Small covers over a product of simplices

Yanchang Chena, Yanying Wangb

aCollege of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, P. R. China
bCollege of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, P. R. China

Abstract. In this paper, we determine the number of equivariant homeomorphism classes of small covers over a product of m simplices for $m \leq 3$ or for the dimension of each simplex being greater than 1 and $m > 3$. Moreover, we calculate the number of equivariant homeomorphism classes of all orientable small covers over a product of at most three simplices.

1. Introduction

The notion of small covers was introduced by Davis and Januszkiewicz [7], where a small cover is a smooth closed manifold M^n with a locally standard $(\mathbb{Z}_2)^n$–action such that its orbit space is a simple convex polytope. For instance, the real projective space $\mathbb{R}P^n$ with a natural $(\mathbb{Z}_2)^n$–action is a small cover over the n-simplex Δ_n. This establishes a direct connection between equivariant topology and combinatorics and makes it possible to study the topology of small covers through the combinatorial structure of quotient spaces.

In [9], Lü and Masuda showed that the equivariant homeomorphism class of a small cover over a simple convex polytope P^n agrees with the equivalence class of its corresponding $(\mathbb{Z}_2)^n$–coloring under the action of automorphism group of face poset of P^n. This also holds for orientable small covers by the orientability condition in [11] (see Theorem 5.3). But there aren’t general formulas to calculate the number of equivariant homeomorphism classes of (orientable) small covers over an arbitrary simple convex polytope.

In recent years, several studies have attempted to enumerate the number of Davis-Januszkiewicz equivalence classes and equivariant homeomorphism classes of small covers over a specific polytope. Cai, Chen and Lü calculated the number of equivariant homeomorphism classes of small covers over 3-dimensional prisms [2]. In 2008, Choi determined the number of Davis-Januszkiewicz equivalence classes of small covers over a product of simplices and the number of equivariant homeomorphism classes of small covers over cubes [4]. There are few results about orientable small covers. Choi calculated the number of Davis-Januszkiewicz equivalence classes of orientable small covers over cubes [5]. Products of simplices are an interesting class of polytopes and more complicated than one might think [13]. And small covers over products of simplices have become an important search object [3, 4, 5, 6, 8, 10]. Motivated by these,
we determine the number of equivariant homeomorphism classes of small covers over a product of \(m \) simplices for \(m \leq 3 \) or for the dimension of each simplex being greater than 1 and \(m > 3 \) (see Theorem 2.7 and Theorems 4.1-4.2). Furthermore, we calculate the number of equivariant homeomorphism classes of all orientable small covers over a product of at most three simplices (see Theorems 5.7-5.12).

The paper is organized as follows. In Section 2, we review the basic theory about small covers, calculate the automorphism group of face poset of a product of \(m \) simplices and determine the number of small covers over a product of \(m \) simplices with the dimension of each simplex being greater than 1 up to equivariant homeomorphism. In Section 3 we determine the number of all colorings on \(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3} \) (\(n_2 \geq 1 \) and \(n_3 \geq 1 \)) and \(\Delta_1 \times \Delta_{n_3} \) (\(n_2 \geq 1 \) and \(n_3 \geq 1 \)), so that in Section 4 we give a formula to calculate the number of equivariant homeomorphism classes of all small covers over \(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3} \) (\(n_2 \geq 1 \)) and \(\Delta_1 \times \Delta_{n_3} \) (\(n_3 \geq 1 \)). In Section 5, similarly we determine the number of equivariant homeomorphism classes of all orientable small covers over a product of at most three simplices.

2. Small covers over a product of simplices

A convex polytope \(P^n \) of dimension \(n \) is said to be simple if every vertex of \(P^n \) is the intersection of exactly \(n \) facets (i.e. faces of dimension \((n-1)\)) [13]. An \(n \)-dimensional smooth closed manifold \(M^n \) is said to be a small cover if it admits a smooth \((\mathbb{Z}_2)\)-action such that the action is locally isomorphic to a standard action of \((\mathbb{Z}_2)^n \) on \(\mathbb{R}^n \) and the orbit space \(M^n / (\mathbb{Z}_2)^n \) is a simple convex polytope of dimension \(n \).

Let \(P^n \) be a simple convex polytope of dimension \(n \) and \(\mathcal{F}(P^n) = \{ F_1, \cdots, F_l \} \) be the set of facets of \(P^n \). Suppose that \(\pi : M^n \rightarrow P^n \) is a small cover over \(P^n \). Then there are \(\ell \) connected submanifolds \(\pi^{-1}(F_1), \cdots, \pi^{-1}(F_\ell) \). Each submanifold \(\pi^{-1}(F_i) \) is fixed pointwise by a \(\mathbb{Z}_2 \)-subgroup \(Z_2(F_i) \) of \((\mathbb{Z}_2)^n \), so that each facet \(F_i \) corresponds to the \(\mathbb{Z}_2 \)-subgroup \(Z_2(F_i) \). Obviously, the \(\mathbb{Z}_2 \)-subgroup \(Z_2(F_i) \) actually agrees with an element \(v_i \) in \((\mathbb{Z}_2)^n \) as a vector space. For each face \(F \) of codimension \(u \), since \(P^n \) is simple, there are \(u \) facets \(F_{i_1}, \cdots, F_{i_u} \) such that \(F = F_{i_1} \cap \cdots \cap F_{i_u} \). Then, the corresponding submanifolds \(\pi^{-1}(F_{i_1}), \cdots, \pi^{-1}(F_{i_u}) \) intersect transversally in the \((n-u)\)-dimensional submanifold \(\pi^{-1}(F) \), and the isotropy subgroup \(Z_2(F_i) \) of \(\pi^{-1}(F) \) is a torus of rank \(u \) and is generated by \(Z_2(F_{i_1}), \cdots, Z_2(F_{i_u}) \) (or is determined by \(v_{i_1}, \cdots, v_{i_u} \) in \((\mathbb{Z}_2)^n \)). Thus, this actually gives a characterization function \([7]\)

\[\lambda : \mathcal{F}(P^n) \rightarrow (\mathbb{Z}_2)^n \]

defined by \(\lambda(F_i) = v_i \) such that whenever the intersection \(F_{i_1} \cap \cdots \cap F_{i_u} \) is non-empty, \(\lambda(F_{i_1}), \cdots, \lambda(F_{i_u}) \) are linearly independent in \((\mathbb{Z}_2)^n \). If we regard each nonzero vector of \((\mathbb{Z}_2)^n \) as being a color, then the characteristic function \(\lambda \) means that each facet is colored by a color. Here we also call \(\lambda \) a \((\mathbb{Z}_2)^n\)-coloring on \(P^n \).

In fact, Davis and Januszkiewicz gave a reconstruction process of a small cover by using a \((\mathbb{Z}_2)^n\)-coloring \(\lambda : \mathcal{F}(P^n) \rightarrow (\mathbb{Z}_2)^n \). Let \(Z_2(F_i) \) be the subgroup of \((\mathbb{Z}_2)^n \) generated by \(\lambda(F_i) \). Given a point \(p \in P^n \), by \(F(p) \) we denote the minimal face containing \(p \) in its relative interior. Assume \(F(p) = F_{i_1} \cap \cdots \cap F_{i_u} \) and \(Z_2(F(p)) = \bigoplus_{i=1}^u Z_2(F_{i_i}) \). Note that \(Z_2(F(p)) \) is a subgroup of \(\mathbb{Z}_2 \)-torus \((\mathbb{Z}_2)^n \). Let \(M(\lambda) \) denote \((\mathbb{Z}_2)^n \times (\mathbb{Z}_2)^n / \sim \), where \((p,g) \sim (q,h) \) if \(\lambda(p) = \lambda(q) \) and \(g^{-1}h \in Z_2(F(p)) \). The free action of \((\mathbb{Z}_2)^n \) on \((\mathbb{Z}_2)^n \times (\mathbb{Z}_2)^n \) descends to an action on \(M(\lambda) \) with quotient \(P^n \). Thus \(M(\lambda) \) is a small cover over \(P^n \).

