SEVERAL NEW HARDY-HILBERT’S INEQUALITIES

Hongxia Du and Yu Miao

Abstract
In this paper, we obtain several extended analogues of Hardy-Hilbert’s inequalities.

1 Introduction
If \(f, g \) are real measurable functions such that
\[
0 < \int_0^\infty f^2(x)dx < \infty \quad \text{and} \quad 0 < \int_0^\infty g^2(x)dx < \infty,
\]
then we have the following well known Hilbert’s integral inequality [3],
\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y}dxdy < \pi \left\{ \int_0^\infty f^2(x)dx \int_0^\infty g^2(x)dx \right\}^{1/2}
\]
where the constant factor \(\pi \) is the best possible. Furthermore, we have also the following Hardy-Hilbert’s type inequality [3, Th 341, Th342],
\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{\max\{x, y\}}dxdy < 4 \left\{ \int_0^\infty f^2(x)dx \int_0^\infty g^2(x)dx \right\}^{1/2},
\]
\[
\int_0^\infty \int_0^\infty \log \frac{x}{x-y} f(x)g(y)dxdy < \pi^2 \left\{ \int_0^\infty f^2(x)dx \int_0^\infty g^2(x)dx \right\}^{1/2},
\]
where the constant factors 4 and \(\pi^2 \) are both the best possible.

There are numerous papers which study the Hilbert’s and Hardy-Hilbert’s type inequalities from different directions [1, 6, 7, 8, 9, 11]. Recently, Li-Wu-He [5] obtained the following inequality: if (1) is satisfied, then we have
\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y+\max\{x, y\}}dxdy < c \left\{ \int_0^\infty f^2(x)dx \int_0^\infty g^2(x)dx \right\}^{1/2},
\]
where the constant factor \(c \) is the best possible.
where the constant factor $c = 1.7408 \cdots$ is the best possible.

He-Qian-Li [4] have proved the following inequality: if (1) is satisfied, then we have
\[
\int_0^\infty \int_0^\infty \frac{\log x - \log y}{x + y + \min\{x, y\}} f(x)g(y)dx\,dy < c \left(\int_0^\infty f^2(x)dx \int_0^\infty g^2(x)dx \right)^{1/2},
\]
(3)
where the constant factor $c = 6.88947 \cdots$ is the best possible.

In this short paper, we will give several extended analogues of Hardy-Hilbert’s inequalities.

2 Main results

Before giving our main results, we need to establish the following

Lemma 1. Let γ, α, β be three non-negative real numbers. Then we have the following equations
\[
\int_0^\infty \frac{|\log x - \log y|^{\gamma}}{\alpha x + \beta y + \max\{x, y\}} \left(\frac{x}{y} \right)^{1/2} dy = \int_0^\infty \frac{|\log x - \log y|^{\gamma}}{\alpha x + \beta y + \max\{x, y\}} \left(\frac{y}{x} \right)^{1/2} dx
\]
\[= \int_0^1 \frac{2^{\gamma+1}|\log t|^\gamma}{t^{2\alpha + (1 + \beta)}} dt + \int_0^1 \frac{2^{\gamma+1}|\log t|^\gamma}{t^{2\beta + (1 + \alpha)}} dt =: A,
\]
where $A := A(\gamma, \alpha, \beta) \in [0, \infty]$.

Proof. For any given y, let $y = tx$, then it follows that
\[
\int_0^\infty \frac{|\log x - \log y|^{\gamma}}{\alpha x + \beta y + \max\{x, y\}} \left(\frac{x}{y} \right)^{1/2} dy
\]
\[= \int_0^\infty \frac{|\log t|^\gamma}{\alpha + t\beta + \max\{1, t\}} \left(\frac{1}{t} \right)^{1/2} dt
\]
\[= \int_1^1 \frac{|\log t|^\gamma}{t(\beta + 1) + \alpha} \left(\frac{1}{t} \right)^{1/2} dt + \int_1^1 \frac{|\log t|^\gamma}{t\beta + (1 + \alpha)} \left(\frac{1}{t} \right)^{1/2} dt
\]
\[= \int_0^1 \frac{2^{\gamma+1}|\log t|^\gamma}{t^{2\alpha + (1 + \beta)}} dt + \int_0^1 \frac{2^{\gamma+1}|\log t|^\gamma}{t^{2\beta + (1 + \alpha)}} dt
\]
which implies the desired result. \qed
Theorem 1. If \(f, g \) are real functions such that \(0 < \int_0^\infty f^2(x)dx < \infty \) and \(0 < \int_0^\infty g^2(x)dx < \infty \). Then we have

