A common fixed point theorem for cyclic operators on partial metric spaces

Erdal Karapınara, Nabi Shobkolaeib, Shaban Sedghic, S. Mansour Vaezpourd

aDepartment of Mathematics, Atılım University, 06836, İncek, Ankara, Turkey
bDepartment of Mathematics, Islamic Azad University, Science and Research Branch 14778 93855 Tehran, Iran
cDepartment of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
dDepartment of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15914, Iran

Abstract. In this paper, we prove a common fixed point theorem for two self-mappings satisfying certain conditions over the class of partial metric spaces. In particular, the main theorem of this manuscript extends some well-known fixed point theorems in the literature on this topic.

1. Introduction

Recently, studies on the existence and uniqueness of fixed points of self-mappings on partial metric spaces have gained momentum (see e.g., [1] - [4],[7], [14]-[?],[26, 33]). The idea of partial metric space, a generalization of metric space, was introduced by Mathews [25] in 1992. When compared to metric spaces, the innovation of partial metric spaces is that the self distance of a point is not necessarily zero [24]. This feature of partial metrics makes them suitable for many purposes of semantics and domain theory in computer sciences. In particular, partial metric spaces have applications on the Scott-Strachey order-theoretic topological models [32] used in the logics of computer programs.

Mathews [25] proved the analog of Banach contraction mapping principle in the class of partial metric spaces. This remarkable paper of Mathews [25] constructed another important bridge between the domain theory in computer science and fixed point theory in mathematics. Thus, it becomes feasible to transform the tools from Mathematics to Computer Science.

A self-mapping T on a metric space X is called contraction if there exists a constant $k \in [0, 1)$ such that $d(Tx, Ty) \leq kd(x, y)$ for each $x, y \in X$. Banach contraction mapping principle, which states that a contraction has a fixed point, is one of the most important result in nonlinear analysis. This crucial result has been studied continuously since it was first published (See e.g. [1]-[23],[26]-[30]). As a generalization of this fundamental principle, Kirk-Srinivasan-Veeramani [23] developed the cyclic contraction. A contraction $T : A \cup B \to A \cup B$ on non-empty set A, B is called cyclic if $T(A) \subset B$ and $T(B) \subset A$ hold for closed subsets A, B of a complete metric space X. In the last decade, many authors (see e.g.[21, 22, 27–29, 34]) reported some fixed point theorems for cyclic operators.

Rus [29] introduced the following definition which is a further generalization of a cyclic mapping.

\textbf{Received:} 15 June 2011; \textbf{Accepted:} 12 December 2011

\textbf{Communicated by} Dejan Ilić

\textbf{Email addresses:} erdalkarapinar@yahoo.com (Erdal Karapınar), nabi_shobe@yahoo.com (Nabi Shobkolaei), sedghi_gb@yahoo.com (Shaban Sedghi), vaez@aut.ac.ir (S. Mansour Vaezpour)
Definition 1.1. Let \(X \) be a nonempty set, \(m \) be a positive integer and \(T : X \to X \) be a mapping. \(X = \cup _{i=1}^{m} A_i \) is said to be a cyclic representation of \(X \) with respect to \(T \) if

(i) \(A_i, i = 1, 2, \ldots, m \) are nonempty sets.

(ii) \(T(A_1) \subset A_2, \ldots, T(A_{m-1}) \subset A_m, T(A_m) \subset A_1. \)

Remark 1.2. For convenience, we denote by \(\mathcal{F} \) the class of functions \(\phi : [0, \infty) \to [0, \infty) \) nondecreasing and continuous satisfying \(\phi(t) > 0 \) for \(t \in (0, \infty) \) and \(\phi(0) = 0. \)

We recall the following definition.

Definition 1.3. (See e.g. [1, 3, 20, 24]) Let \(X \) be a metric space, \(m \) be a positive integer, \(A_1, A_2, \ldots, A_m \) be nonempty subsets of \(X \) and \(X = \cup _{i=1}^{m} A_i. \) An operator \(T : X \to X \) is a cyclic \((\phi - \psi) \)-contraction if

(i) \(X = \cup _{i=1}^{m} A_i \) is a cyclic representation of \(X \) with respect to \(T, \)

(ii) \(\phi(d(Tx, Ty)) \leq \phi(d(x, y)) - \psi(d(x, y)), \) for any \(x \in A_i, y \in A_{i+1}, i = 1, 2, \ldots, m, \) where \(A_{m+1} = A_1 \) and \(\phi, \psi \in \mathcal{F}. \)

The main result of [22] is the following.

