UNIVALENCE CRITERION FOR TWO INTEGRAL OPERATORS

Nicoleta Ularu and Daniel Breaz

Abstract. In this paper we extend some results obtained by Breaz et al. in [3], for a general integral operators $G_{n,\alpha}(z)$, $G_{\alpha_1,\ldots,\alpha_n}(z)$ and $J_{\alpha_1,\alpha_2,\ldots,\alpha_n,\gamma}$.

1 Introduction and preliminaries

Let $\mathbb{U} = \{z : |z| < 1\}$ the unit disc and \mathcal{A} the class of all functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (1)$$

which are analytic in \mathbb{U}. We denote by \mathcal{S} the class of all functions in \mathcal{A} which are univalent in \mathbb{U}.

Lemma 1.1. (Schwarz Lemma) [5] Let the analytic function f be regular in the open unit disk \mathbb{U} and let $f(0) = 0$. If $|f(z)| \leq 1$, for all $z \in \mathbb{U}$, then

$$|f(z)| \leq |z| \quad (z \in \mathbb{U}), \quad (2)$$

where the equality holds true only if

$$|f(z)| = Kz \quad (z \in \mathbb{U}) \quad \text{and} \quad K = 1. \quad (3)$$

Pescar has proved the following univalent condition:

Theorem 1.1. [7] Let $\alpha \in \mathbb{C}$ (Re(α) > 0) and $c \in \mathbb{C}$ (|c| ≤ 1; c ≠ -1). Suppose also that the function $f(z)$ given by (1) is analytic in \mathbb{U}. If

$$|ez^{2\alpha} + (1 - |z|^{2\alpha}) \frac{zf''(z)}{\alpha f'(z)}| \leq 1 \quad (z \in \mathbb{U}),$$

2010 Mathematics Subject Classifications. 30C45.
Key words and Phrases. Analytic, univalent, unit disk, integral operators, univalent functions.
Received: January 14, 2011
Communicated by H. M. Srivastava
then the function $F_\alpha(z)$ defined by

$$F_\alpha(z) := \left(\alpha \int_0^z t^{\alpha-1} f'(t) dt \right)^{\frac{1}{\alpha}} = z + \ldots$$

is analytic and univalent in U.

The following theorem is another univalent condition which was proved by Ozaki and Nunokawa [6]:

Theorem 1.2. [6] Let $f \in A$ satisfy the following inequality:

$$\left| \frac{z^2 f'(z)}{(f(z))^2} - 1 \right| \leq 1 \quad (z \in U) \quad (4)$$

then f is univalent in U.

D. Breaz et al. in [3] proved next theorem:

Theorem 1.3. [3] Let $M \geq 1$ and suppose that each of the functions $g_j \in A$, $(j \in \{1, \ldots, n\})$ satisfies the inequality (4). Also let $\alpha \in \mathbb{R}$, $\left(\alpha \in \left[1, \frac{(2M+1)n}{(2M+1)n-1} \right] \right)$ and $c \in \mathbb{C}$. If

$$|c| \leq 1 + \left(\frac{1 - \alpha}{\alpha} \right) (2M + 1)n$$

and

$$|g_j(z)| \leq M \quad (z \in U; j \in \{1, \ldots, n\}),$$

then the function

$$G_{n,\alpha}(z) = \left((n\alpha - 1) + 1 \int_0^z (g_1(t))^{\alpha-1} \ldots (g_n(t))^{\alpha-1} dt \right)^{\frac{1}{n(n-1)+1}} \quad (5)$$

is in the univalent function class S.

2 Main results

Theorem 2.1. Let $g_i \in A$ for $i \in \{1, \ldots, n\}$ all the functions which satisfies the inequality (4) and $M_i \geq 1$.

We consider $\alpha_i \in \mathbb{R}$ $\left(\alpha_i \in \left[\frac{1}{n}, \max \left\{ \frac{(2M_i+1)n}{(2M_i+1)n-1} \right\} \right] \right)$ and $c \in \mathbb{C}$. If

$$|c| \leq 1 + \frac{n}{n \left(\sum_{i=1}^n \alpha_i - 1 \right) + 1} \cdot \max_{1 \leq i \leq n} (\alpha_i - 1)(2M_i + 1) \quad (6)$$
We consider the function
\[|g_i(z)| \leq M_i \quad (z \in U, i \in \{1, \ldots, n\}), \tag{7} \]
then the function
\[G_{\alpha_1, \ldots, \alpha_n, n}(z) = \left(\left(n \left(\sum_{i=1}^{n} \alpha_i - 1 \right) + 1 \right) \int_0^z (g_1(t))^{\alpha_1 - 1} \cdots (g_n(t))^{\alpha_n - 1} dt \right)^{- \frac{1}{n(\sum_{i=1}^{n} \alpha_i - 1) + 1}} \tag{8} \]
belongs to the univalent function class \(\mathcal{S} \).