Two small covers \(M_1 \) and \(M_2 \) over \(P^n \) are said to be weakly equivariantly homeomorphic if there is an automorphism \(\varphi : (\mathbb{Z}_2)^n \rightarrow (\mathbb{Z}_2)^n \) and a homeomorphism \(f : M_1 \rightarrow M_2 \) such that \(f(t \cdot x) = \varphi(t) \cdot f(x) \) for every \(t \in (\mathbb{Z}_2)^n \) and \(x \in M_1 \). If \(\varphi \) is an identity, then \(M_1 \) and \(M_2 \) are equivariantly homeomorphic. Following [7], two small covers \(M_1 \) and \(M_2 \) over \(P^n \) are said to be Davis-Januszkiewicz equivalent (or simply, D-J equivalent) if there is a weakly equivariant homeomorphism \(f : M_1 \rightarrow M_2 \) covering the identity on \(P^n \).

By \(\Lambda(P^n) \) we denote the set of all \((\mathbb{Z}_2)^n\)-colorings on \(P^n \). Then we have

Theorem 2.1. (Davis-Januszkiewicz) All small covers over \(P^n \) are given by \(\{ M(\lambda) | \lambda \in \Lambda(P^n) \} \), i.e. for each small cover \(M^n \) over \(P^n \), there is a \((\mathbb{Z}_2)^n\)-coloring \(\lambda \) with an equivariant homeomorphism \(M(\lambda) \rightarrow M^n \) covering the identity on \(P^n \).

Remark 1. Generally speaking, we can’t make sure that there always exist small covers over a simple convex polytope \(P^n \) when \(n \geq 4 \). For example, see [7, Nonexample 1.22]. From [7], we know that there
exists a small cover (i.e. a real projective space) over every simplex. Thus, there exists a small cover over a product of simplices.

There is a natural action of $GL(n, \mathbb{Z}_2)$ on $\Lambda(P^n)$ defined by the correspondence $\lambda \mapsto \sigma \circ \lambda$, and the action on $\Lambda(P^n)$ is free. Without loss of generality, we assume that F_1, \ldots, F_n of $\mathcal{F}(P^n)$ meet at one vertex p of P^n. Let e_1, \ldots, e_n be the standard basis of $(\mathbb{Z}_2)^n$. Write $A(P^n) = \{ \lambda \in \Lambda(P^n) | \lambda(e_i) = e_i \text{ for } i = 1, \ldots, n \}$. In fact, $A(P^n)$ is the orbit space of $\Lambda(P^n)$ under the action of $GL(n, \mathbb{Z}_2)$. Then we have

Lemma 2.2. $|A(P^n)| = |A(P^n)| \times |GL(n, \mathbb{Z}_2)|$.

Note that $|GL(n, \mathbb{Z}_2)| = \prod_{k=1}^{n} \left(2^n - 2^{k-1} \right)$ [1]. Two small covers M_1, M_2 of P^n are D-J equivalent if and only if there is $h \in GL(n, \mathbb{Z}_2)$ such that $\lambda_1 = \sigma \circ \lambda_2$. So the number of D-J equivalence classes of small covers over P^n is $|A(P^n)|$.

Let P^n be a simple convex polytope of dimension n. All faces of P^n form a poset (i.e. a partially ordered set by inclusion). An automorphism of $\mathcal{F}(P^n)$ is a bijection from $\mathcal{F}(P^n)$ to itself which preserves the poset structure of all faces of P^n, and by $Aut(\mathcal{F}(P^n))$ we denote the group of automorphisms of $\mathcal{F}(P^n)$. One can define the right action of $Aut(\mathcal{F}(P^n))$ on $\Lambda(P^n)$ by $\lambda \times h \mapsto \lambda \circ h$, where $\lambda \in \Lambda(P^n)$ and $h \in Aut(\mathcal{F}(P^n))$. The following theorem is well known [9].

Theorem 2.3. Two small covers over an n-dimensional simple convex polytope P^n are equivariantly homeomorphic if and only if there is $h \in Aut(\mathcal{F}(P^n))$ such that $\lambda_1 = \lambda_2 \circ h$, where λ_1 and λ_2 are their corresponding $(\mathbb{Z}_2)^n$-colorings on P^n.

So the number of orbits of $\Lambda(P^n)$ under the action of $Aut(\mathcal{F}(P^n))$ is just the number of equivariant homeomorphism classes of small covers over P^n. Thus, we are going to count the orbits. Burnside Lemma is very useful in the enumeration of the number of orbits.

Burnside Lemma. Let G be a finite group acting on a set X. Then the number of orbits of X under the action of G equals $\frac{1}{|G|} \sum_{g \in G} |X_g|$, where $X_g = \{ x \in X | gx = x \}$.

Burnside Lemma suggests that we need to understand the structure of $Aut(\mathcal{F}(P^n))$ in order to determine the number of orbits of $\Lambda(P^n)$ under the action of $Aut(\mathcal{F}(P^n))$. We shall particularly be concerned with the case in which P^n is the product of m simplices.

In the following, let $P = \Delta_{k_1}^{(i_1)} \times \cdots \times \Delta_{k_l}^{(i_l)} \times \Delta_{k_1}^{(1)} \times \cdots \times \Delta_{k_l}^{(1)} \times \Delta_{k_1}^{(2)} \times \cdots \times \Delta_{k_l}^{(2)} \times \cdots$, where $\Delta_{k_j}^{(u_j)}$ is a k_j-simplex with $1 \leq k_1 < k_2 < \cdots < k_j$, $i_1 + \cdots + i_j = m$ and $\sum_{j=1}^{l} i_j k_j = n$. Suppose $P_1 = \Delta_{k_1}^{(i_1)} \times \cdots \times \Delta_{k_l}^{(i_l)}$, $P_2 = \Delta_{k_2}^{(i_1)} \times \cdots \times \Delta_{k_2}^{(i_2)}$, \ldots, and $P_j = \Delta_{k_j}^{(i_1)} \times \cdots \times \Delta_{k_j}^{(i_j)}$. Then we have $P = P_1 \times P_2 \times \cdots \times P_j$ and $\mathcal{F}(P) = \bigcup_{k=1}^{j} P_1 \times \cdots \times P_{k-1} \times \mathcal{F}(P_k) \times P_{k+1} \times \cdots \times P_j$.

Let S_i be the symmetry group of rank i. Then we arrive at

Theorem 2.4. The automorphism group $Aut(\mathcal{F}(P))$ is isomorphic to $(S_{k_1+1})^{i_1} \times S_{i_1} \times (S_{k_2+1})^{i_2} \times S_{i_2} \times \cdots \times (S_{k_l+1})^{i_l} \times S_{i_l}$.

