycle of \(\Gamma \), and so a desired perfect matching of \(\Gamma \) can be obtained by taking every other edge of this cycle, starting with \(e_1 \) (recall that \(\Gamma_1 \) is of even order). If \(\Gamma_1 \) is bipartite then it is 2-extendable by Proposition 4. It is easy to see that, since \(\Gamma_1 \) contains no triangles, there exist disjoint edges \(e = \{1, h\} \) and \(e' = \{x, xh'\} \) such that \(et \) and \(e'ta \) are also disjoint. As \(\Gamma_1 \) is 2-extendable we can now find a perfect matching of \(\Gamma_1 \) containing \(e \) and \(e' \) as well as a perfect matching of \(\Gamma_2 \) containing \(et \) and \(e'ta \). It is now clear how to construct a desired perfect matching of \(\Gamma \).

Subcase 4.2.2: \(\langle S_1 \rangle \) is of odd order.
Consider first the case that \(x \not\in \langle S_1 \rangle \) and \(tx^{-1}a \not\in \langle S_1 \rangle \). Note that this implies \([H : \langle S_1 \rangle] \geq 2\), and therefore the connectivity of \(\Gamma \) forces that \(a \not\in \langle S_1 \rangle \). Let \(y \in \langle S_1 \rangle \), \(y \neq x \), and observe that then \(ya^{-1} \not\in \langle S_1 \rangle \) (otherwise \(tx^{-1}a \in \langle S_1 \rangle \)).

Letting \(e = \{y, ty^{-1}\} \) and \(e' = \{ya^{-1}, ty^{-1}a\} \), a desired perfect matching of \(\Gamma \) is

\[
\{e, e'\} \cup \{\{z, tz^{-1}\} : z \in \langle S_1 \rangle \backslash \{y\}\} \cup \{\{z, tz^{-1}\} : z \in H \setminus (\langle S_1 \rangle \cup \langle S_1 \rangle x a^{-1})\} \cup M_1 \cup M_2,
\]

where \(M_1 \) is an almost perfect matching of the component of \(\Gamma_1 \) containing \(xa^{-1} \) which misses \(ya^{-1} \) and \(M_2 \) is an almost perfect matching of the component of \(\Gamma_2 \) containing \(tx^{-1} \) which misses \(ty^{-1} \). In the case that \(x \in \langle S_1 \rangle \) and \(tx^{-1}a \in \langle S_1 \rangle \) we clearly have \(\langle S_1 \rangle = H \). The existence of a desired perfect matching of \(\Gamma \) then depends on \(|S_1| \). If \(|S_1| = 2 \), then each of \(\Gamma_1 \) and \(\Gamma_2 \) is just a cycle. Similar argument as in Subsubcase 4.2.1 shows that then \(\Gamma \) is a Cayley graph of an abelian group, so that Proposition 4 applies. If \(|S_1| > 2 \), then \(\Gamma_1 \) and \(\Gamma_2 \) are \(\frac{1}{4} \)-extendable by Theorem 1. Taking \(h \in S_1 \setminus \{x, xa^{-1}\} \) (which exists since \(|S_1| > 2 \)) there thus exists an almost perfect matching of \(\Gamma_1 \) which contains \(\{1, h\} \) but misses \(x \) and there exists an almost perfect matching of \(\Gamma_2 \) which contains \(\{t, th^{-1}\} \) but misses \(tx^{-1}a \).

It is now clear how to obtain a desired perfect matching of \(\Gamma \). We are left with the possibility that \(x \in \langle S_1 \rangle \) but \(tx^{-1}a \not\in \langle S_1 \rangle \) (the case \(x \not\in \langle S_1 \rangle \), \(tx^{-1}a \in \langle S_1 \rangle \) is dealt with analogously). Let \(M_1 \) be an almost perfect matching of the component of \(\Gamma_2 \) containing \(t \) which misses \(t \). By Proposition 3 each component of \(\Gamma_1 \cup \Gamma_2 \) contains a Hamilton cycle (if \(|S_1| = 2 \), then each component of \(\Gamma_1 \cup \Gamma_2 \) consists of a single cycle). Take a Hamilton cycle \(C \) of the component containing \(1 \) and let \(y \) be the neighbor of \(x \) on this cycle, such that the length of the subpath of \(C \) from \(1 \) to \(x \) not passing through \(y \) consists of an even number of vertices. Let \(M_2 \) be the unique matching in \(\text{Cay}(\langle S_1 \rangle; S_1) \) consisting of edges of \(C \) which misses \(1, x \), and \(y \). Furthermore, let \(M_3 = M_2ta \) and let \(M_4 \) be an almost perfect matching of the component containing \(a^{-1} \) which misses \(a^{-1} \). Then a desired perfect matching of \(\Gamma \) is

\[
\{\{z, tz^{-1}\} : z \in H \setminus (\langle S_1 \rangle \cup \langle S_1 \rangle a^{-1})\} \cup \{e_1, e_2, \{y, ty^{-1}a\}, \{a^{-1}, ta\}\} \cup M_1 \cup M_2 \cup M_3 \cup M_4.
\]

\[\Box\]

Acknowledgement. The authors were supported in part by “Agencija za raziskovalno dejavnost Republike Slovenije”, research program P1-0285.

References

On extendability of Cayley graphs

Štefko Miklavčič
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 2, 6000 Koper, Slovenia
E-mail: stefko.miklavic@upr.si

Primož Šparl
Faculty of Education, University of Ljubljana, Kardeljeva ploščad 16, 1000 Ljubljana, Slovenia
E-mail: primoz.sparl@pef.uni-lj.si