On the Existence of Global Solutions for a Nonlinear Klein-Gordon Equation

Necat Polata, Hatice Taskesenb

aDepartment of Mathematics, Dicle University, 21280, Diyarbakir
bDepartment of Statistics, Yuzuncu Yil University, 65080, Van

Abstract. The aim of this work is to study the global existence of solutions for the Cauchy problem of a Klein-Gordon equation with high energy initial data. The proof relies on constructing a new functional, which includes both the initial displacement and the initial velocity: with sign preserving property of the new functional we show the existence of global weak solutions.

1. Introduction

The nonlinear Klein-Gordon equation with quadratic nonlinearity is
\[u_{tt} - u_{xx} + \alpha u - \beta u^2 = 0, \] (1)
where \(\alpha \) and \(\beta \neq 0 \). Eq. (1) arises in many scientific applications such as solid state physics, nonlinear optics and quantum field theory. The Klein-Gordon equation is the first relativistic equation in quantum mechanics for the wave function of a particle with zero spin. It was proposed as a relativistic generalization of the Schrödinger equation and was investigated in many papers [1, 2, 4–6, 9, 12, 15, 23, 26].

The goal of the present paper is to investigate the existence of global solutions for the Cauchy problem of the Klein-Gordon equation with dissipation
\[u_{tt} - \Delta u + u + u_t = |u|^{p-1} u, \quad x \in \mathbb{R}^n, \quad t > 0, \] (2)
\[u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad x \in \mathbb{R}^n, \] (3)
where \(u_0 \) and \(u_1 \) are the initial value functions, \(n \geq 2 \) and \(1 < p < \frac{n+2}{n-2} \) if \(n \geq 3 \), \(1 < p < \infty \) if \(n = 2 \). Evolution equations with dissipation are studied from various aspects in many papers [3, 13, 16, 17, 19].

In the present paper, we investigate the existence of global solutions by using the potential well method [18]. Sattinger [18] investigated global existence of the initial-boundary value problem of the following nonlinear hyperbolic equation
\[u_{tt} - \nabla^2 u + f(x, u) = 0 \]
in the case of initial energy less than the potential well depth \(d \). Then this result extended to the total energy of the initial data is less than or equal to \(d \) [24]. Very recently in a paper of Kutev et al. [8] it was proved that there exist global solutions when the total energy of initial data is greater than \(d \) and they established the existence of global weak solutions by constructing a functional which include both the initial displacement and the initial velocity. Because they showed numerically that the initial velocity plays a crucial role in the behaviour of the problem. Problem \((2), (3)\) was already treated in the \(E(0) \leq d \) case by Runzhang [25], but the functional \(f(u) \) used in their paper fails to prove the \(E(0) > d \) case. Although a strongly damped nonlinear Klein-Gordon equation is studied in [26] and a blow up result was given for the high energy initial data, i.e. \(E(0) > d \), the global existence was studied for \(E(0) \leq d \). In the present paper, we reinvestigate the problem for the case \(E(0) \leq d \), where we use a standard functional that include only the initial displacement \(u_0 \). Then, we prove that the existence of global solutions for \(E(0) > d \) can not be proved via sign invariance of this functional. A new functional which includes both the initial displacement \(u_0 \) and initial velocity \(v_1 \) will be constructed for the case of high energy initial data. Functionals depending on \(u_0 \) and \(v_1 \) are introduced for the first time in [8] and then they were successfully applied for proving the global existence to some Boussinesq-type equations in [20–22].

Throughout this paper \(H^p = H^p(\mathbb{R}^n) \) will denote the \(L^2 \) Sobolev space on \(\mathbb{R}^n \) with norm \(\| f \|_{H^p} = \|(I - \Delta)^{\frac{s}{2}} f\| = \|(1 + k^2)^{\frac{s}{2}} f\| \), where \(s \) is a real number, \(I \) is unitary operator. The notation \(\| f \|_{H^p}, \| f \|_p \) and \(\| f \|_\infty \) will be used instead of norms of \(L^p(\mathbb{R}^n), L^2(\mathbb{R}^n) \) and \(L^\infty(\mathbb{R}^n) \), respectively.

2. Global Existence for \(E(0) \leq d \)

The present section refers to two points. Firstly, we define a functional which includes only the initial displacement, and prove the existence of global solutions for \(E(0) \leq d \) by aid of the sign invariance of this functional. We then show that this functional fails to prove the global existence in the case of \(E(0) > d \).