Proof. Let $\mathcal{F}_{u} = \Delta_{k_1}^{(u_1)} \times \cdots \times \Delta_{k_l}^{(u_l)} \times \mathcal{F}(\Delta_{k_1}^{(u_1)}) \times \cdots \times \mathcal{F}(\Delta_{k_l}^{(u_l)})$ for $1 \leq u_1 \leq i_1$. Then $\mathcal{F}(P_1) = \mathcal{F}_{u_1} \cup \cdots \cup \mathcal{F}_{u_l}$. Obviously, the automorphism group $Aut(\mathcal{F}(\Delta_{k_1}^{(u_1)}))$ is isomorphic to S_{k_1+1} since there is exactly one automorphism for each permutation of k_1 facets of $\Delta_{k_1}^{(u_1)}$. Thus, the automorphism group $Aut(\mathcal{F}(P_1))$ contains a group $(S_{k_1+1})^{i_1}$, each of which denotes an automorphism under which the facets in $\mathcal{F}_{u_1}, \mathcal{F}_{u_2}, \ldots, \mathcal{F}_{u_l}$ are mapped into $\mathcal{F}_{u_1}, \mathcal{F}_{u_2}, \ldots, \mathcal{F}_{u_l}$, respectively. $Aut(\mathcal{F}(P_j))$ also contains a group S_{i_j} because there is one automorphism for each permutation of $\mathcal{F}_{u_1}, \mathcal{F}_{u_2}, \ldots, \mathcal{F}_{u_l}$. Each automorphism of S_i is different from any one of $(S_{k_1+1})^{i_j}$. So the automorphism group $Aut(\mathcal{F}(P_1)) \cong (S_{k_1+1})^{i_1} \times S_{i_1}$. Similarly we have $Aut(\mathcal{F}(P_2)) \cong (S_{k_2+1})^{i_2} \times S_{i_2}$, \ldots, and $Aut(\mathcal{F}(P_j)) \cong (S_{k_1+1})^{i_j} \times S_{i_j}$.
Since $k_1 < k_2 < \cdots < k_j$, under the automorphisms of $\text{Aut}(\mathcal{F}(P))$ the facets of $P_1 \times \cdots \times P_{k-1} \times \mathcal{F}(P) \times P_{k+1} \times \cdots \times P_j$ are mapped to $P_1 \times \cdots \times P_{k-1} \times \mathcal{F}(P) \times P_{k+1} \times \cdots \times P_l$ for $1 \leq l \leq j$. Thus we have that $\text{Aut}(\mathcal{F}(P))$ is isomorphic to $(S_{k_1+1})^j \times S_{i_1} \times (S_{k_2+1})^2 \times S_{i_2} \times \cdots \times (S_{k_j+1})^j \times S_{i_j}$. \hfill \square

Let $\Delta_{n_1}, \Delta_{n_2}$ and Δ_{n_3} be n_1–simplex, n_2–simplex and n_3–simplex respectively. From Theorem 2.4, we have

Corollary 2.5. The automorphism group $\text{Aut}(\mathcal{F}(\Delta_{n_1} \times \Delta_{n_2} \times \Delta_{n_3}))$ is isomorphic to

$$
\begin{align*}
S_{n_1+1} \times S_{n_2+1} \times S_{n_1+1} & \quad \text{for } n_1 < n_2 < n_3, \\
S_{n_1+1} \times S_{n_2+1} \times S_{n_1+1} \times S_2 & \quad \text{for } n_1 < n_2 = n_3, \\
S_{n_1+1} \times S_{n_2+1} \times S_2 \times S_{n_1+1} & \quad \text{for } n_1 = n_2 < n_3, \\
S_{n_1+1} \times S_{n_2+1} \times S_{n_1+1} \times S_3 & \quad \text{for } n_1 = n_2 = n_3,
\end{align*}
$$

and the automorphism group $\text{Aut}(\mathcal{F}(\Delta_{n_1} \times \Delta_{n_2}))$ is isomorphic to

$$
\begin{align*}
S_{n_1+1} \times S_{n_2+1} & \quad \text{for } n_1 < n_2, \\
S_{n_1+1} \times S_{n_2+1} \times S_2 & \quad \text{for } n_1 = n_2 = n_3.
\end{align*}
$$

Let us recall some basic definitions about acyclic digraphs [12]. A “digraph” means a graph with at most one edge directed from any vertex v_i to another vertex v_j. An “acyclic” means there is no cycle of any length. The outdegree of a vertex v, $\text{outdeg}(v)$, is the number of edges of the digraph with initial vertex v.

Let $P = \Delta_{k_1}^{(1)} \times \cdots \times \Delta_{k_i}^{(1)} \times \Delta_{k_2}^{(i)} \times \cdots \times \Delta_{k_j}^{(i)}$, where $\Delta_{k_i}^{(1)}$ is a k_i–simplex with $1 \leq k_1 < k_2 < \cdots < k_j$, $i_1 + \cdots + i_j = m$ and $\sum i_j k_j = n$. From [4, Theorem 2.8], we know that the number of D-J equivalence classes of small covers over P is $|\mathcal{A}(P)| = \sum_{\mathcal{G}_m} \prod_{i=1}^{j} (2^{k_i} - 1)^{\text{outdeg}(v_{i_1+\cdots+i_{i-1}})+\cdots+\text{outdeg}(v_{i_1+\cdots+i_{j-1}})}$, where \mathcal{G}_m is the set of acyclic digraphs with labeled m nodes and $V(G) = \{v_1, \cdots, v_m\}$ is the labeled vertex set of G. By using Lemma 2.2, we have

Lemma 2.6. Let $P = \Delta_{k_1}^{(1)} \times \cdots \times \Delta_{k_i}^{(1)} \times \Delta_{k_2}^{(i)} \times \cdots \times \Delta_{k_j}^{(i)}$. Then the number of all colorings on P is

$$
|\Lambda(P)| = \frac{n!}{\prod_{i=1}^{j} (2^{k_i} - 1) \prod_{\mathcal{G}_m} \text{outdeg}(v_{i_1+\cdots+i_{i-1}})^{n_i+\cdots+n_{i-1}}} \prod_{\mathcal{G}_m} \text{outdeg}(v_{i_1+\cdots+i_{j-1}})^{n_{i_j+\cdots+n_{j-1}}},
$$

where \mathcal{G}_m and $V(G)$ are as above.

Below we determine the number of equivariant homeomorphism classes of small covers over P if $2 \leq k_1 < k_2 < \cdots < k_j$.

Theorem 2.7. Let $P = \Delta_{k_1}^{(1)} \times \cdots \times \Delta_{k_i}^{(1)} \times \Delta_{k_2}^{(i)} \times \cdots \times \Delta_{k_j}^{(i)}$. By $E(P)$ we denote the number of equivariant homeomorphism classes of small covers over P. If $2 \leq k_1 < k_2 < \cdots < k_j$, then

$$
E(P) = \frac{\prod_{i=1}^{j} (2^{k_i} - 1) \prod_{\mathcal{G}_m} \text{outdeg}(v_{i_1+\cdots+i_{i-1}})^{n_i+\cdots+n_{i-1}}}{\prod_{\mathcal{G}_m} \text{outdeg}(v_{i_1+\cdots+i_{j-1}})^{n_{i_j+\cdots+n_{j-1}}}},
$$

where \mathcal{G}_m and $V(G)$ are as above.

Proof. From Theorem 2.3, Burnside Lemma and Theorem 2.4, we have that

$$
E(P) = \frac{\sum_{\sigma \in \text{Aut}(\mathcal{F}(P))} |\Lambda_{\sigma}|}{|\Lambda_{\text{Aut}(\mathcal{F}(P))}|}.
$$
where $\Lambda_g = \{ \lambda \in \Lambda(P) | \lambda = \lambda \circ g \}$.

