Abstract

In this paper we introduce \((I, \gamma)\)-generalized semi-closed sets in topological spaces and also introduce \(\gamma S - T \gamma\)-spaces and investigate some of their properties.

1. Introduction

Recently Julian Dontchev et al. [1] introduce \((I, \gamma)\)-generalized closed sets via topological ideals. In this paper we introduce \((I, \gamma)\)-generalized semi-closed sets and investigate some of their properties.

An ideal \(I\) on a topological space \((X, \tau)\) is a non-empty collection of subsets of \(X\) satisfying the following two properties:

1. \(A \in I\) and \(B \subset A\) implies \(B \in I\)
2. \(A \in I\) and \(B \in I\) implies \(A \cup B \in I\)

For a subset \(A \subset X\), \(A^{*}(I) = \{x \in X/ U \cap A \notin I \text{ for each neighbourhood } U \text{ of } x\}\) is called the local function of \(A\) with respect to \(I\) and \(\tau\). Recall that \(A \subseteq (X, \tau, I)\) is called \(\tau^{*}\)-closed [2] if \(A^{*} \subseteq A\). It is well known that \(Cl^{*}(A) = A \cup A^{*}\) defines a Kuratowski closure operator for a topology \(\tau^{*}(I)\), finer than \(\tau\). An operation \(\gamma\) [3, 6] on the topology \(\tau\) on a given topological space \((X, \tau)\) is a function from the topology itself into the power set \(P(X)\) of \(X\) such that \(V \subseteq V^{*}\) for each \(V \in \tau\), where \(V^{*}\) denotes the value of \(\gamma\) at \(V\).

The following operators are examples of the operation \(\gamma\): the closure operator \(\gamma_{cl}\) defined by \(\gamma(U) = cl(U)\), the identity operator \(\gamma_{id}\) defined by \(\gamma(U) = U\). Another example of the operation \(\gamma\) is the \(\gamma_{f}\)-operator defined by \(U^{*} = (FrU)^{c} = X/ FrU\) [7]. Two operators \(\gamma_{1}\) and \(\gamma_{2}\) are called mutually dual [7] if \(U^{*1} \cap U^{*2} = U\) for each \(U \in \tau\). For example the identity operator is mutually dual to any other operator, while the \(\gamma_{f}\)-operator is mutually dual to the closure operator [7].

Definition: A subset \(A\) of a space \((X, \tau)\) is called

(a) an \(\alpha\)-open set [5] if \(A \subseteq Int(cl(int(A)))\).

2010 Mathematics Subject Classifications. 54B05, 54C08, 54D05.
Key words and Phrases. \((I, \gamma)\)-\(g\)-closed set, \((I, \gamma)\)-\(gs\)-closed sets, \(\gamma S - T \gamma\)-spaces.
Received: August 17, 2009
Communicated by Ljubisa Kocinac
(b) a generalized closed (briefly g-closed) set \[4\] if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is open in \((X, \tau)\).

(c) a \((I, \gamma)\)-generalized closed (briefly \((I, \gamma)\)-g-closed) set \([1]\) if \(A^* \subseteq U^\gamma \) whenever \(A \subseteq U \) and \(U \) is open in \((X, \tau)\).

We denote the family of all \((I, \gamma)\)-generalized semi-closed subsets (briefly \((I, \gamma)\)-gs-closed) of a space \((X, \tau, I, \gamma)\) by \(\text{IGS}(X) \) and simply write \(I\text{-gs-closed}\) in case when \(\gamma \) is an identity operator. Throughout this paper the operator \(\gamma \) is defined as \(\gamma: \tau^* \rightarrow P(X) \), where \(\tau^* \) denotes the set of all semi-open sets of \((X, \tau)\).

2. Basic properties of \((I, \gamma)\)-generalized semi-closed sets

Definition 2.1. A subset \(A \) of a topological space \((X, \tau)\) is called \((I, \gamma)\)-generalized semi closed (briefly \((I, \gamma)\)-gs-closed) if \(A^* \subseteq U^\gamma \), whenever \(A \subseteq U \) and \(U \) is semi-open in \((X, \tau)\).

Example 2.2. Let \(X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\} \) and \(I = \{\{a\}, \{a, b\}\} \). Here \((I, \gamma)\)-gs-closed sets are \(X, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}\).

Theorem 2.3. Every \((I, \gamma)\)-gs-closed set is \((I, \gamma)\)-g-closed set.

Proof. Let \(A \subseteq U, U \) is open and hence it is semi-open. Since \(A \) is \((I, \gamma)\)-gs-closed, \(A^* \subseteq U^\gamma \). Hence \(A \) is \((I, \gamma)\)-g-closed.

Remark 2.4. The converse of the above theorem need not be true by the following example.

