SOME SYMMETRIC SEMI-CLASSICAL POLYNOMIAL SETS

Mabrouk Sghaier

Abstract

We show that if \(v \) is a regular semi-classical form (linear functional), then the symmetric form \(u \) defined by the relation \(x \sigma u = -\lambda v \) where \(\sigma u \) is the even part of \(u \), is also regular and semi-classical form for every complex \(\lambda \) except for a discrete set of numbers depending on \(v \). We give explicitly the recurrence coefficients, integral representation and the structure relation coefficients of the orthogonal polynomials sequence associated with \(u \) and the class of the form \(u \) knowing that of \(v \). We conclude with some illustrative examples.

1 Introduction

In many recent papers, different construction processes of semi-classical orthogonal polynomials (O.P) can be done from well known ones, particularly the classical ones. For instance, we can mention the adjunction of a finite number of Dirac’s masses and their derivatives to semi-classical forms [2, 7-9], the product and the division of a form by a polynomial [1, 3, 6, 10, 13, 15].

The whole idea of the following work is to build a new construction process of semi-classical form, which has not yet been treated in the literature on semi-classical polynomials. The problem we tackle is as follows.

We study the form \(u \), fulfilling \(x \sigma u = -\lambda v \), \(\lambda \neq 0 \), \((u)_{2n+1} = 0 \), where \(\sigma u \) is the even part of \(u \) and \(v \) is a given semi-classical form.

This paper is organized in sections : The first one is focused on the preliminary results and notations used in the sequel. We will also give the regularity condition and the coefficients of the three-term recurrence relation satisfied by the new family of O.P. In the second, we compute the exact class of the semi-classical form obtained by the above modification and the structure relation of the O.P sequence relatively to the form \(u \) will follow. In the final section, we apply our results to some examples. The regular forms found in the examples are semi-classical of class 2010 Mathematics Subject Classifications. 33C45 ; 42C05

Key words and Phrases. Orthogonal polynomials; Semi-classical polynomials; Integral representations; Structure relation; Differential equation.

Received: April 14, 2010
Communicated by Dragan S. Djordjevic
Let \(\mathcal{P} \) be the vector space of polynomials with coefficients in \(\mathbb{C} \) and let \(\mathcal{P}' \) be its dual. We denote by \(\langle v, f \rangle \) the action of \(v \in \mathcal{P}' \) on \(f \in \mathcal{P} \). In particular, we denote by \((v)_n := \langle v, x^n \rangle, n \geq 0 \), the moments of \(v \). For any form \(v \) and any polynomial \(h \) let \(Dv = v', hv, \delta_0 \), and \((x-c)^{-1}v \) be the forms defined by: \(\langle v', f \rangle := -\langle v, f' \rangle, \langle hv, f \rangle := \langle v, hf \rangle, \langle \delta_c, f \rangle := f(c) \), and \(\langle (x-c)^{-1}v, f \rangle := \langle v, \theta_c f \rangle \) where \(\langle \theta_c f \rangle (x) = \frac{f(x) - f(c)}{x - c}, c \in \mathbb{C}, f \in \mathcal{P} \).

Then, it is straightforward to prove that for \(v \in \mathcal{P} \) and \(f \in \mathcal{P}' \), we have
\[
x^{-1}(xv) = v - (v)_0 \delta_0 ,
\]
\[
(fv)' = f'v + f v' .
\]

Let us define the operator \(\sigma : \mathcal{P} \rightarrow \mathcal{P} \) by \((\sigma f)(x) := f(x^2) \). Then, we define the even part \(\sigma v \) of \(v \) by \(\langle \sigma v, f \rangle := \langle v, \sigma f \rangle \). Therefore, we have [5, 11]
\[
f(x) (\sigma v) = \sigma (f(x^2)v) ,
\]
\[
(\sigma v)_n = (v)_{2n} , \quad n \geq 0 .
\]

The form \(v \) will be called regular if there exists a sequence of polynomials \(\{S_n\}_{n \geq 0} \) of degree \(\deg(S_n) \leq n \) such that \(\langle v, S_n S_m \rangle = r_n \delta_{n,m}, n, m \geq 0, n \neq m \), \(n \geq 0 \). Then \(\deg(S_n) = n, n \geq 0 \), and we can always suppose each \(S_n \) is monic (i.e. \(S_n(x) = x^n + \cdots \)). The sequence \(\{S_n\}_{n \geq 0} \) is said to be orthogonal with respect to \(v \). It is a very well known fact that the sequence \(\{S_n\}_{n \geq 0} \) satisfies the recurrence relation (see, for instance, the monograph by Chihara [5])
\[
S_{n+2}(x) = (x - \xi_{n+1})S_{n+1}(x) - \rho_{n+1}S_n(x) , \quad n \geq 0 ,
\]
\[
S_1(x) = x - \xi_0 , \quad S_0(x) = 1 ,
\]
with \(\{\xi_n, \rho_{n+1}\} \in \mathbb{C} \times \mathbb{C} - \{0\}, n \geq 0 \), by convention we set \(\rho_0 = (v)_0 = 1 \).

In this case, let \(\{S_n^{(1)}\}_{n \geq 0} \) be the associated sequence of first kind for the sequence \(\{S_n\}_{n \geq 0} \) satisfying the three-term recurrence relation
\[
S_{n+2}^{(1)}(x) = (x - \xi_{n+2})S_{n+1}^{(1)}(x) - \rho_{n+2}S_n^{(1)}(x) , \quad n \geq 0 ,
\]
\[
S_{1}^{(1)}(x) = x - \xi_1 , \quad S_0^{(1)}(x) = 1 , \quad \langle S_1^{(1)}(x) \rangle = 0 \).
\]

Also, let \(\{S_n(\mu)\}_{n \geq 0} \) be the co-recursive polynomials for the sequence \(\{S_n\}_{n \geq 0} \) satisfying [5]
\[
S_n(x, \mu) = S_n(x) - \mu S_{n-1}(x) , \quad n \geq 0 .
\]

A form \(v \) is called symmetric if \((v)_{2n+1} = 0, n \geq 0 \). The conditions \((v)_{2n+1} = 0, n \geq 0 \) are equivalent to the fact that the corresponding monic orthogonal polynomials sequence (MOPS) \(\{S_n\}_{n \geq 0} \) satisfies the recurrence relation (5) with \(\xi_n = 0, n \geq 0 \) [5].
Proposition 1. [5,11] If the form \(v \) is symmetric, then \(v \) is regular if and only if \(\sigma v \) and \(x \sigma v \) are both regular.