By the linear independence condition of characteristic functions, we have that Λ_g is empty if g isn’t unit element of the automorphism group $\text{Aut}(\mathcal{F}(P))$. Thus,

$$E(P) = \frac{|\Lambda(P)|}{(k_1+1)! \times x_1 \times \cdots \times (k_n+1)! / \prod x_i / x_i !}$$

The theorem is proved with Lemma 2.6. \square

Corollary 2.8. Let $2 \leq n_1 \leq n_2 \leq n_3$. The number of equivariant homeomorphism classes of small covers over $\Delta_{n_1} \times \Delta_{n_2} \times \Delta_{n_3}$ is $E(\Delta_{n_1} \times \Delta_{n_2} \times \Delta_{n_3}) = \frac{1}{\text{Vol}(\Delta_n)} \sum_{i=1}^{n_1} \prod_{j=1}^{n_2} \prod_{k=1}^{n_3} \left[\frac{1}{(n_i+1)! (n_j+1)! (n_k+1)!} \right]$

\begin{align*}
(1) & \frac{1}{\text{Vol}(\Delta_n)} \sum_{i=1}^{n_1} \prod_{j=1}^{n_2} \prod_{k=1}^{n_3} \left[\frac{1}{(n_i+1)! (n_j+1)! (n_k+1)!} \right] \left(2^{n_1+n_2+n_3+2-i} - 2^{n_1+n_2+n_3+2-i} \right) \\
(2) & \frac{1}{\text{Vol}(\Delta_n)} \sum_{i=1}^{n_1} \prod_{j=1}^{n_2} \prod_{k=1}^{n_3} \left[\frac{1}{(n_i+1)! (n_j+1)! (n_k+1)!} \right] \left(2^{n_1+n_2+n_3+2-i} - 2^{n_1+n_2+n_3+2-i} \right) \\
(3) & \frac{1}{\text{Vol}(\Delta_n)} \sum_{i=1}^{n_1} \prod_{j=1}^{n_2} \prod_{k=1}^{n_3} \left[\frac{1}{(n_i+1)! (n_j+1)! (n_k+1)!} \right] \left(2^{n_1+n_2+n_3+2-i} - 2^{n_1+n_2+n_3+2-i} \right) \\
(4) & \frac{1}{\text{Vol}(\Delta_n)} \sum_{i=1}^{n_1} \prod_{j=1}^{n_2} \prod_{k=1}^{n_3} \left[\frac{1}{(n_i+1)! (n_j+1)! (n_k+1)!} \right] \left(2^{n_1+n_2+n_3+2-i} - 2^{n_1+n_2+n_3+2-i} \right)
\end{align*}

Corollary 2.9. Let $2 \leq n_1 \leq n_2$. The number of equivariant homeomorphism classes of small covers over $\Delta_{n_1} \times \Delta_{n_2}$ is $E(\Delta_{n_1} \times \Delta_{n_2}) = \frac{1}{\text{Vol}(\Delta_n)} \sum_{i=1}^{n_1} \prod_{j=1}^{n_2} \prod_{k=1}^{n_3} \left[\frac{1}{(n_i+1)! (n_j+1)! (n_k+1)!} \right]$

\begin{align*}
(2^{n_1+n_2-i} - 2^{n_1+n_2-i}) & \prod_{i=1}^{n_2} \frac{1}{(n_i+1)! (n_j+1)! (n_k+1)!} \quad \text{for } 2 \leq n_1 < n_2, \\
2^{n_1+1-i} & \prod_{i=1}^{n_2} \frac{1}{(n_i+1)! (n_j+1)! (n_k+1)!} \quad \text{for } 2 \leq n_1 = n_2.
\end{align*}

In the following, we consider the case $n_1 = 1$ and $m \leq 3$.

3. Colorings on $\Delta_{n_1} \times \Delta_{n_2} \times \Delta_{n_3}$ and $\Delta_1 \times \Delta_{n_2}$

In order to determine the number of equivariant homeomorphism classes of small covers over $\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3}$ and $\Delta_1 \times \Delta_{n_2}$, we calculate the number of colorings on $\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3}$ and $\Delta_1 \times \Delta_{n_2}$.

Let F_1, F_2 be two vertices of 1-simplex Δ_1. By F_3, \cdots, F_{n_2+3} we denote all facets of Δ_{n_2}, and by $F_{n_2+k}, \cdots, F_{n_2+k+3}$ we denote all facets of Δ_{n_3}. Set $\mathcal{F}' = \{ F_i | 1 \leq i \leq 2 \}, \mathcal{F}'' = \{ F_i | 1 \leq i \leq 3 \}, \mathcal{F}''' = \{ F_i | 1 \leq i \leq 4 \}$. Then $\mathcal{F}(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3}) = \mathcal{F}' \cup \mathcal{F}'' \cup \mathcal{F}'''$. We have

Theorem 3.1. The number of $(\mathbb{Z}_2)^{n_2+n_3+1}$-colorings on $\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3}$ is

$$|\Lambda(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})| = (2^{n_2+n_3+3-1} - 2^{n_2+n_3+3-1}) \prod_{i=1}^{n_2+n_3+1} \left(2^{n_2+n_3+1-1} \right).$$

Proof. Let $e_1, e_2, \cdots, e_{n_2+n_3+1}$ be the standard basis of $(\mathbb{Z}_2)^{n_2+n_3+1}$. We choose F_1 from \mathcal{F}', choose F_3, \cdots, F_{n_2+2} from \mathcal{F}'' and choose $F_{n_2+4}, \cdots, F_{n_2+n_3+3}$ from \mathcal{F}''' such that they meet at one vertex of $\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3}$. Then
By Lemma 2.2, we have that
$$|\Lambda(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})| = |\Lambda(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})| \times |GL(n_2 + n_3 + 1, \mathbb{Z}_2)| \times \prod_{i=1}^{n_1+n_2+1} (2^{n_2+n_3+1} - 2^{e-1})|\Lambda(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})|.$$

Write
$$A_0(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3}) = \{ \lambda \in \Lambda(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})| \lambda(F_2) = e_1 \},$$
$$A_1(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3}) = \{ \lambda \in \Lambda(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})| \exists k_1, \cdots, k_l \text{ such that } \lambda(F_2) = e_1 + e_{k_1} + \cdots + e_{k_l}, \text{ where } 2 \leq k_1 < \cdots < k_l \leq n_2 + 1 \text{ and } 1 \leq i \leq n_2 \},$$
$$A_2(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3}) = \{ \lambda \in \Lambda(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})| \exists t_1, \cdots, t_j \text{ such that } \lambda(F_2) = e_1 + e_{t_1} + \cdots + e_{t_j}, \text{ where } n_2 + 2 \leq t_1 < \cdots < t_j \leq n_2 + n_3 + 1 \text{ and } 1 \leq j \leq n_3 \},$$
$$A_3(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3}) = \{ \lambda \in \Lambda(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})| \exists k_1, \cdots, k_l, t_1, \cdots, t_j \text{ such that } \lambda(F_2) = e_1 + e_{k_1} + \cdots + e_{k_l} + e_{t_1} + \cdots + e_{t_j}, \text{ where } 2 \leq k_1 < \cdots < k_l \leq n_2 + 1, n_2 + 2 \leq t_1 < \cdots < t_j \leq n_2 + n_3 + 1, 1 \leq i \leq n_2 \text{ and } 1 \leq j \leq n_3 \}. $$

By the definition of $(\mathbb{Z}_2)^{n_2+n_3+1}$-colorings, we have $|\Lambda(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})| = \prod_{i=1}^{3} |\Lambda(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})|$. Then, our argument is divided into the following cases.

Case 1. Calculation of $|A_0(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})|$.