Now, let us define

\[
E(t) = E(u(t), u_1(t)) = \frac{1}{2} \left(\|u_1\|^2 + \|\nabla u\|^2 + \|u\|^2 \right) - \frac{1}{p+1} \|u\|_{p+1}^{p+1},
\]

(4)

\[
E(t) + \int_0^t \|u_t\|^2 \, dt = E(0)
\]

\[
f(u) = \frac{1}{2} \left(\|\nabla u\|^2 + \|u\|^2 \right) - \frac{1}{p+1} \|u\|_{p+1}^{p+1},
\]

(5)

\[
l(u) = \left(\|\nabla u\|^2 + \|u\|^2 \right) - \|u\|_{p+1}^{p+1},
\]

(6)

\[
d = \inf_{u \in N} f(u),
\]

(7)

where \(N = \{ u \in H^1 \mid I(u) = 0, \|u\|_H \neq 0 \} \), \(E(u(t), u_1(t)) \) is the total energy, \(f(u) \) is the potential energy and \(d \) is the depth of potential well which can exactly be written in terms of the Sobolev constant as

\[
d = \frac{p-1}{2(p+1)} \left(S_p^{p+1} \right)^{2/(p-1)}.
\]

(8)

Here \(S_p \) is the embedding constant from \(H^1(\mathbb{R}^n) \) into \(L^{p+1}(\mathbb{R}^n) \) given by

\[
S_p = \sup_{u \in H^1} \frac{\|u\|_{p+1}^{p+1}}{\|u\|_H}.
\]

When \(0 < E(0) < d \), by the sign invariance of (6) one can prove the existence of global solutions of (2), (3). Existence of global solutions was proved by such functionals for problem (2), (3) in [25]. It was proved in
[25] that if \(I(u) > 0 \), then every weak solutions of the problem exist globally, and if \(I(u) < 0 \), then every weak solutions of the problem blow up in finite time.

For \(\sigma > -\frac{p-1}{2} \), define
\[
I_{\sigma}(u) = (1 - \sigma) \left(\| \nabla u \|^2 + \| u \|^2 \right) - \| u \|^{p+1}_{p+1} = I(u) - \sigma \left(\| \nabla u \|^2 + \| u \|^2 \right).
\]

Then \(D_{\sigma} \) and \(N_{\sigma} \) are defined by
\[
D_{\sigma} = \inf_{u \in N_{\sigma}} I_{\sigma}(u), \quad N_{\sigma} = \{ u \in H^1 : I_{\sigma}(u) = 0, \| u \|_{H^1} \neq 0 \}.
\]

Obviously, taking \(\sigma = 0 \), \(I_{\sigma} \) corresponds to the functional \(I(u) \). Moreover, if \(\sigma < -\frac{p-1}{2} \) then \(D_{\sigma} < 0 \). In this case for \(E(0) = D_{\sigma} < 0 \), all weak solutions of (2), (3) blow-up in a finite time.

For \(\sigma \in \left(-\frac{p-1}{2}, 1 \right) \), we have the following lemmas.

Lemma 2.1. Assume that \(u \in H^1(R^n) \). If \(I_{\sigma}(u) < 0 \), then \(\| u \|_{H^1} > \left(\frac{1 - \sigma}{\| \nabla u \|} \right)^{1/(p-1)} \). If \(I_{\sigma}(u) = 0 \), then \(\| u \|_{H^1} \geq \left(\frac{1 - \sigma}{\| \nabla u \|} \right)^{1/(p-1)} \) or \(\| u \|_{H^1} = 0 \).

Proof. First, since \(I_{\sigma}(u) < 0 \), we have \(\| u \|_{H^1} \neq 0 \). Hence, from
\[
(1 - \sigma) \| u \|_{H^1}^2 < \| u \|_{p+1}^{p+1} \leq S_p^{p+1} \| u \|_{H^1}^{p+1},
\]
we have \(\| u \|_{H^1} > \left(\frac{1 - \sigma}{\| \nabla u \|} \right)^{1/(p-1)} \).