Theorem 1.4. (Theorem 6 of [22]) Let \((X, d) \) be a complete metric space, \(m \) be a positive integer, \(A_1, A_2, \ldots, A_m \) be nonempty subsets of \(X \) and \(X = \cup _{i=1}^{m} A_i. \) Let \(T : X \to X \) be a cyclic \((\phi - \psi) \)-contraction with \(\phi, \psi \in \mathcal{F}. \) Then \(T \) has a unique fixed point \(z \in \cap _{i=1}^{m} A_i. \)

In this paper, we proved a common fixed point of two self-mappings \(T, g : X \to X \) on a partial metric space \(X \) under certain conditions.

We start some definitions and results needed in the sequel.

A partial metric on a nonempty set \(X \) is a mapping \(p : X \times X \to [0, \infty) \) such that

(PM1) \(x = y \) if and only if \(p(x, x) = p(x, y) = p(y, y), \)

(PM2) \(p(x, x) \leq p(x, y), \)

(PM3) \(p(x, y) = p(y, x), \)

(PM4) \(p(x, y) \leq p(x, z) + p(z, y) - p(z, z). \)

for all \(x, y, z \in X. \) A pair \((X, p) \) is said to be partial metric space.

Notice also that if \(p \) is a partial metric on \(X, \) then the functions \(d_p, d_m : X \times X \to \mathbb{R}^+ \) given by

\[
d_p(x, y) = 2p(x, y) - p(x, x) - p(y, y),
\]

\[
p(x, y) - p(x, x), p(x, y) - p(y, y)
\]

are equivalent (usual) metrics on \(X. \) For details see e.g. [?].

Example 1.5. (See e.g. [1, 3, 20, 24]) Consider \(X = [0, \infty) \) with \(p(x, y) = \max(x, y). \) Then \((X, p) \) is a partial metric space. It is clear that \(p \) is not a (usual) metric. Note that in this case \(d_p(x, y) = |x - y|. \)

Example 1.6. (See e.g. [24]) Let \(X = [a, b] : a, b \in \mathbb{R}, a \leq b \) and define \(p([a, b], [c, d]) = \max(b, d) - \min(a, c). \) Then \((X, p) \) is a partial metric spaces.

Lemma 1.7. (See e.g. [14, 15]) Let \((X, p) \) be a PMS. Then

(A) If \(p(x, y) = 0 \) then \(x = y, \)

(B) If \(x \neq y, \) then \(p(x, y) > 0. \)
Example 1.8. (See e.g.[24]) Let \((X, d)\) and \((X, p)\) be a metric space and a partial metric space, respectively. Mappings \(p_i : X \times X \rightarrow [0, \infty) (i \in \{1, 2, 3\})\) defined by

\[
\begin{align*}
p_1(x, y) &= d(x, y) + p(x, y) \\
p_2(x, y) &= d(x, y) + \max\{\omega(x), \omega(y)\} \\
p_3(x, y) &= d(x, y) + a
\end{align*}
\]

induce partial metrics on \(X\), where \(\omega : X \rightarrow [0, \infty)\) is an arbitrary function and \(a \geq 0\).

We notice also that each partial metric \(p\) on \(X\) generates a \(T_0\) topology \(\tau_p\) on \(X\) which has a family of open \(p\)-balls

\[B_p(x, \varepsilon) = \{y \in X : p(x, y) < p(x, x) + \varepsilon\}\]

as a base where \(B_p(x, \varepsilon) = \{y \in X : p(x, y) < p(x, x) + \varepsilon\}\) for all \(x \in X\) and \(\varepsilon > 0\).

Definition 1.9. (See e.g. [24]) Let \((X, p)\) be a partial metric space.

(i) A sequence \(\{x_n\}\) in \(X\) converges to \(x \in X\) whenever \(\lim_{n \to \infty} p(x_n, x) = p(x, x)\).
(ii) A sequence \(\{x_n\}\) in \(X\) is called Cauchy whenever \(\lim_{n, m \to \infty} p(x_n, x_m)\) exists (and finite),
(iii) \((X, p)\) is said to be complete if every Cauchy sequence \(\{x_n\}\) in \(X\) converges, with respect to \(\tau_p\), to a point \(x \in X\), that is, \(\lim_{n, m \to \infty} p(x_n, x_m) = p(x, x)\).