Proof. We consider the function
\[f(z) = \int_0^z \prod_{i=1}^{n} \left(\frac{g_i(t)}{t} \right)^{\alpha_i - 1} dt. \]
From here we have that
\[\frac{zf''(z)}{f'(z)} = \sum_{i=1}^{n} (\alpha_i - 1) \left(\frac{zg_i'(z) - g_i(z)}{g_i(z)} - 1 \right) \]
So
\[\left| c|z|^{2(n(\sum_{i=1}^{n} \alpha_i - 1) + 1)} + (1 - |z|)^{2(n(\sum_{i=1}^{n} \alpha_i - 1) + 1)} \right| \frac{zg''(z)}{(f'(z))^2} \]
\[= \left| c|z|^{2(n(\sum_{i=1}^{n} \alpha_i - 1) + 1)} + (1 - |z|)^{2(n(\sum_{i=1}^{n} \alpha_i - 1) + 1)} \right| \frac{1}{(n(\sum_{i=1}^{n} \alpha_i - 1) + 1)} \sum_{i=1}^{n} (\alpha_i - 1) \left(\frac{zg_i'(z) - g_i(z)}{g_i(z)} - 1 \right) \]
\[\leq |c| + \left(\frac{1}{n(\sum_{i=1}^{n} \alpha_i - 1) + 1} \right) \sum_{i=1}^{n} \left(\frac{|zg_i'(z)|}{|g_i(z)|} + 1 \right). \]
From (7), because \(|g_i(z)| \leq M_i \) for \(i \in \{1, \ldots, n\} \), and (4) we obtain that
\[\left| c|z|^{2(n(\sum_{i=1}^{n} \alpha_i - 1) + 1)} + (1 - |z|)^{2(n(\sum_{i=1}^{n} \alpha_i - 1) + 1)} \right| \frac{zg''(z)}{(f'(z))^2} \]
\[\leq |c| + \frac{1}{n(\sum_{i=1}^{n} \alpha_i - 1) + 1} \sum_{i=1}^{n} (\alpha_i - 1)(2M_i + 1) \]
\[\leq |c| + \frac{n}{n(\sum_{i=1}^{n} \alpha_i - 1) + 1} \max_{1 \leq i \leq n} (\alpha_i - 1)(2M_i + 1). \]
According with (6), we have
\[\left| c|z|^{2(n(\sum_{i=1}^{n} \alpha_i - 1) + 1)} + (1 - |z|)^{2(n(\sum_{i=1}^{n} \alpha_i - 1) + 1)} \right| \frac{zg''(z)}{(n(\sum_{i=1}^{n} \alpha_i - 1) + 1)f'(z)} \leq 1 \quad (z \in U) \]
Now, applying Theorem 1.1 we obtain that the function \(G_{\alpha_1, \ldots, \alpha_n, n}(z) \) defined by (8) is in \(\mathcal{S} \).
For \(n = 1 \) in Theorem 2.1 we obtain:

Corollary 2.1. Let \(g \in A \) a function that satisfies the inequality (4) and \(M \geq 1 \). We consider \(\alpha \in \mathbb{R} (\alpha \in [1, \frac{2M+1}{2M} + 1]) \) and \(c \in \mathbb{C} \). If

\[
|c| \leq 1 + \frac{\alpha - 1}{\alpha} (2M + 1)
\]

and \(|g(z)| \leq M \) for all \(z \in U \), then the function

\[
G_\alpha(z) = \left(\alpha \int_0^z (g(t))^{\alpha-1} dt \right)^\frac{1}{\alpha}
\]

is in the univalent function class \(S \).

For \(\alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha \) we obtain

Corollary 2.2. Let \(g_i \in A \) for \(i \in \{1, \ldots, n\} \) all the functions which satisfies the inequality (4) and \(M_i \geq 1 \).

We consider \(\alpha \in \mathbb{R} \left(\alpha \in \left[1, \frac{1}{n} \max \left\{ \frac{(2M_i+1)n}{M_i} - 1 \right\} \right] \right) \) and \(c \in \mathbb{C} \).

If

\[
|c| \leq 1 + \frac{n}{n(\alpha - 1) + 1} \cdot \max_{1 \leq i \leq n} (\alpha - 1)(2M_i + 1)
\]

and

\[
|g_i(z)| \leq M_i \quad (z \in U, i \in \{1, \ldots, n\}),
\]

then the function \(G_{n, \alpha}(z) \) defined by (5) is in \(S \).