Let \(v \) be a regular, normalized form (i.e. \((v)_0 = 1 \)) and \(\{S_n\}_{n \geq 0} \) be its corresponding sequence of monic orthogonal polynomials. For a \(\lambda \in \mathbb{C} - \{0\} \), we can define a new symmetric form \(u \) as follows

\[
x \sigma u = -\lambda v \quad (u)_{2n+1} = 0 , \quad (u)_0 = 1 , \quad n \geq 0.
\]

From (1), we have

\[
\sigma u = -\lambda x^{-1} v + \delta_0.
\]

Proposition 2. The form \(u \) is regular if and only if \(\lambda \neq \lambda_n, n \geq 0 \) where \(\lambda_n = \frac{S_n(0)}{S_{n-1}(0)} \).

Proof. Since \(u \) is a symmetric form then, according to Proposition 1 \(u \) is regular if and only if \(x \sigma u \) and \(\sigma u \) are regular. But \(x \sigma u = -\lambda v \) is regular. So \(u \) is regular if and only if \(\sigma u = -\lambda x^{-1} \sigma v + \delta_0 \) is regular. Or, it was shown in [13] that the form \(-\lambda x^{-1} v + \delta_0 \) is regular if and only if \(\lambda \neq 0 \), and \(S_n(0, \lambda) \neq 0 \), \(n \geq 0 \). Then, we deduce the desired result.

Remark. If \(w \) is the symmetrized form associated with the form \(v \) (i.e. \((w)_n = (v)_n \) and \((w)_{2n+1} = 0, n \geq 0 \)), then (8) is equivalent to \(x^2 u = -\lambda v \). Notice that \(w \) is not necessarily a regular form in the problem under study. In [1, 3], the authors have solved it only when \(w \) is regular.

When \(u \) is regular let \(\{Z_n\}_{n \geq 0} \) be its MOPS satisfying the recurrence relation

\[
Z_{n+2}(x) = x Z_{n+1}(x) - \gamma_{n+1} Z_n(x) , \quad n \geq 0 , \\
Z_1(x) = x , \quad Z_0(x) = 1.
\]

Since \(\{Z_n\}_{n \geq 0} \) is symmetric, let us consider its quadratic decomposition [11]:

\[
Z_{2n}(x) = P_n(x^2) , \quad Z_{2n+1}(x) = x R_n(x^2) .
\]

\[
Z_{2n}^{(1)}(x) = R_n \left(x^2, -\gamma_1 \right) , \quad Z_{2n+1}^{(1)}(x) = x P_n^{(1)}(x^2) .
\]

The sequences \(\{P_n\}_{n \geq 0} \) and \(\{R_n\}_{n \geq 0} \) are respectively orthogonal with respect to \(\sigma u \) and \(x \sigma u \).

From (8), we have

\[
R_n(x) = S_n(x) , \quad n \geq 0 .
\]

Proposition 3. We may write

\[
\gamma_1 = -\lambda , \quad \gamma_{2n+2} = a_n , \quad \gamma_{2n+3} = \frac{\rho_{n+1}}{a_n} , \quad n \geq 0
\]

where

\[
a_n = -\frac{S_{n+1}(0, \lambda)}{S_n(0, \lambda)} , \quad n \geq 0 .
\]
Proof. Using (8) and the condition \(\langle u, Z_2 \rangle = 0 \), we obtain \(\gamma_1 = -\lambda \).
From (6) and (10) where \(n \rightarrow 2n \) and taking (12)-(13) into account, we get
\[
S_{n+1}(x^2, -\gamma_1) = xZ_{2n+1}^{(1)}(x) - \gamma_{2n+2}S_n(x^2, -\gamma_1)
\]
Substituting \(x \) by 0 in the above equation, we obtain \(\gamma_{2n+2} = a_n \).
From (10), we have
\[
\gamma_{2n+2} \gamma_{2n+3} = \frac{\langle u, Z_{2n+2}^2 \rangle}{\langle u, Z_{2n+1}^2 \rangle} \frac{\langle u, Z_{2n+3}^2 \rangle}{\langle u, Z_{2n+2}^2 \rangle} = \frac{\langle u, Z_{2n+1}^2 \rangle}{\langle u, Z_{2n+1}^2 \rangle} \frac{\langle u, Z_{2n+3}^2 \rangle}{\langle u, Z_{2n+2}^2 \rangle}.
\]
(16)
Using (11), (8) and (5), equation (16) becomes
\[
\gamma_{2n+2} \gamma_{2n+3} = \rho_{n+1},
\]
then, we deduce \(\gamma_{2n+3} = \frac{\rho_{n+1}}{a_n} \).

Corollary 1. When the form \(v \) is symmetric, then \(u \) is regular for every \(\lambda \neq 0 \).
Moreover,
\[
\begin{align*}
\gamma_1 &= -\gamma_2 = -\lambda \\
\gamma_{4n+3} &= -\gamma_{4n+4} = -\frac{1}{\lambda} \prod_{k=0}^{n} \frac{\rho_{2k+1}}{\rho_{2k}}, \\
\gamma_{4n+5} &= -\gamma_{4n+6} = \lambda \prod_{k=0}^{n} \frac{\rho_{2k}}{\rho_{2k+1}}, n \geq 0.
\end{align*}
\]
(18)
Proof. Taking into account (5) and (6), with \(\xi_n = 0 \), we get \(S_{n+2}(0) = -\rho_{n+1}S_n(0) \) and \(\langle v, f \rangle = \int_{-\infty}^{+\infty} V(x)f(x)dx \), \(f \in \mathcal{P} \), with \(\langle v \rangle_0 = \int_{-\infty}^{+\infty} V(x)dx = 1 \)
where \(V \) is a locally integrable function with rapid decay and continuous at the origin.
It is obvious that \(f(x) = f^{(2)}(x^2) + xf^{(4)}(x^2), f \in \mathcal{P} \).
Therefore, \(\langle u, f \rangle = \langle u, f^e(x^2) \rangle = \langle \sigma u, f^e(x) \rangle \) since \(u \) is symmetric. Using (8) and taking into account that \(f^e(0) = f(0) \), we obtain

\[
\langle u, f \rangle = f(0) \left\{ 1 + \lambda P \int_{-\infty}^{+\infty} \frac{V(x)}{x} dx \right\} - \lambda P \int_{-\infty}^{+\infty} \frac{V(x)}{x} f^e(x) dx ,
\]