\[
\int_0^\infty \int_0^\infty \frac{\log x - \log y}{ax + \beta y + \max\{x, y\}} f(x)g(y) dxdy < A \left(\int_0^\infty f^2(x)dx \right)^{1/2} \left(\int_0^\infty g^2(y)dy \right)^{1/2},
\]

where \(A \) is defined in Lemma 1 and is the best possible.

Proof. By Cauchy-Schwarz inequality and Lemma 1, we get

\[
\int_0^\infty \int_0^\infty \frac{\log x - \log y}{ax + \beta y + \max\{x, y\}} f(x)g(y) dxdy \\
\leq A \left(\int_0^\infty f^2(x)dx \right)^{1/2} \left(\int_0^\infty g^2(y)dy \right)^{1/2},
\]

(5)

If the equality in (5) holds, then there exist two constant \(c \) and \(d \), not both zero (without loss of generality, suppose that \(c \neq 0 \)) and

\[
c \frac{\log x - \log y}{ax + \beta y + \max\{x, y\}} \left(\frac{x}{y} \right)^{1/2} f^2(x) = d \frac{\log x - \log y}{ax + \beta y + \max\{x, y\}} \left(\frac{y}{x} \right)^{1/2} g^2(y), \quad \text{a.e.}
\]

in \((0, \infty) \times (0, \infty)\). That is to say, we have

\[
 ex f^2(x) = dy g^2(y) = \text{constant}, \quad \text{a.e.}
\]

in \((0, \infty) \times (0, \infty)\). Thus

\[
\int_0^\infty f^2(x)dx = \infty,
\]

which contradicts the assumption \(0 < \int_0^\infty f^2(x)dx < \infty \). Hence, the inequality (5) takes the form of strict inequality.

Assume that the constant \(A \) in the inequality (4) is not the best possible, then there exists a positive number \(K \) with \(K < A \) and \(a > 0 \), such that

\[
\int_a^\infty \int_0^\infty \frac{\log x - \log y}{ax + \beta y + \max\{x, y\}} f(x)g(y) dxdy < K \left(\int_a^\infty f^2(x)dx \right)^{1/2} \left(\int_a^\infty g^2(y)dy \right)^{1/2}.
\]

(6)
Suppose then by (5), we have

\[\text{The contradiction implies that the constant } \]
\[\text{which yields } \]
\[\text{Letting } y = tx, \text{ we get } \]
\[\int_a^\infty \int_0^\infty \frac{\log x - \log y}{\alpha x + \beta y + \max\{x, y\}} f(x)g_t(y) dy dx \]
\[= \int_b^\infty \int_0^\infty \frac{\log x - \log y}{\alpha x + \beta y + \max\{x, y\}} x^{-\frac{\epsilon+1}{t}} y^{-\frac{\gamma+1}{t}} dy dx \]
\[= \int_b^\infty \int_{b/x}^\infty \frac{\log t}{\alpha + t/\beta + \max\{1, t\}} t^{-\frac{\epsilon+1}{t}} dt dx \]

(7)

Letting \(b \to 0^+ \), by (6) and Fatou’s lemma, we have

\[\int_a^\infty \int_0^\infty \frac{\log t}{\alpha + t/\beta + \max\{1, t\}} t^{-\frac{\epsilon+1}{t}} dt dx \]
\[= \frac{1}{\varepsilon \alpha^2} \int_0^\infty \frac{\log t}{\alpha + t/\beta + \max\{1, t\}} t^{-\frac{\epsilon+1}{t}} dt \leq K \frac{1}{\varepsilon \alpha^2}, \]

which yields

\[\lim_{\varepsilon \to 0^+} \int_0^\infty \frac{\log t}{\alpha + t/\beta + \max\{1, t\}} t^{-\frac{\epsilon+1}{t}} dt = A \leq K. \]

The contradiction implies that the constant \(A \) is the best possible.

