The Expression for the Group Inverse of the Anti–triangular Block Matrix

Fapeng Dua, Yifeng Xueb

aSchool of mathematical & Physical Sciences, Xuzhou Institute of Technology, Xuzhou, 221008, Jiangsu Province, P. R. China
bDepartment of Mathematics, East China Normal University, Shanghai, 200241, P. R. China

Abstract. In this paper, we present the explicit expression for the group inverse of the sum of two matrices. As an application, the explicit expression for the group inverse of the anti-triangular block matrix \(\begin{pmatrix} A & B \\ C & D \end{pmatrix} \) and \(\begin{pmatrix} 0 & B \\ C & D \end{pmatrix} \) are obtained without any conditions on sub-blocks.

1. Introduction

Let \(M_n(\mathbb{C}) \) be the set of all \(n \times n \) matrix on complex field \(\mathbb{C} \) and let \(I \) denote the unit of \(M_n(\mathbb{C}) \). For an element \(A \in M_n(\mathbb{C}) \), if there is an element \(B \in M_n(\mathbb{C}) \) which satisfies \(ABA = A \), then \(B \) is called a \([1]\)-inverse of \(A \). If \(ABA = A \) and \(BAB = B \) hold, then \(B \) is called a \([2]\)-inverse of \(A \), denoted by \(A^+ \). An element \(B \) is called the Drazin inverse of \(A \), if \(B \) satisfies

\[A^kBA = A^k, \quad BAB = B, \quad AB = BA \quad \text{for some integer } k. \]

\(B \) is denoted by \(A^D \). The least such integer \(k \) is called the index of \(A \), denoted by \(\text{ind}(A) \). We denote by \(A^* = I - AA^D \) the spectral idempotent of \(A \). In the case \(\text{ind}(A) = 1 \), \(A^D \) reduces to the group inverse of \(A \), denoted by \(A^# \).

The Drazin inverse has various applications in singular differential equations and singular difference equations, Markov chains, and iterative methods (see [4–7, 9–11, 15, 16, 20]). In 1979, S. Campbell and C. Meyer proposed an open problem to find an explicit representation for the Drazin inverse of a \(2 \times 2 \) block matrix \(\begin{pmatrix} A & C \\ B & D \end{pmatrix} \) in terms of its sub-blocks, where \(A \) and \(D \) are supposed to be square matrices (see [4]). A simplified problem to find an explicit representation for the Drazin inverse of \(\begin{pmatrix} A & C \\ B & 0 \end{pmatrix} \) was proposed by S. Campbell in 1983 (see [7]). Until now, both problems have not been solved. However, many authors have considered the two problems under certain conditions on the sub-blocks (see [3, 9, 12, 13, 15, 17, 18, 25]). As

\begin{itemize}
\item \textit{2010 Mathematics Subject Classification.} Primary 15A09; Secondary 65F20
\item \textit{Keywords.} block matrix, generalized inverse, group inverse
\item Received: 11 October 2013; Accepted: 25 March 2014
\item Communicated by Dragana Cvetkovic Ilic
\item Research supported by Jiangsu Province University NSF (14KJB110025)
\item Email addresses: jsdfp@163.com (Fapeng Du), yfxue@math.ecnu.edu.cn (Yifeng Xue)
\end{itemize}
a special case, the expression for the group inverse of 2×2 block matrix also has been studied under some conditions (see [1, 2, 8, 14, 18, 19, 23]).

In this paper, we give the explicit expression for the group inverse of the sum of two matrices. As an application, the expression for the group inverse of the anti-triangular matrix $egin{pmatrix} A & B \\ C & 0 \end{pmatrix}$ and $egin{pmatrix} 0 & B \\ C & D \end{pmatrix}$ are presented without any conditions on sub-blocks.

2. Preliminaries

In this section, we present some important lemmas and investigate the expression of the group inverse in term of its generalized inverse. Let us begin with a familiar lemma.