(21)

where

\[
P \int_{-\infty}^{+\infty} \frac{V(x)}{x} f(x) dx = \lim_{\epsilon \to 0} \left\{ \int_{-\infty}^{-\epsilon} \frac{V(x)}{x} f(x) dx + \int_{\epsilon}^{+\infty} \frac{V(x)}{x} f(x) dx \right\} .
\]

It is easy to see that

\[
P \int_{-\infty}^{+\infty} \frac{V(x)}{x} f(x) dx = \lim_{\epsilon \to 0} \left\{ \int_{-\infty}^{+\infty} \frac{V(x)}{x} f^e(x) dx - \int_{\epsilon}^{+\infty} \frac{V(-x)}{x} f^e(-x) dx \right\} .
\]

Using the fact that \(f^e(x) = \frac{f(\sqrt{\epsilon}) + f(-\sqrt{\epsilon})}{2} \) and \(f^e(-x) = \frac{f(i\sqrt{\epsilon}) + f(-i\sqrt{\epsilon})}{2} \) for \(x \geq 0 \) and making the change of variables \(t = \sqrt{\epsilon} \), we get

\[
P \int_{-\infty}^{+\infty} \frac{V(x)}{x} f(x) dx = - \lim_{\epsilon \to 0} \int_{\sqrt{\epsilon}}^{+\infty} \frac{V(-t^2)}{t} (f(it) + f(-it)) dt + \lim_{\epsilon \to 0} \int_{\sqrt{\epsilon}}^{+\infty} \frac{V(t^2)}{t} (f(t) + f(-t)) dt .
\]

Inserting the last equation into (21), we get after a change variables in the obtained equation

\[
\langle u, f \rangle = f(0) \left\{ 1 + \lambda P \int_{-\infty}^{+\infty} \frac{V(x)}{x} dx \right\} + \lambda P \int_{-\infty}^{+\infty} \frac{V(-x^2)}{|x|} f(ix) dx - \lambda P \int_{-\infty}^{+\infty} \frac{V(x^2)}{|x|} f(x) dx .
\]

(22)

Remark. When \(v \) is symmetric, (22) becomes

\[
\langle u, f \rangle = f(0) - \lambda P \int_{-\infty}^{+\infty} \frac{V(x^2)}{|x|} (f(x) - f(ix)) dx .
\]

(23)

Our aim is to give examples of semi-classical forms (8) through data of semi-classical form \(v \).

2 The semi-classical case

Let us recall that a form \(v \) is called semi-classical when it is regular and there exist two polynomials \(\Phi \) and \(\Psi \) such that:

\[
(\Phi v)' + \Psi v = 0 , \quad \deg(\Psi) \geq 1 , \quad \Phi \text{ monic}.
\]

(24)
The class of the semi-classical form \(v \) is \(s = \max(\deg \Psi - 1, \deg \Phi - 2) \) if and only if the following condition is satisfied
\[
\prod_{c} \left(|\Phi'(c) + \Psi(c)| + |\langle u, \theta_{c}\Psi + \theta_{c}^{2}\Phi' \rangle| \right) > 0 ,
\] where \(c \) goes over the roots set of \(\Phi \) [12].

The corresponding orthogonal sequence \(\{S_n\}_{n \geq 0} \) is also called semi-classical of class \(s \).

We can state characterizations of semi-classical orthogonal sequences. \(\{S_n\}_{n \geq 0} \) is semi-classical of class \(s \) if and only if one of the following statements holds:

(a) The formal Stieltjes function of \(v \), namely
\[
S(v)(z) = -\sum_{n \geq 0} \frac{(v)_{n}}{z^{n+1}}
\] satisfies a linear non-homogeneous first order differential equation [4,12]
\[
\Phi(z)S'(v)(z) = C_{0}(z)S(v)(z) + D_{0}(z),
\] where
\[
C_{0}(x) = -\Phi'(x) - \Psi(x).
\] and
\[
D_{0}(z) = -(v\theta_{0}\Phi)'(x) - (v\theta_{0}\Psi)(x).
\] with \((v\theta_{0}f)(x) = \left\langle v, \frac{f(x) - f(\zeta)}{x - \zeta} \right\rangle \), \(f \in \mathcal{P} \). \(\Phi \) and \(\Psi \) are the same polynomials as in (24).

(b) \(\{S_n\}_{n \geq 0} \) fulfills the following structure recurrence relation (written in a compact form):
\[
\Phi(x)S_{n+1}'(x) = \frac{C_{n+1}(x) - C_{0}(x)}{2} S_{n+1}(x) - \rho_{n+1}D_{n+1}(x)S_{n}(x) , n \geq 0
\] where
\[
\begin{cases}
C_{n+1}(x) = -C_{n}(x) + 2(x - \beta_{n})D_{n}(x) , & n \geq 0 , \\
\rho_{n+1}D_{n+1}(x) = -\Phi(x) + \rho_{n}D_{n-1}(x) - (x - \xi_{n})C_{n}(x) + (x - \xi_{n})^{2}D_{n}(x) , & n \geq 0 ,
\end{cases}
\] \(\Phi, \Psi, C_{0} \) and \(D_{0} \) are the same polynomials introduced in (a); \(\xi_{n}, \rho_{n} \) are the coefficients of the three term recurrence relation (5). Notice that \(D_{-1}(x) = 0, \deg C_{n} \leq s + 1 \) and \(\deg D_{n} \leq s, n \geq 0 \) [12].