We define \(L(x_n) = \{x | x_n \to x\}\) where \(\{x_n\}\) is a sequence in a partial metric space \((X, p)\). The example below shows that a convergent sequence \(\{x_n\}\) in a partial metric space may not be a Cauchy. In particular, it shows that the limit of a convergent sequence is not unique.

Example 1.10. (See e.g.[24]) Let \(X = [0, \infty)\) and \(p(x, y) = \max\{x, y\}\). Let

\[x_n = \begin{cases} 0, & n = 2k, \\ 1, & n = 2k + 1. \end{cases}\]

Then clearly it is convergent sequence and for every \(x \geq 1\) we have \(\lim_{n \to \infty} p(x_n, x) = p(x, x)\), therefore \(L(x_n) = [1, \infty)\). But \(\lim_{n, m \to \infty} p(x_n, x_m)\) does not exist.

We state a lemma that shows the limit of a convergent sequence \(\{x_n\}\) in a partial metric space is unique.

Lemma 1.11. (See e.g.[24]) Let \(\{x_n\}\) be a convergent sequence in partial metric space \(X\) such that \(x_n \to x\) and \(x_n \to y\). If

\[\lim_{n \to \infty} p(x_n, x_n) = p(x, x) = p(y, y),\]

then \(x = y\).

Lemma 1.12. (See e.g.[24]) Let \(\{x_n\}\) and \(\{y_n\}\) be two sequences in partial metric space \(X\) such that

\[\lim_{n \to \infty} p(x_n, x) = \lim_{n \to \infty} p(x_n, x_n) = p(x, x),\]

and

\[\lim_{n \to \infty} p(y_n, y) = \lim_{n \to \infty} p(y_n, y_n) = p(y, y),\]

then \(\lim_{n \to \infty} p(x_n, y_n) = p(x, y)\). In particular, \(\lim_{n \to \infty} p(x_n, z) = p(x, z)\) for every \(z \in X\).
Lemma 1.13. (See e.g. [24],[26]) Let \((X, p)\) be a partial metric space.

(a) \(\{x_n\}\) is a Cauchy sequence in \((X, p)\) if and only if it is a Cauchy sequence in the metric space \((X, d_p)\).

(b) A partial metric space \((X, p)\) is complete if and only if the metric space \((X, d_p)\) is complete. Furthermore, \(\lim_{n \to \infty} d_p(x_n, x) = 0\) if and only if

\[p(x, x) = \lim_{n \to \infty} p(x_n, x) = \lim_{n,m \to \infty} p(x_n, x_m). \]

Lemma 1.14. (See e.g. [4]) If \(\{x_n\}\) is a convergent sequence in \((X, d_p)\), then it is a convergent sequence in the partial metric space \((X, p)\).

In this paper, we prove a common fixed point theorem on the class of the partial metric spaces as a generalization of Theorem 1.4 and the main theorem of [31].

2. Main Result

We start this section with the following definition for two self-mappings \(T, g : X \to X\).

Definition 2.1. Let \(X\) be a nonempty set, \(m\) be a positive integer and \(T, g : X \to X\) be two mappings. \(X = \bigcup_{i=1}^{m} A_i\) is said to be a cyclic representation of \(X\) with respect to \((T - g)\) if

(i) \(A_i, i = 1, 2, \ldots, m\) are nonempty sets.

(ii) \(T(A_1) \subseteq g(A_2), \ldots, T(A_{m-1}) \subseteq g(A_m), T(A_m) \subseteq g(A_1)\).

Definition 2.2. Let \((X, p)\) be a partial metric space, \(m\) be a positive integer, \(A_1, A_2, \ldots, A_m\) be nonempty subsets of \(X\) and \(X = \bigcup_{i=1}^{m} A_i\). Two operators \(T, g : X \to X\) are cyclic \((\phi - \psi)\)-contraction if

(i) \(X = \bigcup_{i=1}^{m} A_i\) is a cyclic representation of \(X\) with respect to \((T - g)\),

(ii) \(\phi(p(Tx, Ty)) \leq \phi(p(gx, gy)) - \psi(p(gx, gy)), \) for any \(x \in A_i, y \in A_{i+1}, i = 1, 2, \ldots, m,\) where \(A_{m+1} = A_1\) and \(\phi, \psi \in \mathcal{F}\).