Lemma 2.1. [19] Let $A, B \in M_n(\mathbb{C})$, then $I + AB$ is invertible if $I + BA$ is invertible and $(I + AB)^{-1} = I - A(I + BA)^{-1}B$.

Lemma 2.2. Let P be an idempotent matrix in $M_n(\mathbb{C})$, then $I - P$ is invertible if $P = 0$.

Proof. Since $I - P$ is invertible, there is an $X \in M_n(\mathbb{C})$ such that $X(I - P) = I$, that is, $X - XP = I$. So, $0 = XP - XP = P$. \qed

Lemma 2.3. [24, Theorem 4.5.9] Let $A \in M_n(\mathbb{C})\setminus\{0\}$. Then the following conditions are equivalent:

1. $A^\#$ exists.
2. $AA^+ + A^+A - I$ is invertible for some A^+.
3. $A^2A^+ + I - AA^+$ is invertible for some A^+.
4. $A^2A^+ + I - AA^+$ is invertible for any A^+.
5. $A + I - AA^+$ is invertible for some A^+.
6. $A + I - AA^+$ is invertible for any A^+.
7. $A^+A^2 + I - A^+A$ is invertible for some A^+.
8. $A^+A^2 + I - A^+A$ is invertible for any A^+.
9. $A + I - A^+A$ is invertible for some A^+.
10. $A + I - A^+A$ is invertible for any A^+.

Proof. The equivalence of (1) to (4) are presented in [24, Theorem 4.5.9]. Noting that $A^2A^+ + I - AA^+ = I + (A - I)AA^+$ and $A + I - AA^+ = I + A(I - A^+)$, by Lemma 2.1, we have (3) \iff (5), (4) \iff (6), (7) \iff (9), (8) \iff (10), (5) \iff (9), (6) \iff (10). \qed

Lemma 2.4. Let $A \in M_n(\mathbb{C})\setminus\{0\}$. If $A^\#$ exists then

$$A^\# = A(I + A - A^+A)^{-2} = (I + A - AA^+)^{-2}A = (I + A - AA^+)^{-1}A(I + A - A^+A)^{-1},$$

independent of the choice of A^+.

Proof. Put \(W = A^2A^* + I - AA^* \). By Lemma 2.3, \(W \) is invertible. Set \(B = W^{-2}A \). Noting that \(AA^*W = WAA^* = A^2A^* \), we have
\[
AB = AW^{-2}A = AW^{-2}AA^*A = A^2A^*W^{-2}A = AA^*WW^{-2}A = W^{-1}A,
\]
\[
BA = W^{-2}A^2 = W^{-2}WA = W^{-1}A,
\]
\[
ABA = W^{-1}A^2 = W^{-1}WA = A,
\]
\[
BABB = W^{-1}AW^{-2}A = W^{-1}AAA^*W^{-2}A = W^{-1}AA^*W^{-1}A = W^{-2}A.
\]
The above indicate that \(B = A \) and independent of the choice of \(A^+ \).

Noting that
\[
(I + A - AA^*)^{-1}A = A(I + A - A^+A)^{-1},
\]
by Lemma 2.1, we have
\[
A^\# = (A^2A^* + I - AA^*)^{-2}A
\]
\[
= [I + (A - I)AA^*]^{-2}A
= [I - (A - I)(I + A - AA^*)^{-1}AA^*]^{-2}A
= [I - (A - I)(I + A - AA^*)^{-1}AA^*][2I - AA^*](I + A - AA^*)^{-1}A
= [I - (A - I)(I + A - AA^*)^{-1}AA^*]A(I + A - A^+A)^{-1}
= A(I + A - A^+A)^{-2}
= (I + A - AA^*)^{-2}A
= (I + A - AA^*)^{-1}A(I + A - A^+A)^{-1}.
\]

\[\square\]

Proposition 2.5. Let \(A, B \in M_n(\mathbb{C}) \). Then \((AB)^\# \) exists iff \(I + AB - ABB^*(A^+ABB^*)^+A^+ \) is invertible iff \(I + AB - B^*(A^+ABB^*)^+A^+AB \) is invertible. In this case,
\[
(AB)^\# = (I + AB - ABB^*(A^+ABB^*)^+A^+)^{-2}AB
= AB[I + AB - B^*(A^+ABB^*)^+A^+AB]^{-2}.
\]

Proof. Noting that \(B^*(A^+ABB^*)^+A^+ \) is a \([1,2]\)–inverse of \(AB \). By Lemma 2.4, we get the results. \[\square\]

Corollary 2.6. Let \(A, B \in M_n(\mathbb{C}) \) with \((AB)^\# \) exists.