(c) Each polynomial of \(\{S_n\}_{n \geq 0} \) satisfies a second order differential equation of Laguerre-Perron type, i.e.
\[
\Phi D_{n+1}S_{n+1}' + \{C_{0}D_{n+1} - W(\Phi, D_{n+1})\} S_{n+1}' + \left\{W \left(\frac{C_{n+1} - C_{0}}{2}, D_{n+1} \right) - D_{n+1} \sum_{k=0}^{n} D_{k} \right\} S_{n+1} = 0 , n \geq 0,
\]
where $W(f, g) = fg' - f'g$. Φ, D_n, C_n, $n \geq 0$ are the same parameters introduced in the previous characterizations [4,14].

Remark. The structure relation gives information about the multiplicity of the zeros of orthogonal polynomials.

In the sequel the form v will be supposed semi-classical of class s satisfying (24) – (25).

Proposition 4. If v is a semi-classical form and satisfies (24), then for every $\lambda \in \mathbb{C} - \{0\}$ such that $S_n(0, \lambda) \neq 0, n \geq 0$, the form u defined by (8) is regular and semi-classical. It satisfies

$$
\left(\tilde{\Phi}u\right)' + \tilde{\Psi}u = 0 \quad (33)
$$

with

$$
\tilde{\Phi}(x) = x\Phi(x^2), \quad \tilde{\Psi}(x) = 2x^2\Psi(x^2). \quad (34)
$$

and u is of class \tilde{s} with $\tilde{s} \leq 2s + 3$.

Proof. Assume that v fulfills (24). To prove that u satisfies (33)-(34), we will show that the forms $(\tilde{\Phi}u)'$ and $-\tilde{\Psi}u$ coincide on the basis $\{x^n\}_{n \geq 0}$ of P.

Taking into account (34) and using the operator σ, we obtain

$$
\left<(\tilde{\Phi}u)', x^{2n}\right> = -2n\left<\Phi(x^2)u, x^{2n}\right> = -2n\left<\Phi(x)\sigma u, x^n\right>, n \geq 1.
$$

By virtue of (8) and (24), we deduce

$$
\left<(\tilde{\Phi}u)', x^{2n}\right> = -2\lambda \left<\Phi(x)v', x^n\right> = 2\lambda \left<\Psi(x)v, x^n\right>.
$$

Now, using (8) again and the definition of the operator σ, we get

$$
\left<(\tilde{\Phi}u)', x^{2n}\right> = -\left<\tilde{\Psi}u, x^{2n}\right>.
$$

Since u is symmetric, it is clear that $\left<(\tilde{\Phi}u)', x^{2n+1}\right> = -\left<\tilde{\Psi}u, x^{2n+1}\right> = 0$.

Thus, (33)-(34) is proved.

Finally, we have $s = \max\{\deg \Psi - 1, \deg \Phi - 2\}$, then $\deg(\tilde{\Phi}) \leq 2s + 5$ and $\deg(\tilde{\Psi}) = \tilde{p} \leq 2s + 4$. Thus $\tilde{s} \leq 2s + 3$.

Proposition 5. The class of u depends only on the zero $x = 0$.

For the proof, we use the following lemma:

Lemma 1. For $c \in \mathbb{C}$ such that c^2 be a root of Φ, we have

$$
\left<u, \theta_c^2 \tilde{\Psi} + \theta_c^2 \tilde{\Phi}\right> = -2c\lambda \left<v, \theta_c \Psi + \theta_c^2 \Phi\right> + 2c\left(\Phi'(c^2) + \Psi(c^2)\right) \quad (35)
$$

and

$$
\tilde{\Psi}(c) + \tilde{\Phi}'(c) = 2c^2\left(\Phi'(c^2) + \Psi(c^2)\right). \quad (36)
$$
Proof. Using the definition of the operator θ_c, it is easy to prove that, for two polynomials f and g, we have

$$\theta_c(fg)(x) = g(x)(\theta_c f)(x) + f(c)(\theta_c g)(x), \quad (37)$$

$$\theta_c(f(\xi^2))(x) = (x + c)(\theta_c f)(x^2). \quad (38)$$

Let $c \in \mathbb{C}$ such that c^2 be a root of Φ.

Using successively (37) and (38), we obtain

$$\left(\theta_c \tilde{\Phi}\right)(x) = x(\theta_c \Phi(\xi^2))(x) = x(x + c)(\theta_{c^2} \Phi)(x^2), \quad \text{since } \Phi(c^2) = 0. \quad \text{Then,}$$

$$\left(\theta_c^2 \tilde{\Phi}\right)(x) = x(x + c)^2 (\theta_{x^2} \Phi)(x^2) + (x + 2c)\Phi'(c^2), \quad (39)$$

because $\theta_c(\xi(\xi + c))(x) = x + 2c$, $\theta_c((\theta_{x^2} \Phi)(\xi^2))(x) = (x + c)\left(\theta_{x^2} \Phi\right)(x^2)$

and $(\theta_{x^2} \Phi)(c^2) = \Phi'(c^2)$.

Using the same procedure, we prove that

$$\theta_c \tilde{\Psi}(x) = x^2(x + c)(\theta_{x^2} \Psi)(x^2) + (x + c)\Psi(c^2). \quad (40)$$

Therefore, with (39)-(40) and the fact u is symmetric, we obtain

$$\left<u, \theta_c \tilde{\Psi} + \theta_c^2 \tilde{\Phi}\right> = \left<x^2 u, 2\theta_{x^2} \Psi + \theta_{x^2}^2 \Phi\right> + 2c\left(\Phi'(c^2) + \Psi(c^2)\right). \quad (41)$$

Now applying the operator σ for (41) and using (8), we get (35). Finally, from (34), we easily get (36).

Proof of Proposition 5. Let c be a root of $\tilde{\Phi}$ such that $c \neq 0$.

If $\Phi'(c^2) + \Psi(c^2) \neq 0$ then $\tilde{\Phi}'(c) + \tilde{\Psi}(c) \neq 0$, from (36).

If $\Phi'(c^2) + \Psi(c^2) = 0$, using (35), we have $\left<u, \theta_c \Psi + \theta_c^2 \Phi\right> \neq 0$, since ν is semiconvex and so satisfies (25).