By the linear independence condition of characteristic functions, we have $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1}, e_2 + \cdots + e_{n_2+1} + e_{n_1+1} + e_{n_1+2} + \cdots + e_{n_1+2} + e_{n_1+3} + \cdots + e_{n_1+3}$, where $n_2 + 2 \leq g_1 < \cdots < g_{n_3} \leq n_2 + n_3 + 1$ and $1 \leq s \leq n_2 + 1$.

When $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1}$ or $e_2 + \cdots + e_{n_2+1} + e_1$, by the linear independence condition of characteristic functions, $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1}$, where $1 \leq a_1 < \cdots < a_s \leq n_2 + 1$ and $1 \leq e_2 + \cdots + e_{n_2+1} + e_1$, where $n_2 + 2 \leq g_1 < \cdots < g_{n_3} \leq n_2 + n_3 + 1$ and $1 \leq e_2 + \cdots + e_{n_2+1} + e_1$, similarly we have $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1}$.

Thus, we have $|A_0(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})| = 2^{n_2+2} + 2^{n_3+2} - 4$.

Case 2. Calculation of $|A_1(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})|$.

By the linear independence condition of characteristic functions, no matter which value of $\lambda(F_2)$ is chosen, we have $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1}$ or $e_2 + \cdots + e_{n_2+1} + e_{n_1+1} + e_{n_1+2} + \cdots + e_{n_1+2} + e_{n_1+3} + \cdots + e_{n_1+3}$, where $n_2 + 2 \leq g_1 < \cdots < g_{n_3} \leq n_2 + n_3 + 1$ and $1 \leq h \leq n_2 + n_3 + 1$.

When $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1}$, by the linear independence condition of characteristic functions, $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1} + e_{n_1+1} + e_{n_1+2} + \cdots + e_{n_1+2} + e_{n_1+3} + \cdots + e_{n_1+3}$, where $1 \leq a_1 < \cdots < a_s \leq n_2 + 1$ and $0 \leq s \leq n_2 + 1$.

When $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1} + e_{n_1+1} + e_{n_1+2} + \cdots + e_{n_1+2} + e_{n_1+3} + \cdots + e_{n_1+3}$, where $n_2 + 2 \leq g_1 < \cdots < g_{n_3} \leq n_2 + n_3 + 1$ and $1 \leq h \leq n_3$, similarly we have $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1}$.

Thus, we have $|A_1(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})| = (2^{n_2+1} - 1)(2^{n_3} + 2^{n_3+1} - 1)$.

Case 3. Calculation of $|A_2(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})|$.

By the linear independence condition of characteristic functions, no matter which value of $\lambda(F_2)$ is chosen, we have $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1}$, $e_2 + \cdots + e_{n_2+1} + e_1$, $e_2 + \cdots + e_{n_2+1} + e_{n_1+1} + e_{n_1+2} + \cdots + e_{n_1+2} + e_{n_1+3} + \cdots + e_{n_1+3}$, where $n_2 + 2 \leq g_1 < \cdots < g_{n_3} \leq n_2 + n_3 + 1$ and $1 \leq h \leq n_3$.

When $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1}$, we have $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1} + e_1$, where $2 \leq a_1 < \cdots < a_s \leq n_2 + 1$ and $0 \leq s \leq n_2$. When $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1} + e_{n_1+1} + e_{n_1+2} + \cdots + e_{n_1+2} + e_{n_1+3} + \cdots + e_{n_1+3}$, where $n_2 + 2 \leq g_1 < \cdots < g_{n_3} \leq n_2 + n_3 + 1$ and $1 \leq h \leq n_3$, we have $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1} + e_{n_1+1} + e_{n_1+2} + \cdots + e_{n_1+2} + e_{n_1+3} + \cdots + e_{n_1+3}$.

Thus, we have $|A_2(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})| = (2^{n_3} - 1)(2^{n_2} + 2^{n_3+1} - 1)$.

Case 4. Calculation of $|A_3(\Delta_1 \times \Delta_{n_2} \times \Delta_{n_3})|$.

By the linear independence condition of characteristic functions, no matter which value of $\lambda(F_2)$ is chosen,
we have $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1}$ or $e_2 + \cdots + e_{n_2+1} + e_{g_1} + \cdots + e_{g_t}$, where $n_2 + 2 \leq g_1 < \cdots < g_t \leq n_2 + n_3 + 1$ and $1 \leq h \leq n_3$. When $\lambda(F_{n_2+4}) = e_2 + \cdots + e_{n_2+1}$, we have $\lambda(F_{n_2+n_3+1}) = e_{n_2+2} + \cdots + e_{n_2+n_3+1} + e_{g_1} + \cdots + e_{g_t}$, where $2 \leq a_1 < \cdots < a_s \leq n_2 + 1$ and $0 \leq s \leq n_2$. When $\lambda(F_{n_2+3}) = e_2 + \cdots + e_{n_2+1} + e_{g_1} + \cdots + e_{g_t}$, where $n_2 + 2 \leq g_1 < \cdots < g_t \leq n_2 + n_3 + 1$ and $1 \leq h \leq n_3$, we have $\lambda(F_{n_2+n_3+1}) = e_{n_2+2} + \cdots + e_{n_2+n_3+1}$.

Thus, we have $|A_3(\Delta \times \Delta_2 \times \Delta_3)| = (2^{n_2} - 1)(2^{n_3} - 1)(2^{n_2+n_3} - 1)$.

The proof is completed. ☐

In the similar way, we can prove the following

Theorem 3.2. The number of $(\mathbb{Z}_2)^{n_2+1}$-colorings over $\Delta_1 \times \Delta_2$ is

$$|\Lambda(\Delta_1 \times \Delta_2)| = \prod_{i=1}^{n_2+1} (2^{n_2+1} - 2^{-1}).$$

In fact, Choi obtained the above two theorems in [4, Example 2.9].

4. The number of small covers up to equivariant homeomorphism

In this section, we determine the number of equivariant homeomorphism classes of small covers over $\Delta_1 \times \Delta_2 \times \Delta_3$ and $\Delta_1 \times \Delta_2 \times \Delta_3$.

Theorem 4.1. The number of equivariant homeomorphism classes of small covers over $\Delta_1 \times \Delta_2 \times \Delta_3$ is $E(\Delta_1 \times \Delta_2 \times \Delta_3) =$

$$\begin{array}{l}
(1) \frac{\prod_{j=1}^{n_2+1} (2^{n_2+n_3} - 2^{-1})}{2^{(n_2+1)(n_3+1)}} (2^{2n_2+n_3} + 2^{n_2+2n_3} + 2^{2n_3} + 2^{2n_2} + 3 \cdot 2^{n_2+1} + 3 \cdot 2^{n_3+1} + 2^{n_2+n_3} - 7) \text{ for } 1 < n_2 < n_3, \\
(2) \frac{\prod_{j=1}^{n_2+1} (2^{n_2+n_3} - 2^{-1})}{3 \cdot 2 \cdot 2^{n_2+1} + 3 \cdot 2^{n_3+1} + 2^{n_2+n_3} - 7} \text{ for } 1 < n_2 = n_3, \\
(3) \frac{\prod_{j=1}^{n_2+1} (2^{n_2+n_3} - 2^{-1})}{2^{2n_2+n_3} + 2^{n_2+2n_3} + 2^{2n_3} + 2^{2n_2} + 3 \cdot 2^{n_2+1} + 3 \cdot 2^{n_3+1} + 2^{n_2+n_3} - 7} \text{ for } 1 < n_2 = n_3, \\
(4) 259 \text{ for } 1 = n_2 = n_3.
\end{array}$$

Proof. First we consider the case $1 < n_2 < n_3$. From Theorem 2.3, Burnside Lemma and Corollary 2.5, we have that when $1 < n_2 < n_3$,

$$E(\Delta_1 \times \Delta_2 \times \Delta_3) = \frac{1}{2^{(n_2+1)(n_3+1)}} \sum_{g \in Aut(F(\Delta_1 \times \Delta_2 \times \Delta_3))} |\Lambda_g|,$$

where $\Lambda_g = \{ \lambda \in \Lambda(\Delta_1 \times \Delta_2 \times \Delta_3) | \lambda = \lambda \circ g \}$.