1. If \(B \) is invertible, then \((AB)^\# \) exists iff \(I + AB - AA^+ \) is invertible. In this case,
\[
(AB)^\# = (I + AB - AA^+)^{-2}AB.
\]

2. If \(A \) is invertible, then \((AB)^\# \) exists iff \(I + AB - B^+B \) is invertible. In this case,
\[
(AB)^\# = AB(I + AB - B^+B)^{-2}.
\]

3. Main Results

Let \(A, B, C, D \in M_n(\mathbb{C}) \). Throughout of this paper, we denote \(E_A = I - AA^+, F_A = I - A^+A \).

Lemma 3.1. Let \(A, X, Y \in M_n(\mathbb{C}) \) and \(Z = I - YA^+X, U = E_AX, V = YF_A, S = E_YZF_UL \). Let
\[
G = A^+ - F_AV^+YA^+ + (F_AV^+Z + A^+X)[F_US^+E_YYA^+ - (I - F_US^+E_YZ)]U^+E_A.
\]
Then \(G \) is a \([1]\)–inverse of \(A - XY \).
Proof.

\[(A - XY)G = AA^* + AA^*X[F_{uS}^*E_VYA^* - (I - F_{uS}^*E_VZ)U^*E_A]
= XE_YYA^* - (XXY^* + XXX^*X)[F_{uS}^*E_VYA^* - (I - F_{uS}^*E_VZ)U^*E_A]
= AA^* + X[F_{uS}^*E_YYA^* - (I - F_{uS}^*E_VZ)U^*E_A] + UU^*E_A
= XE_YYA^* - (XXY^* + X(I - Z)[F_{uS}^*E_VYA^* - (I - F_{uS}^*E_VZ)U^*E_A]
= AA^* + X[F_{uS}^*E_YYA^* - (I - F_{uS}^*E_VZ)U^*E_A] + UU^*E_A
= XE_YYA^* - (XXY^* + X(I - Z)[F_{uS}^*E_VYA^* - (I - F_{uS}^*E_VZ)U^*E_A]
= AA^* + UU^*E_A - XE_S^*E_VYA^* - XE_VZU^*E_A + XSS^*E_VZU^*E_A
= AA^* + UU^*E_A - XE_S^*E_VYA^* - XE_S^*E_U^*E_A
= I - EuE_A - XE^*_S^*E_V(YA^* + ZU^*E_A).
\]

+ F_AV^*YA^*XY - (F_AV^*Z + A^*X)[F_{uS}^*E_VYA^* - (I - F_{uS}^*E_VZ)U^*E_A]XY
= A^*A - F_AV^*V^*Y + F_AV^*V^* + (F_AV^* + A^*X)F_{uS}^*E_VY - A^*XY
+ F_AV^*YA^*XY - (F_AV^*Z + A^*X)[F_{uS}^*E_VYA^* - (I - F_{uS}^*E_VZ)U^*E_A]XY
= A^*A - F_AV^*V^* + (F_AV^* + A^*X)F_{uS}^*E_VY - A^*XY
+ F_AV^*(I - Z)Y - (F_AV^* + A^*X)[F_{uS}^*E_V(I - Z)Y - (I - F_{uS}^*E_VZ)U^*UY]
= A^*A + F_AV^*V^* - (A^*X + F_AV^*Z)Y
+ (F_AV^* + A^*X)[F_{uS}^*E_VZ + (I - F_{uS}^*E_VZ)U^*UY]
= A^*A + F_AV^*V^* + (F_AV^* + A^*X)[F_{uS}^*E_VZ + (I - F_{uS}^*E_VZ)U^*UY]
+ F_AV^*(I - Z)Y - (F_AV^* + A^*X)[F_{uS}^*E_V(I - Z)Y - (I - F_{uS}^*E_VZ)U^*UY]
= A^*A + F_AV^*V^* + (F_AV^* + A^*X)[F_{uS}^*E_VZ - F_{uS}^*E_VZU^*U - F_U^*]Y
= A^*A + F_AV^*V^* - (F_AV^* + A^*X)F_{uS}F_SY
= I - F_AV^* - (F_AV^* + A^*X)F_{uS}F_SY.
\]