In any case, we cannot simplify by $x - c$. \hfill \Box

Proposition 6. Under the conditions of proposition 4, for the class of u, we have the four different cases

1) $\tilde{s} = 2s + 3$ if $\Phi(0) \neq 0$.

2) $\tilde{s} = 2s + 2$ if $\Phi(0) = 0$ and $X_1 = -2\lambda \left<v, \theta_0 \Psi + \theta_0^2 \Phi\right> + 2\left(\Phi'(0) + \Psi(0)\right) \neq 0$.

3) $\tilde{s} = 2s + 1$ if $\Phi(0) = 0$, $X_1 = 0$ and $X_2 = 3\Phi'(0) + 2\Psi(0) \neq 0$.

4) $\tilde{s} = 2s$ if $\Phi(0) = 0$, $X_1 = 0$ and $X_2 = 0$.

Proof. 1) From (34), we have $\tilde{\Phi}'(0) + \tilde{\Psi}(0) = \Phi(0)$

and $\left<u, \theta_0 \tilde{\Psi} + \theta_0^2 \tilde{\Phi}\right> = \left<u, 2x \Psi(x^2) + x(\theta_0 \Phi)(x^2)\right> = 0$, since u is symmetric. Therefore, if $\Phi(0) \neq 0$ it is not possible to simplify (33)-(34), which means that the class of u is $\tilde{s} = 2s + 3$. \

2) If $\Phi(0) = 0$, then it is possible to simplify by x. Then, u fulfills (33) with
\[\tilde{\Phi}(x) = \Phi(x^2), \quad \tilde{\Psi}(x) = x((\theta_0\Phi)(x^2) + 2\Psi(x^2)). \] (42)

Here, we have $\tilde{\Phi}'(0) + \tilde{\Psi}(0) = 0$ and $\langle u, \theta_0\Psi + \theta_0^2\tilde{\Phi} \rangle = \langle u, 2\Psi(x^2) + 2(\theta_0\Phi)(x^2) \rangle$.

Applying the operator σ for the second equation and using (9), we obtain
\[\langle u, \theta_0\Psi + \theta_0^2\tilde{\Phi} \rangle = -2\lambda\langle \nu, \theta_0\Psi + \theta_0^2\Phi \rangle + 2(\Phi'(0) + \Psi(0)) = X_1. \]

Therefore, if $X_1 \neq 0$ it is not possible to simplify, which means that the class of u is $\tilde{s} = 2s + 2$.

3) If $\Phi(0) = 0$ and $X_1 = 0$, then it is possible to simplify (33)-(34) by x^2. Then, u fulfills (33) with
\[\tilde{\Phi}(x) = x(\theta_0\Phi)(x^2), \quad \tilde{\Psi}(x) = 2((\theta_0\Phi)(x^2) + \Psi(x^2)). \] (43)

Here, we have $\tilde{\Phi}'(0) + \tilde{\Psi}(0) = 3\Phi'(0) + 2\Psi(0) = X_2$ and
\[\langle u, \theta_0\Psi + \theta_0^2\tilde{\Phi} \rangle = \langle u, x(2(\theta_0\Psi)(x^2) + (\theta_0^2\Phi)(x^2)) \rangle = 0, \] since u is symmetric.

Therefore, if $X_2 \neq 0$ it is not possible to simplify, which means that the class of u is $\tilde{s} = 2s + 1$.

4) If $\Phi(0) = 0$, $X_1 = 0$ and $X_2 = 0$, then it is possible to simplify (33)-(34) by x^3. Then, u fulfills (33) with
\[\tilde{\Phi}(x) = (\theta_0\Phi)(x^2), \quad \tilde{\Psi}(x) = x(3(\theta_0^2\Phi)(x^2) + 2(\theta_0\Psi)(x^2)). \] (44)

Under these conditions $x = 0$ can’t be a root of $(\theta_0\Phi)(x^2)$. Assuming the contrary, that $(\theta_0\Phi)(0) = \Phi'(0) = 0$, then from the conditions $\Phi(0) = 0$, $X_1 = 0$ and $X_2 = 0$ we obtain $\langle \nu, \theta_0\Psi + \theta_0^2\Phi \rangle = 0$ and $\Phi'(0) + \Psi(0) = 0$ which is a contradiction with (25). Then it is not possible to simplify, which means that the class of u is $\tilde{s} = 2s$.

\[\Box \]

Proposition 7. If ν is a semi-classical form and satisfies (27), then for every $\lambda \in \mathbb{C} - \{0\}$ such that $S_n(0, \lambda) \neq 0, n \geq 0$, the form u defined by (8) is regular and semi-classical. It satisfies
\[\tilde{\Phi}(z)S'(u)(z) = \tilde{C}_0(z)S(u)(z) + \tilde{D}_0(z), \] (45)

where
\[\begin{cases} \tilde{\Phi}(z) = z\Phi(z^2), \\ \tilde{C}_0(z) = -\Phi(z^2) + 2z^2C_0(z^2), \\ \tilde{D}_0(z) = -2z\lambda D_0(z^2) + 2zC_0(z^2). \end{cases} \] (46)

Proof. From (26), we have
\[S'(\nu)(z^2) = -\sum_{n \geq 0} \frac{(\nu)_n}{z^{2n+2}}. \]

Using (8), we get
\[-\lambda S'(\nu)(z^2) = zS(u)(z) + 1, \] (47)
Deriving (47), we obtain
\[-2z\lambda S'(v)(z^2) = zS'(u)(z) + S(u)(z). \tag{48} \]

Make a change of variable \(z \rightarrow z^2 \) in (27) and multiply by \(-2\lambda z\), we obtain (45)-(46) by taking into account (47)-(48).

We are going to establish the expression of structure relation coefficients \(\tilde{C}_n \) and \(\tilde{D}_n \), \(n \geq 0 \) of \(\{Z_n\}_{n \geq 0} \) in terms of those of the sequence \(\{S_n\}_{n \geq 0} \).