From Corollary 2.5, when $1 < n_2 < n_3$, the automorphism group $Aut(F(\Delta_1 \times \Delta_2 \times \Delta_3)) \cong S_2 \times S_{n_2+1} \times S_{n_3+1}$.

If g is the generator of S_2-subgroup of $Aut(F(\Delta_1 \times \Delta_2 \times \Delta_3))$ and $\lambda \in \Lambda_g$, then $\lambda(F_1) = \lambda(F_2)$. By the argument of Case 1 in Theorem 3.1, we have $|\Lambda_g| = (2^{n_2+2} + 4 \cdot 2^{n_2+2} - 4) \prod_{i=1}^{n_2+n_3+1} (2^{n_2+n_3+1} - 2^{-1})$. If g isn’t the generator of the S_2-subgroup and isn’t unit element of $Aut(F(\Delta_1 \times \Delta_2 \times \Delta_3))$, then by the linear independence condition of characteristic functions we know that Λ_g is empty. From Theorem 3.1 we have that when $1 < n_2 < n_3$,

$$E(\Delta_1 \times \Delta_2 \times \Delta_3) = \frac{\prod_{j=1}^{n_2+n_3+1} (2^{n_2+n_3+1} - 2^{-1})}{2^{(n_2+1)(n_3+1)}} (2^{2n_2+n_3} + 2^{n_2+2n_3} + 2^{2n_3} + 2^{2n_2} + 3 \cdot 2^{n_2+1} + 3 \cdot 2^{n_3+1} - 2^{n_2+n_3} - 7).$$

When $1 < n_2 = n_3$, similarly we determine the number $E(\Delta_1 \times \Delta_2 \times \Delta_3)$.

Next we consider the case $1 = n_2 < n_3$. From Theorem 2.3, Burnside Lemma and Corollary 2.5, we have that when $1 = n_2 < n_3$,
\[
E(\Delta_1 \times \Delta_1 \times \Delta_n) = \frac{1}{6(n+1)!} \sum_{\gamma \in \text{Aut}(\mathcal{F}(\Delta_1 \times \Delta_1 \times \Delta_n))} |\Lambda_\gamma|,
\]
where \(\Lambda_\gamma = \{ \lambda \in \text{Aut}(\Delta_1 \times \Delta_1 \times \Delta_n) : \lambda = \lambda \circ g \} \).

From Corollary 2.5, when \(n_2 < n_3\), the automorphism group \(\text{Aut}(\mathcal{F}(\Delta_1 \times \Delta_1 \times \Delta_n)) \cong S_2 \times S_2 \times S_2 \times S_{n_1+1}\).

If \(g\) is the generator of the first \(S_2\)-subgroup of \(\text{Aut}(\mathcal{F}(\Delta_1 \times \Delta_1 \times \Delta_n))\) and \(\lambda \in \Lambda_g\), then \(\lambda(F_1) = \lambda(F_2)\).

By the argument of Case 1 in Theorem 3.1, we have \(|\Lambda_g| = (2^{n_2+2} + 4) \prod_{t=1}^{n_2+2} (2^{n_2+2} - 2^t - 1)\). If \(g\) is the generator \(b\) of the second \(S_2\)-subgroup of \(\text{Aut}(\mathcal{F}(\Delta_1 \times \Delta_1 \times \Delta_n))\) and \(\lambda \in \Lambda_g\), then \(|\lambda(F_3) = \lambda(F_4)\).

By the argument of Theorem 3.1, we also have \(|\Lambda_\gamma| = (2^{n_2+2} + 4) \prod_{t=1}^{n_2+2} (2^{n_2+2} - 2^t - 1)\). If \(g\) is another automorphism and \(\lambda\) isn't unit element of \(\text{Aut}(\mathcal{F}(\Delta_1 \times \Delta_1 \times \Delta_n))\), by the linear independence condition of characteristic functions, we have that \(\Lambda_\gamma\) is empty. From Theorem 3.1, we have that when \(n_2 < n_3\),

\[
E(\Delta_1 \times \Delta_1 \times \Delta_n) = \prod_{t=1}^{n_2+2} \frac{(2^{n_2+2} - 2^t - 1)}{2(n_1+1)!} (3 \cdot 2^{n_2} + 3 \cdot 2^{n_2+2} + 17).
\]

When \(n_2 = n_3\), \(\Delta_1 \times \Delta_2 \times \Delta_n\) is a 3-cube \(P^3\) and the automorphism group \(\text{Aut}(\mathcal{F}(P^3)) \cong S_2 \times S_3\). From [4], we know that there are 259 equivariant homeomorphism classes of small covers over \(P^3\).

The proof is completed. \(\square\)

Remark 2. When \(2 \leq n_1 \leq n_2 \leq n_3\), by calculating the number of colorings we can also determine the number of equivariant homeomorphism classes of small covers over \(\Delta_{n_1} \times \Delta_{n_2} \times \Delta_{n_3}\) and the result is the same as Corollary 2.8.

Similarly, we have

Theorem 4.2. The number of equivariant homeomorphism classes of small covers over \(\Delta_1 \times \Delta_{n_1}\) is

\[
E(\Delta_1 \times \Delta_{n_1}) = \begin{cases}
\frac{(2^{n_2+3}) \prod_{t=1}^{n_1} (2^{n_2+1} - 2^t - 1)}{2(n_1+1)!}, & \text{for } n_2 > 1, \\
6, & \text{for } n_2 = 1.
\end{cases}
\]

5. Orientable small covers on the product of simplices

Nakayama and Nishimura found an orientability condition for a small cover [11].

Theorem 5.1. For a basis \(\{e_1, \cdots, e_n\}\) of \((\mathbb{Z}_2)^n\), a homomorphism \(\epsilon : (\mathbb{Z}_2)^n \rightarrow \mathbb{Z}_2 = \{0, 1\}\) is defined by \(\epsilon(e_i) = 1\) for \(i = 1, \cdots, n\). A small cover \(M(\lambda)\) over a simple convex polytope \(P^n\) is orientable if and only if there exists a basis \(\{e_1, \cdots, e_n\}\) of \((\mathbb{Z}_2)^n\) such that the image of \(\epsilon \lambda\) is \([1]\).

We call a \((\mathbb{Z}_2)^n\)-coloring which satisfies the orientability condition in Theorem 5.1 an orientable coloring of \(P^n\). We know that there exists an orientable small cover over every simple convex 3-polytope [11]. Similarly we can know the existence of orientable small covers over the product of at most three simplices by existence of orientable colorings and determine the number of equivariant homeomorphism classes.

By \(O(P^n)\) we denote the set of all orientable colorings on \(P^n\). There is a natural action of \(GL(n, \mathbb{Z}_2)\) on \(O(P^n)\) defined by the correspondence \(\lambda \mapsto \sigma \circ \lambda\), and the action on \(O(P^n)\) is free. Assume that \(F_1, \cdots, F_n\) of \(\mathcal{F}(P^n)\) meet at one vertex \(p\) of \(P^n\). Let \(e_1, \cdots, e_n\) be the standard basis of \((\mathbb{Z}_2)^n\). Write \(B(P^n) = \{ \lambda \in O(P^n) | \lambda(F_i) = e_{i1} \}\) for \(i = 1, \cdots, n\). It is easy to check that \(B(P^n)\) is the orbit space of \(O(P^n)\) under the action of \(GL(n, \mathbb{Z}_2)\).