Our main result is the following.

Theorem 2.3. Let \((X, p)\) be a complete partial metric space, \(m\) be a positive integer, \(A_1, A_2, \ldots, A_m\) be nonempty subsets of \(X\) and \(X = \bigcup_{i=1}^{m} A_i\). Let \(T, g : X \to X\) be two cyclic \((\phi - \psi)\)-contraction such that \(g(A_i)\) closed subsets of \(X\).

(i) If \(g\) is one to one then there exists \(z \in \bigcap_{i=1}^{m} A_i\) such that \(gz = Tz\).

(ii) If the pair \((T, g)\) are weakly compatible, then \(T\) and \(g\) has a unique common fixed point \(z \in \bigcap_{i=1}^{m} A_i\).

Proof. Let \(x_1\) be an arbitrary point in \(A_1\). By cyclic representation of \(X\) with respect to pair \((T, g)\), we choose a point \(x_2\) in \(A_2\) such that \(Tx_1 = gx_2\). For this point \(x_2\) there exists a point \(x_3\) in \(A_3\) such that \(Tx_2 = gx_3\), and so on. Continuing in this manner we can define a sequence \(\{x_n\}\) as follows

\[Tx_n = gx_{n+1}, \]

for \(n = 1, 2, \ldots\). We prove that \(\{x_n\}\) is a Cauchy sequence. If there exists \(n_0 \in \mathbb{N}\) such that \(gx_{n_0+1} = gx_{n_0}\), then, since \(gx_{n_0+1} = Tx_{n_0} = gx_{n_0}\), the part of existence of the coincidence point of \(T\) and \(g\) is proved. Suppose that \(gx_{n_0+1} \neq gx_{n_0}\) for any \(n = 1, 2, \ldots\). Then, since \(X = \bigcup_{i=1}^{m} A_i\), for any \(n > 0\) there exists \(i_n \in \{1, 2, \cdots, m\}\) such that \(x_{n-1} \in A_{i_n}\) and \(x_n \in A_{i_{n+1}}\). Since \((T, g)\) are cyclic \((\phi - \psi)\)-contraction, we have

\[\phi(p(gx_n, gx_{n+1})) = \phi(p(Tx_{n-1}, Tx_n)) \leq \phi(p(gx_{n-1}, gx_n)) - \psi(p(gx_{n-1}, gx_n)) \leq \phi(p(gx_{n-1}, gx_n)) \]

(3)
From (3) and taking into account that \(\phi \) is nondecreasing we obtain
\[
p(gx_n, gx_{n+1}) \leq p(gx_{n-1}, gx_n) \quad \text{for any } n = 2, 3, \ldots
\]
Thus \(\{p(gx_n, gx_{n+1})\} \) is a nondecreasing sequence of nonnegative real numbers. Consequently, there exists \(\gamma \geq 0 \) such that \(\lim_{n \to \infty} p(gx_n, gx_{n+1}) = \gamma \). Taking \(n \to \infty \) in (3) and using the continuity of \(\phi \) and \(\psi \), we have
\[
\phi(\gamma) \leq \phi(\gamma) - \psi(\gamma) \leq \phi(\gamma),
\]
and therefore, \(\psi(\gamma) = 0 \). Since \(\psi \in \mathcal{F}, \gamma = 0 \), that is,
\[
\lim_{n \to \infty} p(gx_n, gx_{n+1}) = 0.
\]
Since \(p(gx_n, gx_n) \leq p(gx_n, gx_{n+1}) \) and \(p(gx_{n+1}, gx_{n+1}) \leq p(gx_n, gx_{n+1}) \), hence
\[
\lim_{n \to \infty} p(gx_n, gx_n) = \lim_{n \to \infty} p(gx_{n+1}, gx_{n+1}) = \lim_{n \to \infty} p(gx_n, gx_{n+1}) = 0. \tag{4}
\]
Since
\[
d_p(gx_n, gx_{n+1}) = 2p(gx_n, gx_{n+1}) - p(gx_n, gx_n) - p(gx_{n+1}, gx_{n+1}).
\]
This shows that \(\lim_{n \to \infty} d_p(gx_n, gx_{n+1}) = 0 \).