Proposition 8. The sequence \(\{Z_n\}_{n \geq 0} \) fulfills
\[\tilde{\Phi}(x)Z_{n+1}'(x) = \frac{\tilde{C}_{n+1}(x) - \tilde{C}_0(x)}{2} Z_{n+1}(x) - \gamma_{n+1} \tilde{D}_{n+1}(x) Z_n(x), \quad n \geq 0 \tag{49} \]

with
\[
\begin{align*}
\tilde{C}_{2n+1}(x) &= 2x^2C_n(x^2) + \Phi(x^2) + 4\gamma_{2n+1}x^2D_n(x^2), \quad n \geq 0, \\
\tilde{D}_{2n+1}(x) &= 2x^3D_n(x^2), \quad n \geq 0, \\
\tilde{C}_{2n+2}(x) &= 2x^2C_n(x^2) - \Phi(x^2) + 4\gamma_{2n+2}x^2D_n(x^2), \quad n \geq 0, \\
\tilde{D}_{2n+2}(x) &= x(C_{n+1}(x^2) - C_n(x^2)) + 2x(\gamma_{2n+3}D_n(x^2) - 2\gamma_{2n+1}D_n(x^2)) + 2x^3D_n(x^2), \quad n \geq 0.
\end{align*}
\tag{50} \tag{51} \tag{52} \tag{53} \tag{54} \tag{55}
\]

\(\tilde{C}_0(x) \) and \(\tilde{D}_0(x) \) are given by (46) and \(\gamma_{n+1} \) by (14)-(15).

Proof. Change \(x \rightarrow x^2 \) in (29) and multiply by \(2x^3 \) we obtain by taking (11) and (13) into account,
\[x\Phi(x^2)Z_{2n+3}'(x) = (x^2\left(C_{n+1}(x^2) - C_0(x^2)\right) + \Phi(x^2)) Z_{2n+3}(x) - 2x^2D_{n+1}(x^2)Z_{2n+1}(x). \]

Using (16) and (10) where \(n \rightarrow 2n \), the last equation becomes
\[\tilde{\Phi}(x)Z_{2n+3}'(x) = (x^2\left(C_{n+1}(x^2) - C_0(x^2)\right) + \Phi(x^2)) Z_{2n+3}(x) - 2\gamma_{2n+3}x^2D_{n+1}(x^2)Z_{2n+2}(x). \]

From (49) and the above equation, we have
\[
\begin{align*}
\left\{\frac{\tilde{C}_{2n+3}(x) - \tilde{C}_0(x)}{2} - (x^2\left(C_{n+1}(x^2) - C_0(x^2)\right) + \Phi(x^2) + 2x^2\gamma_{2n+3}D_{n+1}(x^2))\right\} 	imes Z_{2n+3}(x) = \gamma_{2n+3} \left\{ \tilde{D}_{2n+3}(x) - 2x^2D_{n+1}(x^2) \right\} Z_{2n+2}(x).
\end{align*}
\]

\(Z_{2n+3} \) and \(Z_{2n+2} \) have no common roots, then \(Z_{2n+3} \) divides \(\tilde{D}_{2n+3}(x) - 2x^2D_{n+1}(x^2) \), which is a polynomial of degree at most equal to \(2s + 3 \). Then we have necessarily
\[\tilde{D}_{2n+3}(x) = 2x^2D_{n+1}(x^2) \text{ for } n > s, \text{ and also } \frac{\tilde{C}_{2n+3}(x) - \tilde{C}_0(x)}{2} = x^2\left(C_{n+1}(x^2) - C_0(x^2)\right) + \Phi(x^2) + 2x^2\gamma_{2n+3}D_{n+1}(x^2), \text{ for } n > s. \]

Then, by (45), we get (49) for \(n > s \).

By virtue of the recurrence relation (30) and (46), we can easily prove by induction.
that the system (50) is valid for $0 \leq n \leq s$. Hence (50) is valid for $n \geq 0$.

After a derivation of (10) where $n \rightarrow 2n + 1$ multiplying by $x\Phi(x^2)$ and using (49),
we obtain

$$\begin{align*}
x^2\Phi(x^2)Z_{2n+2}'(x) &= \frac{C_{2n+3}(x) - C_0(x)}{2}Z_{2n+3}(x) - \gamma_{2n+3}D_{2n+3}(x)Z_{2n+2}(x) - x\Phi(x^2)Z_{2n+2}(x) + \\
&\gamma_{2n+2} \left\{ \frac{\tilde{C}_{2n+1}(x) - \tilde{C}_0(x)}{2}Z_{2n+1}(x) - \gamma_{2n+1}\tilde{D}_{2n+1}(x)Z_{2n}(x) \right\}.
\end{align*}$$

Applying the recurrence relation (10), we get

$$\begin{align*}
x^2\Phi(x^2)Z_{2n+2}'(x) &= \left\{ x\tilde{C}_{2n+3}(x) - \tilde{C}_0(x) - \gamma_{2n+3}\tilde{D}_{2n+3}(x) - x\Phi(x^2) + \gamma_{2n+2}\tilde{D}_{2n+1}(x) \right\} \times \\
&\times Z_{2n+2}(x) - \gamma_{2n+2} \left\{ \frac{\tilde{C}_{2n+3}(x) - \tilde{C}_{2n+1}(x)}{2} + x\tilde{D}_{2n+1}(x) \right\} Z_{2n+1}.
\end{align*}$$

Now, using (49) and taking into account the fact that $Z_{2n+2}(x)$ and $Z_{2n+1}(x)$ are coprime, we get from the last equation after simplification by x (51) for $n > s$.

Finally, by virtue of the recurrence relation (30) and (50) with $n = 0$, we can easily prove by induction that the system (51) is valid for $0 \leq n \leq s$. Hence (51) is also proved for $n \geq 0$.