Theorem 2. Suppose \(f \geq 0 \) and \(0 < \int_0^\infty f^2(x) dx < \infty \). Then

\[\int_0^\infty \left(\int_0^\infty \frac{\log x - \log y}{\alpha x + \beta y + \max\{x, y\}} f(x) dx \right)^2 dy < A^2 \int_0^\infty f^2(x) dx \]

(8)

Proof. Let

\[g(y) = \int_0^\infty \frac{\log x - \log y}{\alpha x + \beta y + \max\{x, y\}} f(x) dx, \]

then by (5), we have

\[0 < \int_0^\infty g^2(y) dy \]
\[= \int_0^\infty \left(\int_0^\infty \frac{\log x - \log y}{\alpha x + \beta y + \max\{x, y\}} f(x) dx \right)^2 dy \]
\[= \int_0^\infty \int_0^\infty \frac{\log x - \log y}{\alpha x + \beta y + \max\{x, y\}} f(x)g(y) dx dy \]
\[\leq A \left(\int_0^\infty f^2(x) dx \right)^{1/2} \left(\int_0^\infty g^2(y) dy \right)^{1/2}, \]

(9)
which yields
\[0 < \int_0^\infty g^2(y)dy \leq A^2 \int_0^\infty f^2(x)dx < \infty. \] (10)

By (4), both (9) and (10) take the form of strict inequality, so we have the inequality (8). On the other hand, suppose that (8) is valid. Again, you use the Cauchy-Schwarz inequality, we get
\[
\int_0^\infty \int_0^\infty \frac{|\log x - \log y|\gamma}{\alpha x + \beta y + \max\{x, y\}} f(x)g(y)dxdy
\]
\[
= \int_0^\infty \left(\int_0^\infty \frac{|\log x - \log y|\gamma}{\alpha x + \beta y + \max\{x, y\}} f(x)dx \right) g(y)dy
\]
\[
< A \left(\int_0^\infty f^2(x)dx \right)^{1/2} \left(\int_0^\infty g^2(y)dy \right)^{1/2},
\]
which is the inequality (4).

\[\square \]

Remark 1. If we take \(\gamma = \alpha = \beta = 1 \), then the inequality (3) can be induced by the inequality (4).

3 Several special inequalities

In this section, by choosing different \(\gamma, \alpha, \beta \), we establish several special inequalities. In what follows, assume that (1) is satisfied.

(1) If \(\gamma = 0, \alpha = \beta = 1 \), then
\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x + y + \max\{x, y\}}dxdy
\]
\[
< A \left(\int_0^\infty f^2(x)dx \right)^{1/2} \left(\int_0^\infty g^2(y)dy \right)^{1/2},
\] (11)

where
\[A = 4 \int_0^1 \frac{1}{t^2 + 2}dt = 2\sqrt{2} \arctan(\sqrt{2}/2). \]

(2) If \(\alpha = \beta = 0, \gamma = 1 \), then
\[
\int_0^\infty \int_0^\infty \frac{|\log x - \log y|}{\max\{x, y\}} f(x)g(y)dxdy
\]
\[
< A \left(\int_0^\infty f^2(x)dx \right)^{1/2} \left(\int_0^\infty g^2(y)dy \right)^{1/2},
\] (12)

where
\[A = -8 \int_0^1 \log tdt = 7.99988 \cdots . \]
If $\alpha = 0$, $\beta = \gamma = 1$, then
\[
\int_0^\infty \int_0^\infty |\log x - \log y| f(x)g(y) dx dy < A \left(\int_0^\infty f^2(x) dx \right)^{1/2} \left(\int_0^\infty g^2(y) dy \right)^{1/2},
\]
where
\[
A = -2 \int_1^1 \log t dt - 4 \int_1^1 \frac{\log t}{1 + t^2} dt = 5.66377 \cdots.
\]