It is easy to verify \((A - XY)G(A - XY) = A - XY\). This shows \(G\) is a \([1]^{-}\)-inverse of \(A - XY\). □

Corollary 3.2. Let \(A, X \in M_n(C)\) and \(Z = I + A^*X, U = E_AX, S = A^*AZF_U\). Let

\[
G = A^* + (F_A - A^*X)[F_{uS}^*A^* + (I - F_{uS}^*A^*AZ)U^*E_A],
\]

and

\[
(A + X)G = I - EuE_A + XE_S(A^* - A^*AZU^*E_A),
\]

\[
G(A + X) = I - F_UF_S.
\]

Proof. Replacing \(Y\) by \(-I\) in Lemma 3.1, we get easily the first part of the results. Noting that \(Z = I + A^*X\) and \(S = A^*AZF_U\), we have

\[
G(A + X) = I - (F_A - A^*X)F_{uS}F_S
= I - (I - A^*A - A^*X)F_{uS}F_S
= I - I - A^*A(I + A^*X)F_{uS}F_S
= I - (I - A^*AZ)F_{uS}F_S
= I - F_UF_S.
\]
Corollary 3.3. Let $A, X \in M_n(C)$ and $Z = I + XA^+, V = XF_A, S = E_VZAA^+$. Let
\[G = A^* - F_AV^*XA^* + (F_AV^*Z + A^*X)[AA^*S^*E_VXA^* + (I - AA^*S^*E_VZ)E_A]. \]
Then G is a $[1]$–inverse of $A + X$ and
\[
\begin{align*}
(A + X)G & = I - E_SE_V, \\
G(A + X) & = I - F_AF_V - (F_AV^*ZAA^* - A^*)F_SS.
\end{align*}
\]

Theorem 3.4. Let $A, X, Y \in M_n(C)$ and $Z = I - YA^+X, U = E_AX, V = YF_A, S = E_VZF_U$. Then $(A - XY)^\#$ exists iff
\[
A - XY + E_U(E_A + XE_SE_V(YA^* + ZU^*E_A))F_SF_Y
\]
is invertible iff
\[
A - XY + F_AF_V + (F_AV^*Z + A^*X)F_AF_SY
\]
is invertible and
\[
\]

\[
\begin{align*}
(A - XY)(A - XY)^+ & = (A - XY)G = I - E_UE_A - XE_SE_V(YA^* + ZU^*E_A), \\
(A - XY)^\dagger (A - XY) & = G(A - XY) = I - F_AF_V - (F_AV^*Z + A^*X)F_AF_SY.
\end{align*}
\]
So, the results follow by Lemma 2.3 and Lemma 2.4. \qed

Using Lemma 2.3, Lemma 2.4 and Corollary 3.2, Corollary 3.3, we have the following corollaries:

Corollary 3.5. Let $A, X \in M_n(C)$ and $Z = I + A^*X, U = E_AX, S = A^*AZF_U$. Then $(A + X)^\#$ exists iff
\[
A + X + E_U(E_A - XE_SE_V(A^* - A^*AZU^*E_A))F_SF_Y
\]
is invertible iff $A + X + F_SF_Y$ is invertible and
\[
(A + X)^\# = (A + X)(A + X + F_SF_Y)^{-1} = (A + X)
\]
\[
= (A + X)(A + X + F_AF_V + (F_AV^*ZAA^* - A^*)F_SS)^{-1} \].
\]