In the sequel, we prove that \(\{gx_n\} \) is a Cauchy sequence in the metric space \((X, d_p)\).

First, we prove the following claim.

Claim: For every \(\epsilon > 0 \) there exists \(n \in \mathbb{N} \) such that if \(b, q \geq n \) with \(b - q \equiv 1(m) \) then \(d_p(x_b, x_q) < \epsilon \).

In fact, suppose the contrary case. This means that there exists \(\epsilon > 0 \) such that for any \(n \in \mathbb{N} \) we can find \(b_n > q_n \geq n \) with \(b_n - q_n \equiv 1(m) \) satisfying
\[
d_p(gx_{b_n}, gx_{q_n}) \geq \epsilon. \tag{5}
\]
Now, we take \(n > 2m \). Then, corresponding to \(q_n \geq n \) use can choose \(b_n \) in such a way that it is the smallest integer with \(b_n > q_n \) satisfying \(b_n - q_n \equiv 1(m) \) and \(d_p(gx_{b_n}, gx_{q_n}) \geq \epsilon \). Therefore, \(d_p(gx_{b_n}, gx_{q_n}) \leq \epsilon \).

Using the triangular inequality
\[
\epsilon \leq d_p(gx_{b_n}, gx_{q_n}) \leq d_p(gx_{b_n}, gx_{b_{n-1}}) + \sum_{i=1}^{m} d_p(gx_{b_{n-i}}, gx_{b_{n-i+1}}) < \epsilon + \sum_{i=1}^{m} d_p(gx_{b_{n-i}}, gx_{b_{n-i+1}}).
\]
Letting \(n \to \infty \) in the last inequality and taking into account that
\[
\lim_{n \to \infty} d_p(gx_n, gx_{n+1}) = 0,
\]
we obtain
\[
\lim_{n \to \infty} d_p(gx_{b_n}, gx_{q_n}) = \epsilon \implies \lim_{n \to \infty} p(gx_{b_n}, gx_{q_n}) = \frac{\epsilon}{2}. \tag{6}
\]
Again, by the triangular inequality
\[
\epsilon \leq d_p(gx_{b_n}, gx_{q_n}) \leq d_p(gx_{b_n}, gx_{b_{n-1}}) + d_p(gx_{b_{n-1}}, gx_{b_n}) \leq d_p(gx_{b_n}, gx_{b_{n-1}}) + d_p(gx_{b_{n-1}}, gx_{b_{n-1}}) + d_p(gx_{b_{n-1}}, gx_{b_n}) + d_p(gx_{b_{n-1}}, gx_{b_{n-1}}) = 2d_p(gx_{b_n}, gx_{b_{n-1}}) + d_p(gx_{b_{n-1}}, gx_{b_n}) + 2d_p(gx_{b_{n-1}}, gx_{b_{n-1}})
\]
Letting \(n \to \infty \) in (6) and taking into account that \(\lim_{n \to \infty} d_p(gx_n, gx_{n+1}) = 0 \) and (6), we get
\[
\lim_{n \to \infty} d_p(gx_{b_n}, gx_{q_n}) = \epsilon.
\]
Hence
\[
\lim_{n \to \infty} p(gx_{q_{n+1}}, gx_{b_{n+1}}) = \frac{\epsilon}{2}.
\] (8)

Since \(gx_q\) and \(gx_b\) lie in different adjacently labeled sets \(A_i\) and \(A_{i+1}\) for certain \(1 \leq i \leq m\), using the fact that \(T\) and \(g\) are cyclic \((\phi - \psi)\)-contraction, we have
\[
\phi(p(gx_{q_{n+1}}, gx_{b_{n+1}})) = \phi(p(Tx_q, Tx_b)) \\
\leq \phi(p(gx_{q_{n}}, gx_{b_{n}})) - \psi(p(gx_{q_{n}}, gx_{b_{n}})) \\
\leq \phi(p(gx_{q_{n}}, gx_{b_{n}})).
\]

Taking into account (6) and (8) and the continuity of \(\phi\) and \(\psi\), letting \(n \to \infty\) in the last inequality, we obtain
\[
\phi\left(\frac{\epsilon}{2}\right) \leq \phi\left(\frac{\epsilon}{2}\right) - \psi\left(\frac{\epsilon}{2}\right) \leq \phi\left(\frac{\epsilon}{2}\right)
\]
and consequently, \(\psi\left(\frac{\epsilon}{2}\right) = 0\). Since \(\psi \in \mathcal{F}\), then \(\epsilon = 0\) which is contradiction. Therefore, our claim is proved.