If $\gamma = 2$, $\alpha = \beta = 1$, then
\[
\int_0^\infty \int_0^\infty \frac{|\log x - \log y|^2}{x + y + \max\{x, y\}} f(x)g(y) dx dy < A \left(\int_0^\infty f^2(x) dx \right)^{1/2} \left(\int_0^\infty g^2(y) dy \right)^{1/2},
\]
where
\[
A = 16 \int_0^1 \frac{\log t^2}{t^2 + 2} dt = 15.72916 \cdots.
\]

If $\gamma = \alpha = 0$, $\beta = 1$, then
\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{y + \max\{x, y\}} dx dy < A \left(\int_0^\infty f^2(x) dx \right)^{1/2} \left(\int_0^\infty g^2(y) dy \right)^{1/2},
\]
where
\[
A = 1 + 2 \int_0^1 \frac{1}{t^2 + 1} dt = 1 + \pi/2.
\]

If $\gamma = \beta = \alpha = 0$, then
\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{\max\{x, y\}} dx dy < A \left(\int_0^\infty f^2(x) dx \right)^{1/2} \left(\int_0^\infty g^2(y) dy \right)^{1/2},
\]
where
\[
A = 4.
\]

4 Further discussions

In this section, we give two new Hardy-Hilbert’s inequalities. Before our works, the following result need be mentioned.
Lemma 2. [2] Let \(f \) be a nonnegative integrable function. Define
\[
F(x) = \int_0^x f(t) dt.
\]
Then
\[
\int_0^\infty \left(\frac{F(x)}{x} \right)^p dx < \left(\frac{p}{p-1} \right)^p \int_0^\infty f^p(x) dx, \quad p > 1.
\]

Theorem 3. Let \(f, g \geq 0 \),
\[
F(x) = \int_0^x f(t) dt, \quad G(x) = \int_0^x g(t) dt.
\]
Furthermore assume that \(0 < \int_0^\infty f^2(x) dx < \infty \) and \(0 < \int_0^\infty g^2(x) dx < \infty \) and let \(A \in (0, \infty) \), then we have
\[
\int_0^\infty \int_0^\infty \frac{|\log x - \log y|^\gamma}{\alpha x + \beta y + \max\{x,y\}} \frac{F(x) G(y)}{x} \frac{dy}{y} dx dy < 4A \left(\int_0^\infty f^2(x) dx \right)^{1/2} \left(\int_0^\infty g^2(y) dy \right)^{1/2}.
\]

Proof. By Hölder’s inequality, Lemma 1 and Lemma 2, we have
\[
\int_0^\infty \int_0^\infty \frac{|\log x - \log y|^\gamma}{\alpha x + \beta y + \max\{x,y\}} \frac{F(x) G(y)}{x} \frac{dy}{y} dx dy \leq \left\{ \int_0^\infty \left(\int_0^\infty \frac{|\log x - \log y|^\gamma}{\alpha x + \beta y + \max\{x,y\}} \left(\frac{x}{y} \right)^{1/2} dy \right) \left(\frac{F(x)}{x} \right)^2 dx \right\}^{1/2} \times \left\{ \int_0^\infty \left(\int_0^\infty \frac{|\log x - \log y|^\gamma}{\alpha x + \beta y + \max\{x,y\}} \left(\frac{y}{x} \right)^{1/2} dx \right) \left(\frac{G(y)}{y} \right)^2 dy \right\}^{1/2} < 4A \left(\int_0^\infty f^2(x) dx \right)^{1/2} \left(\int_0^\infty g^2(y) dy \right)^{1/2}.
\]
The proof of the theorem can be completed. \(\square \)