Corollary 3.6. Let $A, X \in M_n(C)$ and $Z = I + XA^+, V = XF_A, S = E_VZAA^+$. Then $(A + X)^\#$ exists iff
\[
A + X + F_AF_V + (F_AV^*ZAA^* - A^*)F_SS
\]
is invertible iff $A + X + E_SE_V$ is invertible and
\[
(A + X)^\# = (A + X + E_SE_V)^{-1}(A + X)
\]
\[
= (A + X)(A + X + F_AF_V + (F_AV^*ZAA^* - A^*)F_SS)^{-1} \].
\]

Similarly, we have

Corollary 3.3. Let $A, X \in M_n(C)$ and $Z = I + XA^+, V = XF_A, S = E_VZAA^+$. Let
\[G = A^* - F_AV^*XA^* + (F_AV^*Z + A^*X)[AA^*S^*E_VXA^* + (I - AA^*S^*E_VZ)E_A]. \]
Then G is a $[1]$–inverse of $A + X$ and
\[
\begin{align*}
(A + X)G & = I - E_SE_V, \\
G(A + X) & = I - F_AF_V - (F_AV^*ZAA^* - A^*)F_SS.
\end{align*}
\]
In the following, we investigate the expression for the group inverse of anti-triangular matrix. First, we cite a lemma which comes from [21].

Lemma 3.7. [21] Suppose $M, X \in M_{n}(C)$. Then $N = M - MXM$ has a (1)–inverse Y iff M has a (1)–inverse $X + (I - XM)Y(I - MX)$.

Lemma 3.8. Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ and $Z = D - CA^{*}B, P = E_{A}B, Q = CF_{A}, R = ZF_{P}, W = E_{R}Q^{*}$. Then there exists a (1)–inverse G of M such that

$$I - MG = \begin{pmatrix} E_{P}E_{A} & 0 \\ -E_{W}E_{R}(ZP^{*}E_{A} + CA^{*}) & E_{W}E_{R} \end{pmatrix}.$$

Proof. Taking $X = \begin{pmatrix} A^{*} & 0 \\ 0 & 0 \end{pmatrix}$ and $N = M - MXM$. Let Y be a (1)–inverse of N. Then by Lemma 3.7, $G = X + (I - XM)Y(I - MX)$ be a (1)–inverse of M and

(1)

Let $N_{1} = \begin{pmatrix} 0 & P \\ Q & 0 \end{pmatrix}, N_{2} = \begin{pmatrix} 0 & 0 \\ 0 & Z \end{pmatrix}$. Then $N = N_{1} + N_{2} = \begin{pmatrix} 0 & E_{A}B \\ CF_{A} & D - CA^{*}B \end{pmatrix}$.

Note that

$$N_{1}^{*} = \begin{pmatrix} 0 & Q^{*} \\ P^{*} & 0 \end{pmatrix}, \quad T = I + N_{2}N_{1}^{*} = \begin{pmatrix} I & 0 \\ ZP^{*} & 0 \end{pmatrix},$$

$$N_{1}N_{1}^{*} = \begin{pmatrix} PP^{*} & 0 \\ 0 & QQ^{*} \end{pmatrix}, \quad N_{1}^{*}N_{1} = \begin{pmatrix} Q^{*}Q & 0 \\ 0 & PP^{*} \end{pmatrix},$$

$$V = N_{2}F_{N_{1}} = \begin{pmatrix} 0 & 0 \\ 0 & ZF_{P} \end{pmatrix}, \quad S = E_{V}TN_{1}N_{1}^{*} = \begin{pmatrix} PP^{*} & 0 \\ 0 & E_{R}Q^{*}ZP^{*} \end{pmatrix}$$

and $S^{*} = \begin{pmatrix} PP^{*} & 0 \\ 0 & W^{*} \end{pmatrix}$. Thus, by Corollary 3.3, we have

$$I - NY = E_{S}E_{V} = \begin{pmatrix} E_{P} & 0 \\ -E_{W}E_{R}ZP^{*} & E_{W}E_{R} \end{pmatrix}.$$