If \(\| u \|_{H^1} = 0 \), then \(I_{\sigma}(u) = 0 \). If \(I_{\sigma}(u) = 0 \) and \(\| u \|_{H^1} \neq 0 \), then from
\[
(1 - \sigma) \| u \|_{H^1}^2 = \| u \|_{p+1}^{p+1} \leq S_p^{p+1} \| u \|_{H^1}^{p+1}
\]
it follows that \(\| u \|_{H^1} \geq \left(\frac{1 - \sigma}{\| \nabla u \|} \right)^{1/(p-1)} \). \(\square \)

Lemma 2.2. If \(\| u \|_{H^1} < \left(\frac{1 - \sigma}{\| \nabla u \|} \right)^{1/(p-1)} \), then \(I_{\sigma}(u) > 0 \).

Proof. By \(\| u \|_{H^1} < \left(\frac{1 - \sigma}{\| \nabla u \|} \right)^{1/(p-1)} \), we obtain
\[
\| u \|_{H^1}^{p+1} \leq S_p^{p+1} \| u \|_{H^1}^{p+1} < (1 - \sigma) \| u \|_{H^1}^2
\]
from which follows \(I_{\sigma}(u) > 0 \). \(\square \)

Theorem 2.3. Let \(D_{\sigma} \) be defined as above. Then for \(\sigma > -\frac{p-1}{2} \), we have
\[
D_{\sigma} = \frac{p-1 + 2\sigma}{2(p+1)} \left(\frac{1 - \sigma}{S_p^{p+1}} \right)^{2/(p-1)}.
\]

If we write \(D_{\sigma} \) in terms of \(d \), we obtain
\[
D_{\sigma} = \frac{p-1 + 2\sigma}{2(p+1)} \left[1 - \sigma \right]^{2/(p-1)} \frac{2 (p+1)}{p-1} d.
\]
Proof. If \(u \in N_{\sigma} \), we have by Lemma 2.1 that \(\| u \|_{H^1} \geq \left(\frac{1 - \sigma}{S_p} \right)^{(p-1)/2} \). In the proof of Lemma 2.1 the inequality (9) is an equality if \(u \) is a minimizer of the embedding \(H^1 \) into \(L^{p+1} \). Since \(\| u \|_{p+1} = S_p \| u \|_{H^1} \) is attained only for \(\bar{u} = (\cosh (\frac{p-1}{2}) x)^{-\frac{1}{p+1}} \) for \(n = 1 \) [11], and for the ground state solution of (2), (3) for \(n > 1 \) [14] and it has constant sign, we have

\[
\inf_{u \in N_{\sigma}} \| u \|_{H^1} = \left(\frac{1 - \sigma}{S_p} \right)^{(p-1)/2}.
\]

Hence from

\[
\inf_{u \in N_{\sigma}} \| u \|_{H^1} = \inf_{u \in N_{\sigma}} \left(\frac{1}{2} \| u \|_{H^1}^2 - \frac{1}{p+1} \| u \|_{p+1} \right)
\]

\[
= \inf_{u \in N_{\sigma}} \left(\frac{1}{2} - \frac{(1 - \sigma)}{p+1} \right) \| u \|_{H^1}^2 + \frac{1}{p+1} I_\sigma (u)
\]

\[
= \left(\frac{1}{2} - \frac{(1 - \sigma)}{p+1} \right) \inf_{u \in N_{\sigma}} \| u \|_{H^1}^2,
\]

and by definition of \(D_\sigma \) we obtain \(D_\sigma = \frac{p-1+2\sigma}{2(p+1)} \left(\frac{1 - \sigma}{S_p} \right)^{2(p-1)/2} \). \(\square \)

We can also state the following properties of \(D_\sigma \), which can be proved easily.

i) \(D_\sigma \) is strictly increasing on \(\sigma \in \left(-\frac{p-1}{2}, 0 \right) \cup (1, \infty) \) and strictly decreasing on \((0, 1) \).

ii) \(\lim_{\sigma \to 1} D_\sigma = 0 \), and \(D_{\sigma_0} = 0 \), where \(\sigma_0 = -\frac{p-1}{2} \).

The following theorems show the invariance of \(I_\sigma \) under the flow of (2), (3) for \(0 < E(0) < d \) and \(E(0) = d \), respectively, and can be proved by contradiction as in [20].

Theorem 2.4. Assume that \(u_0 \in H^1 (R^n), u_1 \in L^2 (R^n) \). Let \(0 < E(0) < d \). Then the sign of \(I_\sigma \) is invariant under the flow of (2), (3) for \(\sigma \in (\sigma_1, \sigma_2) \), where \(\sigma_1 \) and \(\sigma_2 \) are the corresponding minimal negative and minimal positive roots of equation \(D_\sigma = E(0) \).