Theorem 4. Let \(f, g \geq 0 \),
\[
F(x) = \int_0^x f(t) dt, \quad G(x) = \int_0^x g(t) dt.
\]
Furthermore assume that \(p, q > 1, \alpha, \beta, s, t, \mu, \nu > 0 \), such that
\[
\frac{1}{p} + \frac{1}{q} = 1, \quad sp > \beta q + 1, \quad tq > \alpha p + 1
\]
and
\[
(\beta + \mu - s)p + 1 = 0, \quad (\alpha + \nu - t)q + 1 = 0.
\]
Then we have
\[
\int_0^\infty \int_0^\infty \frac{x^\alpha y^\beta F^\mu(x)G^\nu(y)}{(x+y)^{s+t}} \, dx \, dy < \kappa \left(\left(\frac{pq}{pq-1} \right)^{\mu} \left(\int_0^\infty f^\mu(x) \, dx \right)^{1/p} \left(\int_0^\infty g^\nu(y) \, dy \right)^{1/q} \right),
\]
where
\[
\kappa = B^{1/p}(\beta p + 1, sp - (\beta p + 1))B^{1/q}(\alpha p + 1, tq - (\alpha p + 1))
\]
and \(B(\cdot, \cdot) \) denotes the Beta function.

Proof. By Hölder’s inequality, it is easy to see
\[
\int_0^\infty \int_0^\infty \frac{x^\alpha y^\beta F^\mu(x)G^\nu(y)}{(x+y)^{s+t}} \, dx \, dy
\]
\[
= \int_0^\infty \int_0^\infty \frac{x^\alpha F^\mu(x) y^\beta G^\nu(y)}{(x+y)^s (x+y)^t} \, dx \, dy
\]
\[
\leq \left(\int_0^\infty \int_0^\infty \frac{y^{\beta p} F^\mu(x) \, dx \, dy}{(x+y)^{sp}} \right)^{1/p} \left(\int_0^\infty \int_0^\infty \frac{x^\alpha G^\nu(y) \, dx \, dy}{(x+y)^{tq}} \right)^{1/q}
\]
\[
= P^{1/p}Q^{1/q}.
\]

Next by Lemma 2, we obtain
\[
P = \int_0^\infty \left(\frac{F(x)}{x} \right)^{\mu} \, dx \int_0^\infty \frac{y^{\beta p} x^{\mu}}{(x+y)^{sp}} \, dy
\]
\[
= \int_0^\infty \frac{F(x)}{x} \, dx \int_0^\infty \frac{\frac{y}{x}^{\beta p} x^{-1}}{(1 + \frac{y}{x})^{sp}} \, dy
\]
\[
= \int_0^\infty \frac{F(x)}{x} \, dx \int_0^\infty \frac{u^{\beta p}}{(1 + u)^{sp}} \, du
\]
\[
< B(\beta p + 1, sp - (\beta p + 1)) \left(\frac{pq}{pq-1} \right)^{\mu} \int_0^\infty f^\mu(x) \, dx.
\]

Similarly, it can be shown that
\[
Q = \int_0^\infty \left(\frac{G(y)}{y} \right)^{\nu} \, dy \int_0^\infty \frac{x^{\alpha q} y^{\nu}}{(x+y)^{tq}} \, dx
\]
\[
< B(\alpha q + 1, tq - (\alpha q + 1)) \left(\frac{q^v}{q^v-1} \right)^{\nu} \int_0^\infty g^\nu(y) \, dy
\]
which implies the desired result. \(\square \)
Several new Hardy-Hilbert’s inequalities

Remark 2. Let $\mu = \nu = 1$, $\alpha = 1/p$, $\beta = 1/q$, $s = t = 2$, then we have the following special inequality (see [10]),

$$\int_0^\infty \int_0^\infty \frac{x^{1/p}y^{1/q}F(x)G(y)}{(x+y)^4} \, dx \, dy \leq B^{1/p}(p,p)B^{1/q}(q,q) \frac{p}{p-1} \frac{q}{q-1} \left(\int_0^\infty f^p(x) \, dx \right)^{1/p} \left(\int_0^\infty g^q(y) \, dy \right)^{1/q}.$$

References

Hongxia Du:
College of Mathematics and Information Science, Henan Normal University, Henan Province, 453007, China.
E-mail: duhongxia24@gmail.com
Yu Miao:
College of Mathematics and Information Science, Henan Normal University, Henan Province, 453007, China.
E-mail: yumiao728@yahoo.com.cn