Hence, by Eq.(1), we have

$$I - MG = (I - NY)(I - MX)$$

$$= \begin{pmatrix} E_{P} & 0 \\ -E_{W}E_{R}ZP^{*} & E_{W}E_{R} \end{pmatrix} \begin{pmatrix} E_{A} & 0 \\ -CA^{*} & I \end{pmatrix}$$

$$= \begin{pmatrix} E_{P}E_{A} & 0 \\ -E_{W}E_{R}(ZP^{*}E_{A} + CA^{*}) & E_{W}E_{R} \end{pmatrix}.$$

□

Theorem 3.9. Let $M = \begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$ with A^{*}, D^{*} exist. Then $M^{\#}$ exists iff $D^{*}CA^{*} = 0$. In this case,

$$M^{\#} = \begin{pmatrix} A^{*} \\ (D^{*})^{2}CA^{*} + D^{*}C(A^{*})^{2} - D^{*}CA^{*} & 0 \end{pmatrix}.$$
Then by Lemma 2.3, we have
\[M + I - MG = \begin{pmatrix} A + A^* & 0 \\ C - E_D D^* A^* & D + E_D D^* \end{pmatrix}. \]

Since \(A + A^* \) and \(D + D^* \) are invertible, \(M + I - MG \) is invertible iff \(I - W W^* D^* \) is invertible. Thus, by Lemma 2.2, \(I - WW^* D^* \) is invertible iff \(WW^* D^* = 0 \) iff \(W = 0 \) iff \(D^* = D^* = 0 \). Hence, if \(M^* \) exists, then
\[(M + I - MG)^{-1} = \begin{pmatrix} A^* & 0 \\ D^* CA^* - C & D^* + D^* \end{pmatrix}. \]

By simple calculation, we get
\[M^* = \begin{pmatrix} A^* \\ (D^* CA^* + D^* (A^*)^2 - D^* CA^*) \end{pmatrix}. \]

\[\square \]

Theorem 3.10. Let \(M = \begin{pmatrix} 0 & B \\ C & D \end{pmatrix} \) and \(R = DF_B, W = E_R C^+ \). Then \(M^* \) exists iff
\[DF_B - CB + E_WE_R (F_B + DB^* B) \]
is invertible. In this case,
\[M^* = \begin{pmatrix} I + B \xi \eta & -B \xi \\ B^* - F_B \xi \eta & F_B \xi \end{pmatrix}. \]

Here,
\[\xi = (DF_B - CB + E_WE_R (F_B + DB^* B))^{-1}, \]
\[\eta = C + DB^* + E_WE_R (I - D) B^*. \]

Proof. Take \(A = 0 \) in Lemma 3.8, we have \(Z = D, P = 0, Q = CA^+, R = D, W = D^* QQ^* \) and
\[M + I - MG = \begin{pmatrix} E_B & B \\ C - E_D D^* B^+ & D + E_D E_R \end{pmatrix} \]
\[= \begin{pmatrix} I & B \\ C + DB^* + E_WE_R (I - D) B^* & D + E_D E_R \end{pmatrix} \begin{pmatrix} I & 0 \\ -B^* & 1 \end{pmatrix} \]
\[= \begin{pmatrix} I & 0 \\ C + DB^* + E_WE_R (I - D) B^* & D - CB + E_WE_R (F_B + DB^* B) \end{pmatrix} \begin{pmatrix} E_B & B \\ -B^* & 1 \end{pmatrix}. \]

By Lemma 2.3, we have \(M^* \) exists iff \(DF_B - CB + E_WE_R (F_B + DB^* B) \) is invertible. Put
\[\xi = (DF_B - CB + E_WE_R (F_B + DB^* B))^{-1}, \]
\[\eta = C + DB^* + E_WE_R (I - D) B^*. \]