Example 2.5. Let \(X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\} \) and \(I = \{a\} \). Let \(\gamma_1: \tau^* \rightarrow P(X) \) and \(\gamma_2: \tau \rightarrow P(X) \) be defined by \(U^\gamma_1 = \text{cl} \ U \) and \(U^\gamma_2 = \text{cl} \ U \) respectively. Therefore \(A = \{b, c\} \) is \((I, \gamma)\)-g-closed but not \((I, \gamma)\)-gs-closed.

Theorem 2.6. If \(A \) is \(I\text{-gs-closed} \) and semi-open, then \(A \) is \(\tau^*\)-closed.

Proof. Since \(A \) is \(I\text{-gs-closed} \), then \(A^* \subseteq U \), \(U \) is semi-open. It is given that \(A \) is semi-open implies \(A^* \subseteq U = A \), this implies that \(A^* \subseteq A \). Hence \(A \) is \(\tau^*\)-closed.

Theorem 2.7. Let \((X, \tau, I, \gamma)\) be a topological space.

(i) If \((A_i)_{i \in I}\) is a locally finite family of sets and each \(A_i \in \text{IGS}(X) \), then \(\bigcup_{i \in I} A_i \in \text{IGS}(X) \)

(ii) Finite intersection of \((I, \gamma)\)-gs-closed sets need not be \((I, \gamma)\)-gs-closed.

Proof:

(i) Let \(\bigcup_{i \in I} A_i \subseteq U \), where \(U \in \tau^* \). Since \(A_i \in \text{IGS}(X) \) for each \(i \in I \), then \(A_i^* \subseteq U^\gamma_i \). Hence \(\bigcup_{i \in I} A_i^* \subseteq U^\gamma \). But we know that \(\bigcup_{i \in I} A_i^* = \bigcup_{i \in I} A_i^* \); therefore \(\bigcup_{i \in I} A_i \in \text{IGS}(X) \)

(ii) Let \(X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \) and \(I = \{\{a\}, \{a, b\}\} \). Set \(A = \{a, b\} \) and \(B = \{b, c\} \), clearly \(A, B \in \text{IGS}(X) \) but \(A \cap B = \{b\} \notin \text{IGS}(X) \).

Theorem 2.8. Let \((X, \tau, I, \gamma_{id})\) be a space. If \(A \subseteq X \) is \(I\text{-gs-closed} \) and \(B \) is closed and \(\tau^*\)-closed, then \(A \cap B \) is \(I\text{-gs-closed} \).

Proof. Let \(U \in \tau^* \) be such that \(A \cap B \subseteq U \). Then \(A \subseteq U \cup (X/B) \). Since \(A \) is \(I\text{-gs-closed} \), then \(A^* \subseteq U \cup (X/B) \). Hence \(B \cap A^* \subseteq U \cap B \subseteq U \), But we know that
$B^* \subseteq B$. Therefore $(A \cap B)^* \subseteq A^* \cap B^* \subseteq A^* \cap B \subseteq U$, since B is τ^*-closed. Hence $A \cap B$ is I-gs-closed.

Result 2.9. A subset S of a space (X, τ, I) is a topological space with an ideal $I = \{I \cap S : I \in I\}$ on S.

Theorem 2.10. Let $A \subseteq S \subseteq (X, \tau, I, \gamma_{id})$. If A is I_{gs}-closed in $(S, \tau/s, I_s, \gamma_{id})$ and S is closed in (X, τ), then A is I-gs-closed in $(X, \tau, I, \gamma_{id})$.

Proof: Let $A \subseteq U$, where $U \in \tau^*$. Let $x \notin U$. We consider the following two cases.

- **Case (i)** $x \in S$. By assumption, $A^*(I_s, \tau/s) \subseteq U \cap S \subseteq U$. We show that $A^*(I) \subseteq A^*(I_s, \tau/s)$. Let $x \notin A^*(I_s, \tau/s)$. Since $x \in S$, then for some open subset V_s of $(S, \tau/s)$ containing x, we have $V_s \cap A \in I_s$. Hence $V_s = V \cap S$ for some $V \in \tau$, then $(S \cap V) \cap A = V \cap A \in I_s$ is disjoint from A. This shows that $x \notin A^*(I)$. Hence $A^*(I) \subseteq U$.

- **Case (ii)** $x \notin S$. Then X/S is an open neighbourhood of x disjoint from A. Hence $x \notin A^*(I)$. Consequently $A^*(I) \subseteq U$.

Both cases show that the local function of A with respect to I and τ is in U. Hence A is I-gs-closed in $(X, \tau, I, \gamma_{id})$.

Theorem 2.11. Let $A \subseteq S \subseteq (X, \tau, I, \gamma)$, if $A \in (IGS(X))$ and $S \in \tau$, then $A \in IGS(S)$.

