UNIVALENCE OF TWO GENERAL INTEGRAL OPERATORS

B. A. Frasin

Abstract

In this paper, we give some sufficient conditions for general two integral operators to be univalent in the open unit disk.

1 Introduction and definitions

Let \mathcal{A} be the class of all analytic functions $f(z)$ defined in the open unit disk $\mathcal{U} = \{ z : |z| < 1 \}$ and normalized by the condition $f(0) = 0 = f'(0) - 1$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U}. Recently, Breaz and Breaz [6] and Breaz et al. [10] introduced and studied the integral operators

$$F_n(z) = \int_0^z \left(\frac{f_1(t)}{t} \right)^{\alpha_1} \cdots \left(\frac{f_n(t)}{t} \right)^{\alpha_n} dt$$

and

$$F_{\alpha_1, \ldots, \alpha_n}(z) = \int_0^z (f_1'(t))^{\alpha_1} \cdots (f_n'(t))^{\alpha_n} dt$$

where $f_i \in \mathcal{A}$ and for $\alpha_i > 0$, for all $i = 1, \ldots, n$ (see also [3, 4, 5, 7, 9]).

Breaz and Güney [8] considered the above integral operators and they obtained their properties on the classes $\mathcal{S}_\alpha^*(b)$, $\mathcal{C}_\alpha(b)$ of starlike and convex functions of complex order b and type α introduced and studied by Frasin [11].

Very recently, Frasin [12] obtained some sufficient conditions for the above integral operators to be in the classes \mathcal{S}^*, $\mathcal{C}(\alpha)$ and \mathcal{UCV}, where $\mathcal{C}(\alpha)$ and \mathcal{UCV} denote the subclasses of \mathcal{A} consisting of functions which are, respectively, close-to-convex of order $\alpha(0 \leq \alpha < 1)$ in \mathcal{U} and uniformly convex functions.

2000 Mathematics Subject Classifications. 30C45.

Key words and Phrases. Analytic functions, univalent functions, integral operator.

Received: April 10, 2009

Communicated by Jelena Manojlović
In the present paper, we obtain some sufficient conditions for the above integral operators \(F_n(z) \) and \(F_{\alpha_1,\ldots,\alpha_n}(z) \) to be univalent in \(U \).

In order to derive our main results, we have to recall here the following lemma:

Lemma 1.1. ([1]) Let \(f \in A, \beta \in \mathbb{C}, \text{Re}(\beta) > 0 \). If for some \(\theta \in [0,2\pi] \) the inequality

\[
\text{Re}\left\{ e^{i\theta} \frac{zf''(z)}{f'(z)} \right\} \leq \begin{cases} \frac{1}{2} \text{Re}(\beta) & \text{for } 0 < \text{Re}(\beta) < 1 \\ \frac{1}{4} & \text{for } \text{Re}(\beta) \geq 1 \end{cases} \quad (z \in U)
\]

is valid, then the function

\[
G_\beta(z) = \left\{ \beta \int_0^z u^{\beta-1} f'(u) du \right\}^{1/\beta}
\]

is in \(S \), for all \(\theta \in [0,2\pi] \).

2 Main results.

Theorem 2.1. Let \(\alpha_j > 0 \) be real numbers for all \(j = 1,2,\ldots,n \), \(\beta \in \mathbb{C}, \text{Re}(\beta) > 0 \). If \(f_j \in A \) for all \(j = 1,2,\ldots,n \) satisfies

\[
\text{Re}\left\{ e^{i\theta} \frac{zf_j''(z)}{f_j'(z)} \right\} \leq \begin{cases} \frac{\text{Re}(\beta)}{2} \sum_{j=1}^{n} \alpha_j + \cos \theta & \text{for } 0 < \text{Re}(\beta) < 1 \\ \frac{1}{4} \sum_{j=1}^{n} \alpha_j + \cos \theta & \text{for } \text{Re}(\beta) \geq 1 \end{cases} \quad (3)
\]

for all \(z \in U \) and for some \(\theta \in [0,2\pi] \), then the function

\[
\left\{ \beta \int_0^z u^{\beta-1} \prod_{j=1}^{n} \left(\frac{f_j(u)}{u} \right)^{\alpha_j} du \right\}^{1/\beta} \in S
\]

for all \(\theta \in [0,2\pi] \).