In the sequel, we will prove that \([gx_n]\) is a Cauchy sequence in metric space \((X, d_p)\). Fix \(\epsilon > 0\). By the claim, we find \(n_0 \in \mathbb{N}\) such that if \(b, q \geq n_0\) with \(b - q \equiv 1(m)\)
\[
d_p(gx_b, gx_q) \leq \frac{\epsilon}{2}.
\] (9)

Since \(\lim_{n \to \infty} d_p(gx_n, gx_{n+1}) = 0\) we also find \(n_1 \in \mathbb{N}\) such that
\[
d_p(gx_n, gx_{n+1}) \leq \frac{\epsilon}{2m}
\] (10)
for any \(n \geq n_1\).

Suppose that \(r, s \geq \max\{n_0, n_1\}\) and \(s > r\). Then there exists \(k \in \{1, 2, \cdots, m\}\) such that \(s - r \equiv k(m)\). Therefore, \(s - r + j \equiv 1(m)\) for \(j = m - k + 1\). So, we have
\[
d_p(gx_r, gx_s) \leq d_p(gx_r, gx_{s+j}) + d_p(gx_{s+j}, gx_{s+j-1}) + \cdots + d_p(gx_{s+1}, gx_s).
\]

By (9) and (10) and from the last inequality, we get
\[
d_p(gx_r, gx_s) \leq \frac{\epsilon}{2} + \frac{j \epsilon}{2m} \leq \frac{\epsilon}{2} + \frac{m \epsilon}{2m} = \epsilon.
\]
This proves that \([gx_n]\) is a Cauchy sequence in metric space \((X, d_p)\). Since \((X, p)\) is complete then from Lemma 1.13, the sequence \([gx_n]\) converges in the metric space \((X, d_p)\), say \(\lim_{n \to \infty} p(gx_n, x) = 0\) for some \(x \in X\).

Therefore, by Lemma 1.13 we have
\[
p(x, x) = \lim_{n \to \infty} p(gx_n, x) = \lim_{n \to \infty} p(gx_n, gx_m).
\]

That is, there exists \(x \in X\) such that \(\lim_{n \to \infty} gx_n = x\) in partial metric \((X, p)\). Since \(g(A_i)\) are closed subsets of \(X\), we have \(x \in g(A_i)\) for every \(i \in \{1, 2, \cdots, m\}\). That is, \(x \in \cap_{i=1}^m g(A_i)\). Hence, there exists \(z_i \in A_i\) such that \(gz_i = x\). Since \(g\) is one to one we have
\[
g(z_1) = g(z_2) = \cdots = g(z_m) = x \implies z_1 = z_2 = \cdots = z_m = z.
\]

Therefore, \(g(z) = x\) for \(z \in \cap_{i=1}^m A_i\). In fact, \(\lim_{n \to \infty} gx_n = g\). On the other hand since the sequence \([gx_n]\) has infinite terms in each \(A_i\) for \(i \in \{1, 2, \cdots, m\}\), we take a subsequence \([gx_n]\) of \([gx_n]\) with \(gx_n \in g(A_{i-1})\) where \(x_m \in A_{i-1}\). Using the contractive condition, we can obtain
\[
\phi(p(gx_{m+1}, Tz)) = \phi(p(Tx_m, Tz)) \\
\leq \phi(p(gx_m, gz)) - \psi(p(gx_m, gz)) \\
\leq \phi(p(gx_m, gz)).
\]
Since \(gx_m \to g \) and \(\phi \) and \(\psi \) belong to \(F \), letting \(k \to \infty \) in the last inequality, we have

\[
\phi(p(gz, Tz)) \leq \phi(p(gz, gz)) - \psi(p(gz, gz)) \leq \phi(p(gz, gz)).
\]