Proof: Let U be a semi-open subset of $(S, \tau/s)$ such that $A \subseteq U$. Since $S \in \tau$, then $U \in \tau^*$. Then $A^*(I) \subseteq U^=\tau^*$, since $A \in IGS(X)$. We show that $A^*(I_s, \tau/s) \subseteq A^*(I)$. Let $x \notin A^*(I)$. We assume that $x \in S$, since otherwise we are done. Now, for some $V \in \tau$ containing x, $V \cap S \subseteq I$. Moreover, $V \cap A \in I_s$, since $A \subseteq S$. Then $V \cap S$ is an open neighbourhood of x in $(S, \tau/s)$ such that $(V \cap S) \cap A = V \cap A \in I_s$. This shows that $x \notin A^*(I_s, \tau/s)$. Hence $A^*(I_s, \tau/s) \subseteq U^=\tau^*$, where $U^=\tau^*$ means the image of the operation $\gamma/s : \tau^* \to P(S)$ defined by, $(\gamma/s)(U) = \gamma(U) \cap S$ for each $U \in \tau^*$. Hence $A \in IGS(S)$.

Theorem 2.12. Let A be a subset of $(X, \tau, I, \gamma_{id})$. If A is I-gs-closed, then A^*/A does not contain any non-empty semi-closed subset.

Proof: Assume that F is semi-closed subset of A^*/A. Clearly $A \subseteq X/F$, where A is I-gs-closed and $X/F \in \tau^*$. This $A^* \subseteq X/F$, that is $F \subseteq X/A^*$. Since due to our assumption $F \subseteq A^*$, $F \subseteq (X/A^*) \cap A^* = \emptyset$.

Theorem 2.13. If the set $A \subseteq (X, \tau, I)$ is both (I, γ_1)-gs-closed and (I, γ_2)-gs-closed, then it is I-gs-closed, granted the operators γ_1 and γ_2 are mutually dual.

Proof: Let $A \subseteq U$, where $U \in \tau^*$. Since $A^* \subseteq U^\gamma_{\gamma_1}$ and $A^* \subseteq U^\gamma_{\gamma_2}$, then $A^* \subseteq U^\gamma_{\gamma_1} \cap U^\gamma_{\gamma_2} = U$. Since γ_1 and γ_2 are mutually dual. Hence A is I-gs-closed.

Theorem 2.14. Every set $A \subseteq (X, \tau, I)$ is (I, γ_{id})-gs-closed.

Proof: Let $A \subseteq U, U$ is semi-open. We know that $A \cup A^* = cl^*(A) \subseteq cl(A) \subseteq cl(U)$. This implies that $A^* \subseteq cl(U)$. Hence A is (I, γ_{id})-gs-closed.

Corollary 2.15. For a set $A \subseteq (X, \tau, I)$, the following conditions are equivalent.

(i) A is (I, γ_{id})-gs-closed.

(ii) A is I-gs-closed.

Proof:

(i) \Rightarrow (ii), By the above theorem, A is (I, γ_{id})-gs-closed. Since γ_{id} and γ_{id} are mutually dual due to [7], then $\gamma_{id}(U) \cap \gamma_{id}(U) = U$. This implies that $A^* \subseteq U$, that is, A is I-gs-closed.
(ii) \Rightarrow (i), Let $A \subseteq U$, U is semi-open. Since A is I-gs-closed, $A^* \subseteq U$. But we know that $U \subseteq U^{\gamma f}$, we have $A^* \subseteq U \subseteq U^{\gamma f}$. This implies that $A^* \subseteq U^{\gamma f}$. Therefore A is (I, γ_f)-gs-closed.

3. $\gamma S - T_I$-space

Definition 3.1. A space (X, τ, I, γ) is called an $\gamma S - T_I$-space if every (I, γ)-gs-closed subset of X is τ^*-closed. We use the simple notation ST_I-space, in case γ is the identity operator.

Theorem 3.2. For a space (X, τ, I), the following conditions are equivalent.

(i) X is a ST_I-space

(ii) Each singleton of X is either semi-closed or τ^*-open.

Proof: (i) \Rightarrow (ii), Let $x \in X$. If $\{x\}$ is not semi-closed, then $A = X \setminus \{x\} \notin \tau^*$ and then A is trivially I-gs-closed. By (i) A is τ^*-closed and $\{x\}$ is τ^*-open.

(ii) \Rightarrow (i), Let A be I-gs-closed and let $x \in \text{cl}^* A$. We have the following two cases.

case(i): $\{x\}$ is semi-closed. By theorem 2.12, A^*/A does not contain a non-empty semi-closed subset. This shows that $x \in A$.

case(ii): $\{x\}$ is τ^*-open. Then $\{x\} \cap A \neq \emptyset$. Hence $x \in A$. Thus in both cases x is in A and so $A = \text{cl}^* A$. that is A is τ^*-closed, which shows that X is a ST_I-space.

References

Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore-29

E-mail: rdevicbe@yahoo.com