Theorem 2.5. Let all the assumptions of Theorem 2.4 hold and that \(E(0) = d \). Then the sign of \(I_\sigma \) (recall that when \(E(0) = d \), we have \(\sigma_1 = \sigma_2 = 0 \)) is invariant with respect to (2), (3) for every \(t \in [0, \infty) \).

Now, we give a lemma for \(\sigma > 1 \), which states similar results to Lemmas 2.1, 2.2, and can be proved similarly.

Lemma 2.6. Assume that \(u \in H^1 (R^n) \). Let \(\sigma > 1 \). If \(I_\sigma (u) > 0 \), then \(\| u \|_{H^1} \geq s (\sigma) \). If \(I_\sigma (u) = 0 \), then \(\| u \|_{H^1} \geq s (\sigma) \) or \(\| u \|_{H^1} = 0 \), where \(s (\sigma) = \left(\frac{\sigma}{\sigma_m} \right)^{(p-1)/2} \). Moreover, if \(\| u \|_{H^1} < s (\sigma) \), then \(I_\sigma (u) \leq 0 \) and \(I_\sigma (u) = 0 \) if and only if \(\| u \|_{H^1} = 0 \).

Theorem 2.7. Assume that \(u_0 \in H^1 (R^n), u_1 \in L^2 (R^n) \). If \(E(0) > 0 \), then \(I_\sigma (u(t)) \leq 0 \) for every \(t > 0 \) and \(\sigma \geq \sigma_m \), where \(\sigma_m \) is the maximal positive root of \(D_\sigma = E(0) \).

Proof. We give the proof of the theorem for \(\sigma = \sigma_m \) and \(\sigma > \sigma_m \) separately. First, we prove the theorem for \(\sigma = \sigma_m \). By contradiction, assume that there exists some \(t' > 0 \) such that \(I_{\sigma_m} (u(t')) > 0 \). By Lemma 2.1, we have \(\| u \|_{H^1} > 0 \) and there exists a value \(\sigma > \sigma_m \) such that \(I_{\sigma} (u(t')) = 0 \). Then, by (4), \(D_{\sigma_m} = E(0) \geq \inf I (u(t')) \geq \inf I (u) = D_\sigma \). A contradiction occurs, which proves the theorem for \(\sigma = \sigma_m \). For \(\sigma \geq \sigma_m, I_{\sigma_m} (u(t)) \geq I_\sigma (u(t)) \) implies that the theorem is true for every \(\sigma \geq \sigma_m \). \(\square \)
The following Corollary gives a more precise result for subcritical initial energy.

Corollary 2.8. Suppose \(u_0 \in H^1 (\mathbb{R}^n), u_1 \in L^2 (\mathbb{R}^n) \). Let \(0 < E(0) < d \) and \(I_0 (u_0) > 0 \). Then,

\[
0 < I_0 (u(t)) \leq \sigma_m \| u \|_{H^1}^p
\]

for every \(t > 0 \).

Proof. We know that for \(I_0 (u(t)) > 0 \), the solution \(u(x,t) \) of problem (2), (3) is globally defined. Since \(E(0) = D_{\sigma_m} \) for some \(\sigma_m > 1 \) then by Theorem 2.7 we have \(I_{\sigma_m} (u(t)) \leq 0 \) for every \(t \in [0, \infty) \). Thus we get the inequality (11) from below and from above. \(\square \)

Remark 2.9. We tried to characterize the behavior of solutions for \(E(0) > d \) in terms of initial displacement. We constituted the new functional \(I_\sigma (u) \) and proved the sign invariance of \(I_\sigma (u) \) for \(0 < E(0) < d \) and \(E(0) = d \). But the case \(E(0) > d \) is still an open question, because from Theorem 2.7, we concluded that in this case \(I_\sigma (u) \) is always non-positive.

3. Main Results

We will introduce our new functional which will be used for global existence of solutions with high energy initial data.

\[
\tilde{M}(v, \omega) = \left(\| \nabla v \|^2 + \| v \|^2 \right) - \| v \|_{p+1}^{q+1} - (\omega, \omega)
\]

for every \(v \in H^1 \) and \(\omega \in L^2 \). For simplicity we denote

\[
M(u, t) = \tilde{M}(u(, t), u_t (, t)).
\]

The sign invariance of this new functional can be stated as follows.