Proof. From (1) we observe that \(F_n \in A \), i.e. \(F_n(0) = F_n'(0) - 1 = 0 \). On the other hand, it is easy to see that

\[
F_n'(z) = \prod_{j=1}^{n} \left(\frac{f_j(z)}{z} \right)^{\alpha_j}
\]
Univalence of two general integral operators

and

\[
\left(\frac{zF''(z)}{F'_n(z)} \right) = \sum_{j=1}^{n} \alpha_j \left(\frac{zf'_j(z)}{f_j(z)} \right) - \sum_{j=1}^{n} \alpha_j
\]

thus we have

\[
\left(\frac{e^{i\theta} zF''(z)}{F'_n(z)} \right) = \sum_{j=1}^{n} \alpha_j \left(\frac{e^{i\theta} zf'_j(z)}{f_j(z)} \right) - e^{i\theta} \sum_{j=1}^{n} \alpha_j
\]

It follows from (4) and the hypothesis (3) that

\[
\text{Re} \left(\frac{e^{i\theta} zF''(z)}{F'_n(z)} \right) = \sum_{j=1}^{n} \alpha_j \text{Re} \left(\frac{e^{i\theta} zf'_j(z)}{f_j(z)} \right) - (\cos \theta) \sum_{j=1}^{n} \alpha_j
\]

for all \(z \in \mathcal{U} \) and for some \(\theta \in [0,2\pi] \). Applying Lemma 1.1, we have

\[
\left\{ \beta \int_0^z u^{\beta-1} F'_n(u) du \right\}^{1/\beta} \in \mathcal{S}
\]

or, equivalently

\[
\left\{ \beta \int_0^z u^{\beta-1} \prod_{j=1}^{n} \left(\frac{f_j(u)}{u} \right)^{\alpha_j} du \right\}^{1/\beta} \in \mathcal{S}
\]

for all \(\theta \in [0,2\pi] \).

This completes the proof.

Letting \(n = 1, \alpha_1 = \alpha \) and \(f_1 = f \) in Theorem 2.1, we have

Corollary 2.2. Let \(\alpha > 0 \) be real number, \(\beta \in \mathbb{C}, \text{Re}(\beta) > 0 \). If \(f \in \mathcal{A} \) satisfies

\[
\text{Re} \left(\frac{e^{i\theta} zf'(z)}{f(z)} \right) \leq \begin{cases}
\frac{\text{Re}(\beta)}{2\alpha} + \cos \theta & \text{for } 0 < \text{Re}(\beta) < 1 \\
\frac{1}{4\alpha} + \cos \theta & \text{for } \text{Re}(\beta) \geq 1
\end{cases}
\]

for all \(z \in \mathcal{U} \) and for some \(\theta \in [0,2\pi] \), then the function

\[
\left\{ \beta \int_0^z u^{\beta-1} \left(\frac{f(u)}{u} \right)^{\alpha} du \right\}^{1/\beta} \in \mathcal{S}
\]

for all \(\theta \in [0,2\pi] \).

Letting \(\alpha = 1 \) in Corollary 2.2, we have
Corollary 2.3. Let $\beta \in \mathbb{C}$, $\text{Re}(\beta) > 0$. If $f \in \mathcal{A}$ satisfies

$$
\text{Re}\left(\frac{e^{i\theta}zf'(z)}{f(z)}\right) \leq \begin{cases}
\frac{\text{Re}(\beta)}{2} + \cos \theta & \text{for } 0 < \text{Re}(\beta) < 1 \\
\frac{1}{4} + \cos \theta & \text{for } \text{Re}(\beta) \geq 1
\end{cases}
$$

for all $z \in U$ and for some $\theta \in [0, 2\pi]$, then the function

$$
\left\{ \beta \int_0^z u^{\beta-2} f(u) du \right\}^{1/\beta} \in \mathcal{S}
$$

for all $\theta \in [0, 2\pi]$.

Letting $\beta = 1$ in Corollary 2.3, we have

Corollary 2.4. If $f \in \mathcal{A}$ satisfies

$$
\text{Re}\left(\frac{e^{i\theta}zf'(z)}{f(z)}\right) \leq \frac{1}{4} + \cos \theta
$$

for all $z \in U$ and for some $\theta \in [0, 2\pi]$, then the function

$$
\int_0^z f(u) \frac{u}{u} du \in \mathcal{S}
$$

for all $\theta \in [0, 2\pi]$.