Remark 3. In fact, we have \(B(P^n) = \{ \lambda \in O(P^n) | \lambda(F_j) = e_{j1} \}\) for \(j = 1, \cdots, n\), and for \(n+1 \leq j \leq \ell\), \(\lambda(F_j) = e_{j1} + e_{j2} + \cdots + e_{j_{n+1}}\), where \(1 \leq j_1 < j_2 < \cdots < j_{n+1} \leq n\). Below we show that \(\lambda(F_j) = e_{j1} + e_{j2} + \cdots + e_{j_{n+1}}\) for \(n+1 \leq j \leq \ell\).
If $\lambda \in O(P^n)$, there exists a basis $\{e'_1, \ldots, e'_n\}$ of $(\mathbb{Z}_2)^n$ such that for $1 \leq i \leq \ell$, $\lambda(F_i) = e'_{i_1} + \cdots + e'_{i_{\ell+1}}$, where $1 \leq i_1 < \cdots < i_{\ell+1} \leq n$. Since $\lambda(F_i) = e_i$ for $i = 1, \ldots, n$, we have $e_i = e'_{i_1} + \cdots + e'_{i_{\ell+1}}$. So we obtain that for $n + 1 \leq j \leq \ell$, there aren’t $j_1, \ldots, j_{\ell+1}$ such that $\lambda(F_j) = e'_{j_1} + \cdots + e'_{j_{\ell+1}}$, where $1 \leq j_1 < \cdots < j_{\ell+1} \leq n$.

Since $B(P^n)$ is the orbit space of $O(P^n)$, we have

Lemma 5.2. $|O(P^n)| = |B(P^n)| \times |GL(n, \mathbb{Z}_2)|$.

Two orientable small covers $M(\lambda_1)$ and $M(\lambda_2)$ over P^n are D-J equivalent if and only if there is $\sigma \in GL(n, \mathbb{Z}_2)$ such that $\lambda_1 = \sigma \circ \lambda_2$. Thus, the number of D-J equivalence classes of orientable small covers over P^n is $|B(P^n)|$.

One can define the right action of $Aut(F(P^n))$ on $O(P^n)$ by $\lambda \times h \mapsto \lambda \circ h$, where $\lambda \in O(P^n)$ and $h \in Aut(F(P^n))$. By improving the classifying result on small covers in [9], we have

Theorem 5.3. Two orientable small covers over an n-dimensional simple convex polytope P^n are equivariantly homeomorphic if and only if there is $h \in Aut(F(P^n))$ such that $\lambda_1 = \lambda_2 \circ h$, where λ_1 and λ_2 are their corresponding orientable colorings on P^n.

Proof. We know Theorem 5.3 is true by combining Lemma 5.4 in [9] with Theorem 5.1. \square

By Theorem 5.3, the number of orbits of $O(P^n)$ under the action of $Aut(F(P^n))$ is just the number of equivariant homeomorphism classes of orientable small covers over P^n. So we also are going to count the orbits.

In the similar way, we calculate the number of all orientable colorings on the product of m simplices for $m \leq 3$ by Theorem 5.1, Remark 3 and Lemma 5.2.

Theorem 5.4. By $|O(\Delta_{n_1} \times \Delta_{n_2} \times \Delta_{n_3})|$ we denote the number of all orientable colorings on $\Delta_{n_1} \times \Delta_{n_2} \times \Delta_{n_3}$. Then we have

1. $|O(\Delta_{n_1} \times \Delta_{n_2} \times \Delta_{n_3})| = (2^{4n_1+2n_2-5} + 2^{4n_1+4n_2-5} + 2^{2n_1+2n_2-5} + 2^{2n_1+4n_2-5} + 2^{4n_2+2n_3-5} + 2^{4n_2+4n_3-5} - 2^{4n_1-4} - 2^{4n_2-4} - 2^{4n_3-4} - 2^{2n_1+2n_2-3} - 2^{2n_1+2n_3-3} - 2^{2n_2+2n_3-3} - 2^{4n_1-1} + 1) \prod_{i=1}^{2n_1+2n_2+2n_3-2} (2^{2n_1+2n_2+2n_3-2} - 2^{i-1})$ for $n_1 = 2u_1 - 1$, $n_2 = 2u_2 - 1$ and $n_3 = 2u_3 - 1$,

2. $|O(\Delta_{n_1} \times \Delta_{n_2} \times \Delta_{n_3})| = (2^{4n_1+2n_2-5} + 2^{4n_1+4n_2-5} + 2^{4n_1+2n_3-4} + 2^{4n_2+2n_3-4} - 2^{4n_1-4} - 2^{4n_2-4} - 2^{4n_3-4} - 2^{2n_1+2n_2-3}) \prod_{i=1}^{2n_1+2n_2+2n_3-2} (2^{2n_1+2n_2+2n_3-2} - 2^{i-1})$ for $n_1 = 2u_1 - 1$, $n_2 = 2u_2 - 1$ and $n_3 = 2u_3$,

3. $|O(\Delta_{n_1} \times \Delta_{n_2} \times \Delta_{n_3})| = (2^{4n_1+2n_2-4} + 2^{4n_1+2n_2-4} - 2^{4n_1-4} - 2^{4n_2-4} - 2^{4n_3-4} - 2^{4n_1-4} - 2^{4n_2-4} - 2^{4n_3-4} - 2^{2n_1+2n_2-3}) \prod_{i=1}^{2n_1+2n_2+2n_3-2} (2^{2n_1+2n_2+2n_3-2} - 2^{i-1})$ for $n_1 = 2u_1 - 1$, $n_2 = 2u_2 - 1$ and $n_3 = 2u_3$.

4. There exist no orientable colorings over $\Delta_{n_1} \times \Delta_{n_2} \times \Delta_{n_3}$ for $n_1 = 2u_1$, $n_2 = 2u_2$ and $n_3 = 2u_3$.

Theorem 5.5. The number of all orientable colorings on $\Delta_{n_1} \times \Delta_{n_2}$ is $|O(\Delta_{n_1} \times \Delta_{n_2})| = (2^{n_1+2n_2-2} - 2^{n_1+2n_2-2} - 1) \prod_{i=1}^{2^{n_1+2n_2-2} - 2^{i-1}} (2^{n_1+2n_2-2} - 2^{i-1})$ for $n_1 = 2u_1 - 1$ and $n_2 = 2u_2 - 1$,

$2^{n_1+2n_2-2} \prod_{i=1}^{2^{n_1+2n_2-2} - 2^{i-1}} (2^{n_1+2n_2-2} - 2^{i-1})$ for $n_1 = 2u_1 - 1$ and $n_2 = 2u_2$,

0 for $n_1 = 2u_1$ and $n_2 = 2u_2$.

Theorem 5.6. The number of all orientable colorings on Δ_{n_1} is

$|O(\Delta_{n_1})| = \begin{cases} 2^{n_1-1} (2^{n_1-1} - 2^{n_1-1}) & \text{for } n_1 = 2u_1 - 1, \\ 0 & \text{for } n_1 = 2u_1. \end{cases}$
Similarly, we determine the number of equivariant homeomorphism classes of all orientable small covers over the product of at most three simplices by Corollary 2.5, Burnside Lemma and Theorems 5.3-5.6.