The integral operator

\[
J_{\alpha_1, \alpha_2, \ldots, \alpha_n, \gamma} = \left(\gamma \int_0^z t^{\gamma-1} \prod_{j=1}^n \left(\frac{f_j(t)}{t} \right)^{\alpha_j} dt \right)^\frac{1}{\gamma}
\]

was introduced and studied by D. Breaz and N. Breaz in [1].

Theorem 2.2. Let \(f_j \in A \) for \(j \in \{1, \ldots, n\} \) all the functions which satisfies the inequality (4) and \(M_j \geq 1 \).

We consider \(\alpha_j \in \mathbb{R} \left(\alpha_j \in \left[1, \max \left\{ \frac{(2M_j+1)n}{M_j} - 1 \right\} \right] \right) \) and \(\gamma, c \in \mathbb{C} \).

If

\[
|c| \leq 1 + \frac{n}{|\gamma|} \cdot \max_{1 \leq j \leq n} \alpha_j (2M_j + 1)
\]

and

\[
|f_j(z)| \leq M_j \quad (z \in U, j \in \{1, \ldots, n\}),
\]

then the function \(J_{\alpha_1, \ldots, \alpha_n, \gamma}(z) \) given by (9) is in the univalent function class \(S \).
Proof. We define the function

$$h(z) = \int_0^z \prod_{j=1}^n \left(\frac{f_j(t)}{t} \right)^{\alpha_j} dt.$$

Then from here we have that

$$\frac{h''(z)}{h'(z)} = \sum_{j=1}^n \alpha_j \left(\frac{zf_j'(z) - f_j(z)}{f_j(z)} \right)$$

So

$$\left| c |z|^{2\gamma} + (1 - |z|^{2\gamma}) \frac{zh''(z)}{h'(z)} \right| = \left| c |z|^{2\gamma} + (1 - |z|^{2\gamma}) \frac{1}{\gamma} \sum_{j=1}^n \alpha_j \left(\frac{zf_j'(z) - f_j(z)}{f_j(z)} \right) \right|$$

$$\leq |c| + \frac{1}{\gamma} \sum_{j=1}^n \alpha_j \left(\frac{zf_j'(z) - f_j(z)}{|f_j(z)|} + 1 \right)$$

Because from (11), $|f_j(z)| \leq M_j$ for $z \in U$ and $j \in \{1, \ldots, n\}$, using the inequality (4), we obtain that

$$\left| c |z|^{2\gamma} + (1 - |z|^{2\gamma}) \frac{zh''(z)}{h'(z)} \right| \leq |c| + \frac{1}{\gamma} \sum_{j=1}^n \alpha_j (2M_j + 1)$$

$$\leq |c| + \frac{n}{\gamma} \max_{1 \leq j \leq n} \alpha_j (2M_j + 1)$$

Now, using the hypothesis (10) results

$$\left| c |z|^{2\gamma} + (1 - |z|^{2\gamma}) \frac{zh''(z)}{h'(z)} \right| \leq 1, \quad z \in U$$

Applying the Theorem 1.1 we obtain that the function $J_{\alpha_1, \ldots, \alpha_n, \gamma}(z)$ is in the univalent functions class S. \qed

Remark 2.1. For $\alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha$ and $\frac{1}{\gamma} = \frac{1}{n(\alpha - 1) + 1}$ in Theorem 2.2 we obtain the theorem proved by Breaz et al. in [3] for the function $G_{n, \alpha}(z)$.

Corollary 2.3. Let $f \in A$ the function that satisfies the inequality (4) and $M \geq 1$. We suppose that $\alpha \in \mathbb{R}$, $(\alpha \in [1, \frac{2M+1}{2M}])$ and $\gamma, c \in \mathbb{C}$.

If

$$|c| \leq 1 + \frac{\alpha}{\gamma} (2M + 1)$$

and

$$|f(z)| \leq M, \quad z \in U$$

then the function $J_{\alpha, \gamma}(z) = \left(\frac{\gamma}{\alpha} t^{\gamma-1} \left(\frac{t^\alpha}{\alpha} \right) dt \right)^{\frac{1}{\gamma}}$ is in the univalent functions class S.

Proof. In Theorem 2.2 we consider $n = 1$.

Acknowledgment. This work was partially supported by the strategic project POSDRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the European Social Fund-Investing in People.

References

Nicoleta Ularu,
University of Piteşti, Târgul din Vale Str., No.1, 110040 Piteşti, Argeş, Romania

Daniel Breaz,
“1 Decembrie 1918” University of Alba Iulia, N. Iorga Str., No. 11-13, 510009, Alba Iulia, Alba, Romania