Using (32), Proposition 8. and simplifying, we get the following result:

Corollary 2. Each polynomial of $\{Z_n\}_{n\geq0}$ satisfies a second order differential equation of Laguerre-type, (or holonomic second order differential equation)

$$J(x,n)Z_{2n+1}''(x) + K(x,n)Z_{2n+1}'(x) + L(x,n)Z_{2n+1}(x) = 0, \quad n \geq 1,$$

with

$$\begin{align*}
J(x,2n+1) &= \Phi(x^2) \{ x(C_{n+1}(x^2) - C_n(x^2)) + 2x(\gamma_{2n+3}D_{2n+1}(x^2) - \gamma_{2n+1}D_n(x^2)) + 2x^3D_n(x^2) \} \\
K(x,2n+1) &= 2x^2(\Phi(x^2) + C_0(x^2)) \left\{ C_{n+1}(x^2) - C_n(x^2) + 2(\gamma_{2n+3}D_{2n+1}(x^2) - \gamma_{2n+1}D_n(x^2)) + \\
&+ 2x^2D_n(x^2) + \Phi(x^2) \right\} \{ C'_{n+1}(x^2) - C'_n(x^2) + 2x^2(C_{n+1}(x^2) - C_n(x^2)) + 2x^2(\gamma_{2n+3}D'_{2n+1}(x^2) - \\
&- \gamma_{2n+1}D'_n(x^2)) + 2x^2D'_n(x^2) + 2x^2(C'_{n+1}(x^2) - C'_n(x^2)) + 4x^2(\gamma_{2n+3}D''_{2n+1}(x^2) - \\
&- \gamma_{2n+1}D''_n(x^2)) + 4x^2D''_n(x^2) \} - x \{ C'_{n+1}(x^2) - C'_n(x^2) + 2\gamma_{2n+3}D'_{2n+1}(x^2) - \\
&- 2\gamma_{2n+1}D'_n(x^2) + 2x^2D'_n(x^2) \} \{ 2x^2C'_{n+1}(x^2) + 4\gamma_{2n+3}D'_{2n+1}(x^2) - 2x^2C'_n(x^2) + \\
&+ C'_{n+1}(x^2) + C_{n+1}(x^2) + 2\gamma_{2n+3}D_n(x^2) - 2\lambda D_0(x^2) + 4x^2\sum_{k=0}^n D_k(x^2) + 2x^2D_n(x^2) \}.
\end{align*}$$

and

$$\begin{align*}
J(x,2n) &= 2x^3\Phi(x^2)D_n(x^2), \\
K(x,2n) &= 2x^2D_n(x^2)(2x^2\Phi'(x^2) + 2x^2C_n(x^2) - 3\Phi(x^2)) - 4x^4\Phi(x^2)D'_n(x^2), \\
L(x,2n) &= 2x^2D_n(x^2) \left\{ 3\Phi(x^2) - 2x^2C_0(x^2) - 4x^4\Phi(x^2) + 2x^4C'_n(x^2) + \\
&+ 2\lambda x^2D_0(x^2) - 4x^4\sum_{k=0}^n D_k(x^2) \right\} + 4x^3D'_n(x^2)(2x^2C_n(x^2) - x^2C_0(x^2) + \Phi(x^2)).
\end{align*}$$

3. Illustrative examples

(1) We study the problem (8), with $v = \mathcal{L}(\alpha)$ where $\mathcal{L}(\alpha)$ is the Laguerre form. In this case, the form v is not symmetric. This form is classical (semi-classical of class
\(s = 0 \). We have [12]

\[
\xi_n = 2n + \alpha + 1, \quad \rho_{n+1} = (n+1)(n+\alpha+1), \quad n \geq 0, \tag{52}
\]

the regularity condition is \(\alpha \neq -n, \ n \geq 1 \)

\[
\Phi(x) = x, \quad \Psi(x) = x - \alpha - 1, \tag{53}
\]

\[
C_n(x) = -x + (2n + \alpha), \quad D_n(x) = -1, \quad n \geq 0. \tag{54}
\]

Using (5) and (52), we get

\[
S_n(0) = (-1)^n \frac{\Gamma(n + \alpha + 1)}{\Gamma(\alpha + 1)}, \quad n \geq 0. \tag{55}
\]

From (6) and (52), we obtain by induction for \(n \geq 0 \)

\[
S_n(\lambda) = \left\{
\begin{array}{ll}
(-1)^{n+1} \frac{\Gamma(n + \alpha + 1)}{\Gamma(\alpha + 1)}, & \alpha \neq 0, \\
(-1)^n \frac{\Gamma(n + 1)}{\Gamma(n + \alpha + 1)}, & \alpha = 0.
\end{array}
\right. \tag{56}
\]

By virtue of (7) and (55)-(56), we deduce

\[
S_n(0, \lambda) = (-1)^n \frac{\Gamma(n + \alpha + 1) d_{\alpha,n}}{\alpha \Gamma(\alpha + 1)}, \quad n \geq 0 \tag{57}
\]

where

\[
d_{\alpha,n} = \left\{
\begin{array}{ll}
\frac{(\alpha + \lambda) - \frac{\lambda \Gamma(n + 1)}{\Gamma(n + \alpha + 1)} + \Gamma(n + \alpha + 1)}{\Gamma(n + \alpha + 1)}, & \alpha \neq 0, \ n \geq 0, \\
1 + \lambda \sum_{k=0}^{n-1} \frac{1}{k + 1}, & \alpha = 0, \ n \geq 0.
\end{array}
\right. \tag{58}
\]

Then, \(u \) is regular for every \(\lambda \neq 0 \) such that

\[
\lambda \neq \left\{
\begin{array}{ll}
-\alpha + \frac{\lambda \Gamma(n + 1)}{\Gamma(n + \alpha + 1)}, & \alpha \neq 0, \ n \geq 0, \\
- \sum_{k=0}^{n-1} \frac{1}{k + 1} \right)^{-1}, & \alpha = 0, \ n \geq 1.
\right. \tag{59}
\]

(15) and (57) give

\[
a_n = \frac{(n + \alpha + 1) d_{\alpha,n+1}}{d_{\alpha,n}}, \quad n \geq 0. \tag{60}
\]