Then
\[(M + I - MG)^{-1} = \begin{pmatrix} I + B \xi \eta & -B \xi \\ B^* - F_B \xi \eta & F_B \xi \end{pmatrix}. \]

Thus, by Lemma 3.1, we have
\[M^* = \begin{pmatrix} I + B \xi \eta \\ B^* - F_B \xi \eta \end{pmatrix} \begin{pmatrix} I & 0 \\ B & C \end{pmatrix}. \]

\[\square \]
Thus, by Corollary 3.6, we have $M^# = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}^*$ if take $D = 0$ in Lemma 3.8. So, we present another method as following:

Theorem 3.11. Let $M = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}$ and $P = AF_C, W = E_pBB^*$. Then $M^#$ exists iff

$$AF_C - BC + E_W E_p (F_C + AC^+ C)$$

is invertible. In this case,

$$M^# = \begin{pmatrix} F_C \xi & C^+ - F_C \xi \eta \\ -C \xi & I + C \xi \eta \end{pmatrix}^2 \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}.$$

Here,

$$\xi = \{AF_C - BC + E_W E_p (F_C + AC^+ C)\}^{-1},$$

$$\eta = B + AC^+ + E_W E_p(I - A)C^+.$$

Proof. Let $M_1 = \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}, M_2 = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ Then $M = M_1 + M_2$. Let I_2 be the identity of $M_2(\mathbb{C})$ and $P = AF_C, W = E_pBB^*$. Noting that

$$M_1^* = \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}, \quad V = M_2 F_{M_1} = \begin{pmatrix} P & 0 \\ 0 & 0 \end{pmatrix},$$

$$E_V = I_2 - VV^* = \begin{pmatrix} E_p & 0 \\ 0 & 1 \end{pmatrix}, \quad Z = I_2 + M_2 M_1^* = \begin{pmatrix} I & AC^+ \\ 0 & I \end{pmatrix},$$

$$S = E_V Z M_1 M_1^* = \begin{pmatrix} W & E_W AC^+ \\ 0 & CC^+ \end{pmatrix}, \quad S^* = \begin{pmatrix} W^* & -W^* E_W AC^+ \\ 0 & CC^+ \end{pmatrix},$$

$$E_S = \begin{pmatrix} E_W & -E_W E_p AC^+ \\ 0 & E_C \end{pmatrix}, \quad M + E_S E_V = \begin{pmatrix} A + E_W E_p & B - E_W E_p AC^+ \\ C & E_C \end{pmatrix}$$

and

$$M + E_S E_V = \begin{pmatrix} A + E_W E_p & B - E_W E_p AC^+ \\ C & E_C \end{pmatrix}$$

$$= \begin{pmatrix} A + E_W E_p & B - E_W E_p AC^+ + AC^+ + E_W E_p C^+ \\ C & I \end{pmatrix} \begin{pmatrix} I & -C^+ \\ 0 & I \end{pmatrix}$$

$$= \begin{pmatrix} AF_C - BC + E_W E_p (F_C + AC^+ C) & B + AC^+ + E_W E_p (I - A) C^+ \\ 0 & I \end{pmatrix} \begin{pmatrix} I & -C^+ \\ 0 & I \end{pmatrix}$$

Thus, by Corollary 3.6, we have $M^#$ exists iff $AF_C - BC + E_W E_p (F_C + AC^+ C)$ is invertible. Put

$$\xi = \{AF_C - BC + E_W E_p (F_C + AC^+ C)\}^{-1},$$

$$\eta = B + AC^+ + E_W E_p (I - A) C^+.$$

Then, by Simple calculation, we have

$$(M + E_S E_V)^{-1} = \begin{pmatrix} F_C & C^+ \\ -C & I \end{pmatrix} \begin{pmatrix} \xi & -\xi \eta \\ 0 & I \end{pmatrix} = \begin{pmatrix} F_C \xi & C^+ - F_C \xi \eta \\ -C \xi & I + C \xi \eta \end{pmatrix}.$$