Theorem 5.7. By \(E_o(\Lambda_{n_1} \times \Lambda_{n_2} \times \Lambda_{n_3}) \) we denote the number of equivariant homeomorphism classes of orientable small covers over \(\Lambda_{n_1} \times \Lambda_{n_2} \times \Lambda_{n_3} \). If \(n_1 = 2u_1 - 1 \), \(n_2 = 2u_2 - 1 \) and \(n_3 = 2u_3 - 1 \), then \(E_o(\Lambda_{n_1} \times \Lambda_{n_2} \times \Lambda_{n_3}) = \)

\[
\begin{align*}
1 & \quad \text{for } u_1 \neq u_2, u_1 \neq u_3, u_2 \neq u_3 \text{ and } u_1, u_2, u_3 > 1, \\
2 & \quad \text{for } u_1 = u_2, u_1 \neq u_3 \text{ and } u_1, u_3 > 1, \\
3 & \quad \text{for } u_1 = u_2 = u_3 > 1, \\
(4) & \quad (2u_2 + u_3 - 5 + 2^{u_2 + 4u_3 - 5} + 2^{u_2 - 4} + 2^{u_3 - 1} + 2^{u_2 + 1} - 2^{u_2 + 2u_3 - 1}) \frac{2^{u_2 + 2u_3 - 1} \prod_{i=1}^{2u_2 + 2u_3 - 1 - 2^{u_2 + 2u_3 - 1}}}{2(2^{u_2 + u_3 - 1})} \quad \text{for } u_1 = 1, u_2 \neq u_3 \\
(5) & \quad (2^{u_2 + 2u_3 - 5} + 2^{u_2 + 4u_3 - 5} + 2^{u_2 - 4} + 2^{u_3 - 1} + 2^{u_2 + 1} - 2^{u_2 + 2u_3 - 1}) \frac{2^{u_2 + 2u_3 - 1} \prod_{i=1}^{2^{u_2 + 2u_3 - 1} - 2^{u_2 + 2u_3 - 1}}}{4(2^{u_2 + u_3 - 1})} \quad \text{for } u_1 = 1 \text{ and } u_2 = 3 > 1, \\
(6) & \quad 3 \cdot 2^{u_2 - 4} + 2^{u_3 + 5} \frac{2^{u_2 + 1} \prod_{i=1}^{2^{u_2 + 1} - 2^{u_2 + 1}}}{8(2^{u_2 + 1})} \quad \text{for } u_1 = u_2 = 1 \text{ and } u_3 > 1, \\
(7) & \quad 70 \quad \text{for } u_1 = u_2 = u_3 = 1.
\end{align*}
\]

Theorem 5.8. If \(n_1 = 2u_1 - 1 \), \(n_2 = 2u_2 - 1 \) and \(n_3 = 2u_3 \), then \(E_o(\Lambda_{n_1} \times \Lambda_{n_2} \times \Lambda_{n_3}) = \)

\[
\begin{align*}
1 & \quad \text{for } u_1 \neq u_2 \text{ and } u_1, u_2 > 1, \\
2 & \quad \text{for } u_1 = u_2 > 1, \\
(3) & \quad (2^{u_2 + 2u_3 - 2} + 2^{u_2 + 1} - 2) \prod_{i=1}^{2^{u_2 + 2u_3 - 2} + 2^{u_2 + 1} - 2} \frac{2^{u_2 + 2u_3 - 1} \prod_{i=1}^{2^{u_2 + 2u_3 - 1} - 2^{u_2 + 2u_3 - 1}}}{2(2^{u_2 + u_3 - 1})} \quad \text{for } u_1 = 1 \text{ and } u_2 > 1, \\
(4) & \quad (2^{u_2 + 2} + 2^{u_3 + 1} - 2) \frac{2^{u_2 + 2} \prod_{i=1}^{2^{u_2 + 2} - 2^{u_2 + 2}}}{8(2^{u_2 + 1})} \quad \text{for } u_1 = u_2 = 1.
\end{align*}
\]

Theorem 5.9. If \(n_1 = 2u_1 - 1 \), \(n_2 = 2u_2 \) and \(n_3 = 2u_3 \), then \(E_o(\Lambda_{n_1} \times \Lambda_{n_2} \times \Lambda_{n_3}) = \)

\[
\begin{align*}
1 & \quad \text{for } u_1 > 1 \text{ and } u_2 \neq u_3, \\
2 & \quad \text{for } u_1 > 1 \text{ and } u_2 = u_3, \\
(3) & \quad (2^{u_2 + 1} + 2^{u_3 + 1} - 2) \prod_{i=1}^{2^{u_2 + 1} + 2^{u_3 + 1} - 2} \frac{2^{u_2 + 2} \prod_{i=1}^{2^{u_2 + 2} - 2^{u_2 + 2}}}{8(2^{u_2 + 1})} \quad \text{for } u_1 = 1 \text{ and } u_2 \neq u_3, \\
(4) & \quad (2^{u_2 + 1} + 2^{u_3 + 1} - 2) \prod_{i=1}^{2^{u_2 + 1} + 2^{u_3 + 1} - 2} \frac{2^{u_2 + 2} \prod_{i=1}^{2^{u_2 + 2} - 2^{u_2 + 2}}}{8(2^{u_2 + 1})} \quad \text{for } u_1 = 1 \text{ and } u_2 = u_3.
\end{align*}
\]

Theorem 5.10. If \(n_1 = 2u_1, n_2 = 2u_2 \) and \(n_3 = 2u_3 \), there exist no orientable small covers over \(\Lambda_{n_1} \times \Lambda_{n_2} \times \Lambda_{n_3} \).

Theorem 5.11. By \(E_o(\Lambda_{n_1} \times \Lambda_{n_2}) \) we denote the number of equivariant homeomorphism classes of orientable small covers over \(\Lambda_{n_1} \times \Lambda_{n_2} \). Then \(E_o(\Lambda_{n_1} \times \Lambda_{n_2}) = \)

\[
\begin{align*}
\text{...}
\end{align*}
\]
Theorem 5.12. By $E_{\nu}(\Delta_{n})$ we denote the number of equivariant homeomorphism classes of orientable small covers over Δ_{n}. Then $E_{\nu}(\Delta_{n}) =$

$$
\begin{cases}
\frac{|O(\Delta_{n+1})|}{(2n)!} & \text{for } n = 2u_1 - 1 > 1, n_2 = 2u_2 - 1 > 1 \text{ and } n_1 \neq n_2, \\
\frac{|O(\Delta_{n+1})|}{(2n)!} & \text{for } n = 2u_1 - 1 > 1, n_2 = 2u_2 - 1 > 1 \text{ and } n_1 = n_2, \\
(2^{2n-2} + 1)\frac{2^{u_2}}{(2^{2n-2-i})} & \text{for } n_1 = 1 \text{ and } n_2 = 2u_2 - 1 > 1, \\
3 & \text{for } n_1 = n_2 = 1, \\
\frac{|O(\Delta_{n+1})|}{(2n)!} & \text{for } n = 2u_1 - 1 > 1 \text{ and } n_2 = 2u_2, \\
\prod_{i=1}^{2u_2+i} (2^{2u_2+i}-2^{i-1}) & \text{for } n_1 = 1 \text{ and } n_2 = 2u_2, \\
0 & \text{for } n_1 = 2u_1 \text{ and } n_2 = 2u_2.
\end{cases}
$$

Remark 4. Actually all small covers over Δ_{2n_1-1} are orientable, and the number of equivariant homeomorphism classes of orientable small covers over Δ_{2n_1-1} is just the number of equivariant homeomorphism classes of small covers over Δ_{2n_1-1}.

References