Moreover, we obtain \(p(gz, Tz) = p(gz, gz) \), because \(\phi \) is nondecreasing and \(p(gz, gz) \leq p(gz, Tz) \). Hence, if \(p(gz, gz) \neq 0 \) then by the last inequality we have,

\[
\phi(p(gz, gz)) = \phi(p(gz, Tz)) \\
\leq \phi(p(gz, gz)) - \psi(p(gz, gz)) \\
< \phi(p(gz, gz)),
\]

which is contradiction. Since \(\phi \in F \), then, \(p(Tz, Tz) = p(gz, gz) = p(gz, Tz) = 0 \), it follows that, \(Tz = gz = x \).

ii) Since \(g \) and \(T \) are two weakly compatible mappings, we have \(TTz = Tgz = gTz = gz \). That is \(Tx = gx \).

Next, we prove that \(Tx = x \). Since \(Tz \in X \) hence there exists some \(i \) such that \(Tz \in A_i \). By \(z \in \cap_{i=1}^m A_i \) we have \(z \in A_{i-1} \), by using the contractive condition we obtain

\[
\phi(p(Tz, TTz)) \leq \phi(p(Tz, gTz)) - \psi(p(gz, gTz)) \\
\leq \phi(p(gz, gTz)) = \phi(p(Tz, TTz)),
\]

from the last inequality we have

\[
\psi(p(Tz, TTz)) = 0.
\]

Since \(\psi \in F \), \(p(Tz, TTz) = 0 \) and, consequently, \(x = Tz = TTz = Tx = gx \).

Finally, in order to prove the uniqueness of a fixed point, we have \(y, z \in X \) with \(y \) and \(z \) common fixed points of \(T \) and \(g \). The cyclic character of \(T - g \) and the fact that \(y, z \in X \) are common fixed points of \(T \) and \(g \), imply that \(y, z \in \cap_{i=1}^m A_i \). If \(p(y, z) \neq 0 \) then by using the contractive condition we obtain

\[
\phi(p(y, z)) = \phi(p(Ty, Tz)) \leq \phi(p(gy, gz)) - \psi(p(gy, gz)) \\
< \phi(p(gy, gz)) = \phi(p(y, z)),
\]

which is a contradiction. Since \(\phi \in F \), \(p(y, z) = 0 \) and, consequently, \(y = z \). This finishes the proof. □

Corollary 2.4. Let \((X, p) \) be a complete partial metric space, \(m \) be a positive integer, \(A_1, A_2, \ldots, A_m \) be nonempty closed subsets of \(X \) and \(X = \bigcup_{i=1}^m A_i \). Let \(T : X \to X \) be a cyclic weak \((\phi - \psi) \)-contraction. Then \(T \) has a unique fixed point \(z \in \cap_{i=1}^m A_i \).

Proof. Take \(g(x) = x \) in Theorem 2.3. □

Corollary 2.5. Let \((X, p) \) be a complete partial metric space, \(m \) be a positive integer, \(A_1, A_2, \ldots, A_m \) be nonempty closed subsets of \(X \). Suppose that \(T : X \to X \) is a self-mapping and \(X = \bigcup_{i=1}^m A_i \) is a cyclic representation of \(X \) with respect to \(T \). Further, \(T \) satisfies \(d(Tx, Ty) \leq d(x, y) - \psi(d(x, y)) \), for any \(x \in A_i, y \in A_{i+1}, i = 1, 2, \ldots, m \), where \(A_{m+1} = A_1 \) and \(\psi \in F \). Then \(T \) has a unique fixed point \(z \in \cap_{i=1}^m A_i \).

Proof. Take \(\phi(t) = t \) in Corollary 2.4. □

Example 2.6. Let \(X = [0, 1] \) and \(g, T : X \to X \) such that \(Tx = \frac{x}{12} \) and \(gx = \frac{x}{2} \). Suppose that \(\psi, \phi : [0, \infty) \to [0, \infty) \) are defined as follows \(\psi(t) = \frac{t}{2} \) and \(\phi(t) = \frac{t}{2} \). For \(A_i = [0, 1], (i = 1, 2, \ldots, m) \) all conditions of Theorem 2.3 are satisfied. It is clear that \(x = 0 \) is the common fixed point of \(T \) and \(g \).
References

[31] N. Shobkolaei, E. Karapinar, S. Sedghi, S.M. Vaezpour, Fixed point theory for cyclic $(\phi - \psi)$-contractions on partial metric spaces, (submitted)