Next, we have

Theorem 2.5. Let $\alpha_j > 0$ be real numbers for all $j = 1, 2, \ldots, n$, $\beta \in \mathbb{C}$, $\text{Re}(\beta) > 0$. If $f_j \in \mathcal{A}$ for all $j = 1, 2, \ldots, n$ satisfies

$$
\text{Re}\left(\frac{e^{i\theta}zf''(z)}{f'(z)}\right) \leq \begin{cases}
\frac{\text{Re}(\beta)}{2} \sum_{j=1}^n \alpha_j & \text{for } 0 < \text{Re}(\beta) < 1 \\
\frac{1}{4} \sum_{j=1}^n \alpha_j & \text{for } \text{Re}(\beta) \geq 1
\end{cases}
$$

(5)

for all $z \in U$ and for some $\theta \in [0, 2\pi]$, then the function

$$
\left\{ \beta \int_0^z u^{\beta-3} \prod_{j=1}^n (f_j'(u))^{\alpha_j} du \right\}^{1/\beta} \in \mathcal{S}
$$

for all $\theta \in [0, 2\pi]$.
Proof. It follows from (2) that $F_{\alpha_1,...,\alpha_n}(0) = F'_{\alpha_1,...,\alpha_n}(0) - 1 = 0$. Also a simple computation yields

$$
\left(z F''_{\alpha_1,...,\alpha_n}(z) \right) = \sum_{j=1}^{n} \alpha_j \left(\frac{zf_j''(z)}{f_j(z)} \right).
$$

Thus we have

$$
\text{Re} \left(e^{i\theta} z F''_{\alpha_1,...,\alpha_n}(z) \right) = \sum_{j=1}^{n} \alpha_j \text{Re} \left(e^{i\theta} z f_j''(z) \right). \quad (6)
$$

Since f_j satisfies the condition (5) for every $j = 1, \ldots, n$, then from (7), we obtain

$$
\text{Re} \left(e^{i\theta} z F''_{\alpha_1,...,\alpha_n}(z) \right) \leq \begin{cases}
\frac{1}{2} \text{Re}(\beta) & \text{for } 0 < \text{Re}(\beta) < 1 \\
\frac{1}{4} \alpha & \text{for } \text{Re}(\beta) \geq 1
\end{cases}
$$

for all $z \in \mathcal{U}$ and for some $\theta \in [0,2\pi]$. Lemma 1.1 implies that

$$
\left\{ \beta \int_{0}^{z} u^{\beta-1} F'_{\alpha_1,...,\alpha_n}(u) du \right\}^{1/\beta} \in \mathcal{S}
$$

or, equivalently

$$
\left\{ \beta \int_{0}^{z} u^{\beta-1} \prod_{j=1}^{n} (f_j(u))^{\alpha_j} du \right\}^{1/\beta} \in \mathcal{S}
$$

for all $\theta \in [0,2\pi]$. \hfill \Box

Letting $n = 1$, $\alpha_1 = \alpha$, and $f_1 = f$ in Theorem 2.5, we have

Corollary 2.6. Let $\alpha > 0$ be real number, $\beta \in \mathbb{C}$, $\text{Re}(\beta) > 0$. If $f \in \mathcal{A}$ satisfies

$$
\text{Re} \left(e^{i\theta} z f''(z) \right) \leq \begin{cases}
\frac{\text{Re}(\beta)}{2\alpha} & \text{for } 0 < \text{Re}(\beta) < 1 \\
\frac{1}{4\alpha} & \text{for } \text{Re}(\beta) \geq 1
\end{cases}
$$

for all $z \in \mathcal{U}$ and for some $\theta \in [0,2\pi]$, then the function

$$
\left\{ \beta \int_{0}^{z} u^{\beta-1} (f'(u))^\alpha du \right\}^{1/\beta} \in \mathcal{S}
$$

for all $\theta \in [0,2\pi]$. Letting $\alpha = 1$ in Corollary 2.6, we have
Corollary 2.7. Let $\beta \in \mathbb{C}$, $\Re(\beta) > 0$. If $f \in \mathcal{A}$ satisfies
\[
\Re\left(e^{i\theta} \frac{zf''(z)}{f'(z)}\right) \leq \begin{cases}
\frac{\Re(\beta)}{2} & \text{for } 0 < \Re(\beta) < 1 \\
\frac{1}{4} & \text{for } \Re(\beta) \geq 1
\end{cases}
\]
for all $z \in U$ and for some $\theta \in [0, 2\pi]$, then the function
\[
\left\{ \beta \int_0^z \frac{u^{\beta-1}f'(u)du}{u} \right\}^{1/\beta} \in \mathcal{S}
\]
for all $\theta \in [0, 2\pi]$.

Letting $\beta = 1$ in Corollary 2.7, we obtain the following result of Blezu and Pascu [2].

Corollary 2.8. ([2]) If $f \in \mathcal{A}$ satisfies
\[
\Re\left(e^{i\theta} \frac{zf''(z)}{f'(z)}\right) \leq \frac{1}{4}
\]
for all $z \in U$ and for some $\theta \in [0, 2\pi]$, then $f \in \mathcal{S}$ for all $\theta \in [0, 2\pi]$.

References

Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan

E-mail: bafrasin@yahoo.com