Theorem 3.1. Let \(u_0 \in H^1 (\mathbb{R}^n), u_1 \in L^2 (\mathbb{R}^n) \) and \(E(0) > 0 \). For \(\sigma > \sigma_m \), assume that

\[
(u_1, u_0) + \frac{1}{2} \| u_0 \|^2 + \frac{(p + 1) \sigma}{p - 1 + (p + 3) \sigma} E(0) \leq 0.
\]

If \(M(u, 0) \) is positive, then \(M(u, t) \) is positive for every \(t \in [0, \infty) \).

Proof. [Proof] We prove the theorem by contradiction. Let us define

\[
\theta(t) = \| u \|^2 + \int_0^t \| u \|^2 \, dt.
\]

Then

\[
\theta'(t) = 2 (u_t, u) + \| u \|^2,
\]

\[
\theta''(t) = 2 \| u_t \|^2 + 2 (u_{tt}, u) + 2 (u_t, u)
\]

\[
= 2 \| u_t \|^2 + 2 \left[\| u \|_{p+1}^{q+1} - \| \nabla u \|^2 - \| u \|^2 - (u_t, u) \right] + 2 (u_t, u)
\]

\[
= -2M(u, t).
\]

To get a contradiction, let us assume that there exists some \(t' > 0 \) such that \(M(u, t') = 0 \). Since \(\theta''(t) < 0 \), we conclude that \(\theta'(t) \) is strictly decreasing on \([0, t')\). Moreover, (13) implies \(\theta'(0) < 0 \) and therefore \(\theta'(t) < 0 \) in
for every $t \in M$.

The proof of this theorem follows from adding some arguments to the local existence result.

Proof. Thereby $I_{E}(0)$ completes the proof.

Therefore

\[\left\| \nabla \theta^{0} \right\| ^{2} \geq \sigma_{m}^{-1} I_{0} (u (t')) \geq \sigma^{-1} \left\| u_{t} (t') \right\| ^{2}. \]

The use of this inequality in (14) gives

\[E (0) \geq \left(\frac{1}{2} + \frac{1}{p + 1} + \frac{p - 1}{2 (p + 1) \sigma} \right) \left\| u_{t} (t') \right\| ^{2} \]

\[= \frac{(p + 3) \sigma + p - 1}{2 (p + 1) \sigma} \left[\left\| (u_{t} (t') + u (t')) \right\| ^{2} - 2 \left(u_{t} (t'), u (t') \right) - \left\| u (t') \right\| ^{2} \right]. \]

From the monotonicity of $\theta (t)$ and $\theta' (t)$, we get

\[E (0) > \frac{(p + 3) \sigma + p - 1}{(p + 1) \sigma} \left[- (u_{1}, u_{0}) - \frac{1}{2} \left\| u_{0} \right\| ^{2} \right] \]

which contradicts with (13). Thus the proof is completed. \(\square \)

Theorem 3.2. Let $1 < p < \infty$ for $n = 2$; $1 < p < \frac{n+2}{n-2}$ for $n \geq 3$ and $u_{0} \in H^{1} (\mathbb{R}^{n})$, $u_{1} \in L^{2} (\mathbb{R}^{n})$. Suppose that $E (0) > 0$, $M (u, 0) > 0$ and (13) holds for some $\sigma > \sigma_{m}$. Then, the weak solution of problem (2),(3) is globally defined for every $t \in [0, \infty)$.

Proof. [Proof] The proof of this theorem follows from adding some arguments to the local existence result of Proposition 1.1 of [25]. $M (u, 0) > 0$ implies from the sign preserving property of $M (u, t)$ that $M (u, t) > 0$, thereby $l_{0} (u) > 0$ for every $t > 0$. From energy identity, we have

\[E (0) \geq \frac{1}{2} \left\| u_{t} \right\| ^{2} + \frac{p - 1}{2 (p + 1)} \left(\left\| \nabla u \right\| ^{2} + \left\| u \right\| ^{2} \right) + \frac{1}{p + 1} I (u) \]

\[\geq \frac{1}{2} \left\| u_{t} \right\| ^{2} + \frac{p - 1}{2 (p + 1)} \left(\left\| \nabla u \right\| ^{2} + \left\| u \right\| ^{2} \right). \]

Therefore $\left\| u_{t} \right\| _{L^{2}}$ and $\left\| u \right\| _{L^{2}}$ are bounded for every $t > 0$. The previously mentioned local existence theory completes the proof. \(\square \)

References