Then, with (14), we get

\[
\left\{
\begin{array}{ll}
\gamma_1 = -\lambda, \\
\gamma_{2n+3} = \frac{d_{\alpha,n}}{d_{\alpha,n+1}}, & n \geq 0, \\
\gamma_{2n+2} = \frac{(n + \alpha + 1) d_{\alpha,n+1}}{d_{\alpha,n}}, & n \geq 0.
\end{array}
\right. \tag{61}
\]
Taking into account that the form \(v \) is semi-classical and by virtue of Proposition 4., the form \(u \) is also semi-classical. It satisfies (33) and (45) with
\[
\Phi(x) = x^2, \quad \Psi(x) = 2x^3 - (2\alpha + 1)x,
\]
\[
\tilde{C}_0(x) = -2x^3 + (2\alpha - 1)x, \quad \tilde{D}_0(x) = -2x^2 + 2(\alpha + \lambda).
\] (62)
From (53), we have
\[
\Phi(0) = 0, X_1 = -2(\alpha + \lambda) \text{ and } X_2 = 1 - 2\alpha \text{ (we take } \lambda = -\alpha \text{ in calculation of } X_2).
\]
Now, it is enough to use Proposition 6. in order to obtain the following results:
1. If \(\lambda \neq -\alpha \) and verifies (59), then the class of \(u \) is \(\tilde{s} = 2 \).
2. If \(\lambda = -\alpha \) and \(2\alpha \neq 1 \), then the class of \(u \) is \(\tilde{s} = 1 \).
3. If \(\lambda = -\alpha \) and \(2\alpha = 1 \), then the class of \(u \) is \(\tilde{s} = 0 \).

Now, we are going to give the elements of the structure relation of the sequence \(\{Z_n\}_{n \geq 0} \).
Using (53), (54) and Proposition 8., we obtain after simplifying by \(x \)
\[
\begin{align*}
\tilde{C}_0(x) &= -2x^3 + (2\alpha - 1)x, \quad C_1(x) = -2x^3 + (2\alpha + 4\lambda + 1)x, \\
\tilde{C}_{2n+2}(x) &= -2x^3 - X_n, \quad \tilde{C}_{2n+3}(x) = -2x^3 + X_{n+1}, \\
\tilde{D}_0(x) &= -2x^2 + 2(\alpha + \lambda), \quad \tilde{D}_{2n+1}(x) = -2x^2, \\
\tilde{D}_{2n+2}(x) &= -2x^2 - \frac{2(\alpha^2 + \delta_{0,\alpha})(\alpha + \lambda)\Gamma(\alpha + 1)\Gamma(n + 1)}{\Gamma(n + \alpha + 2)\alpha_n\alpha_{n+1}}, n \geq 0.
\end{align*}
\] (63)
The form \(v \) has the following integral representation[5]
\[
\langle v, f \rangle = \frac{1}{\Gamma(\alpha + 1)} \int_{0}^{+\infty} x^\alpha e^{-x} f(x) dx, \quad \Re(\alpha) > -1, \quad f \in \mathcal{P}.
\] (64)
Then, using (22), we obtain the following integral representation of \(u \)
\[
\langle u, f \rangle = \left(1 + \frac{\lambda}{\alpha}\right)f(0) - \frac{\lambda}{\Gamma(\alpha + 1)} \int_{-\infty}^{+\infty} |x|^{2\alpha - 1} e^{-x^2} f(x) dx, \quad \Re(\alpha) > 0.
\] (65)

(2) Let us describe the case \(v := \mathcal{H} \) where \(\mathcal{H} \) denotes the Hermite form. In this case, the form \(v \) is symmetric. This form is classical (semi-classical of class \(s = 0 \)). Here [12]
\[
\xi_n = 0, \quad \rho_{n+1} = \frac{1}{2}(n + 1), \quad n \geq 0, \\
\Phi(x) = 1, \quad \Psi(x) = 2x,
\] (66)
\[
C_n(x) = -2x, \quad D_n(x) = -2, \quad n \geq 0.
\] (68)
In accordance with Corollary 1. and (66), u is regular for every $\lambda \neq 0$ and we have

$$
\begin{align*}
\gamma_1 &= -\gamma_2 = \lambda \\
\gamma_{4n+3} &= -\gamma_{4n+4} = -\frac{1}{2^{2n+1} \Gamma(n+1) \Gamma(n+2)} \Gamma(2n+2), n \geq 0 \\
\gamma_{4n+5} &= -\gamma_{4n+6} = \lambda \frac{1}{2^{2n+1} \Gamma(n+1) \Gamma(n+2)} \Gamma(2n+2), n \geq 0
\end{align*}
$$

(69)

By virtue of Proposition 6. and Proposition 7., the form u is semi-classical of class $\tilde{s} = 3$ for any $\lambda \neq 0$ and fulfils (33) and (45) with

$$
\tilde{\Phi}(x) = x, \quad \tilde{\Psi}(x) = 4x^3, \quad \tilde{C}_0(x) = -4x^4 - 1, \quad \tilde{D}_0(x) = -4x^3 + 4\lambda x.
$$

(70)

According to Proposition 8., (67) and (68), we have, for $n \geq 0$

$$
\begin{align*}
\tilde{C}_0(x) &= -4x^4 - 1 \\
\tilde{C}_{2n+1}(x) &= -4x^4 - 8\gamma_{2n+1}x^2 + 1 \\
\tilde{C}_{2n+2}(x) &= -4x^4 - 8\gamma_{2n+2}x^2 - 1 \\
\tilde{D}_0(x) &= -4x^3 + 4\lambda x \\
\tilde{D}_{2n+1}(x) &= -4x^3 \\
\tilde{D}_{2n+2}(x) &= -4x^3 + 4(\gamma_{2n+1} - \gamma_{2n+3})x.
\end{align*}
$$

(71)

The form v has the following integral representation[5]

$$
\langle v, f \rangle = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-x^2} f(x) dx, \quad f \in \mathcal{P}.
$$

(72)

Therefore, for $\lambda \neq 0$ and $f \in \mathcal{P}$, (23) becomes

$$
\langle u, f \rangle = f(0) - \frac{\lambda}{\sqrt{\pi}} P \int_{-\infty}^{+\infty} \frac{e^{-x^4}}{|x|} (f(x) - f(ix)) dx.
$$

(73)

References

Symmetric semi-classical polynomials

Institut Supérieur d’Informatique de Medenine, Route El Jourf - km 22.5-4119 Medenine, Tunisia.
E-mail: mabrouk.sghaier@isim.rnu.tn