Thus, by Corollary 3.6,
\[M^\# = (M + E_SE_V)^{-2}M = \left(\begin{array}{cc} F_C \xi & C^+ - F_C \xi \eta \\ -C \xi & I + C \eta \end{array} \right)^2 \left(\begin{array}{cc} A & B \\ C & 0 \end{array} \right). \]

\[\square \]

Corollary 3.12. Let \(M = \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix} \) Then \(M^\# \) exists if \(E_B F_C - BC \) is invertible. Put \(\xi = (E_B F_C - BC)^{-1} \), then
\[M^\# = \begin{pmatrix} 0 & 0 \\ -C \xi BB^* (I - F_C \xi) C^+ C & -(I - F_C \xi) C^+ C \xi B \\ 0 \\ \end{pmatrix}. \]

Proof. Let \(\xi = (E_B F_C - BC)^{-1} \). Then
\[E_B \xi^{-1} = E_B F_C - \xi^{-1} F_C, \xi B C^+ = -C^+, B^+ BC \xi = -B^+. \]

Thus,
\[\xi E_B = F_C \xi, C \xi E_B = 0, F_C \xi B = 0, BC \xi = -B B^+ \]
and
\[(F_C \xi - I) C^+ C = (F_C \xi - I) (I - F_C) \\ = (F_C \xi - I) (F_C \xi F_C - F_C) \\ = (F_C \xi - I) - (F_C \xi F_C - F_C) \\ = (F_C \xi - I). \]

Associate with Theorem 3.11, we get the results. \(\square \)

Corollary 3.13. [9] Let \(M = \begin{pmatrix} I & 0 \\ C & 0 \end{pmatrix} \) and \(C^\# \) exists. Then
\[\begin{pmatrix} I & I \\ C & 0 \end{pmatrix}^\# = \begin{pmatrix} C^n & C^n + C^\# \\ CC^\# & -C^\# \end{pmatrix}. \]

Now, we consider the group inverse of \(M = \begin{pmatrix} B & A \\ 0 & C \end{pmatrix} \). From the proof of Theorem 3.11, we have
\[I_2 - \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}^+ = E_S E_V = \begin{pmatrix} E_W E_P & -E_W E_P A C^+ \\ 0 & E_C \end{pmatrix}. \]

Here, \(P = AF_C, W = E_B BB^\# \).

Since
\[\begin{pmatrix} B & A \\ 0 & C \end{pmatrix} = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \]

by Corollary 2.6, we have \(\begin{pmatrix} B & A \\ 0 & C \end{pmatrix}^\# \) exists iff
\[\begin{pmatrix} B & A \\ 0 & C \end{pmatrix} + I_2 - \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}^+ = \begin{pmatrix} B + E_W E_P & A - E_W E_P A C^+ \\ 0 & C + E_C \end{pmatrix} \]
is invertible.
Assume that B^g, C^g exist. Then $P = AC^g$, $W = E_PBB^g$ and \[
\begin{pmatrix}
B + E_W E_P & A - E_W E_P AC^g \\
0 & C + E_C
\end{pmatrix}
\] is invertible iff $B + E_W E_P$ is invertible. Noting that $E_W E_P B^g = E_W E_P$ and $B^g + B^g$ is invertible, we have $B + E_W E_P$ is invertible iff
\[(B + E_W E_P B^g)(B^g + B^g) = BB^g + E_W E_P B^g = I - (I - E_W E_P) B^g\]
is invertible iff $I - B^g(I - E_W E_P)$ is invertible by Lemma 2.1. So, by Lemma 2.2, we have $I - B^g(I - E_W E_P)$ is invertible iff $B^g(I - E_W E_P) = 0$ iff $B^g P = 0$. Thus, we get the following theorem by Corollary 2.6:

Theorem 3.14. [4, 8, 22] Let $M = \begin{pmatrix} B & A \\ 0 & C \end{pmatrix}$ with B^g, C^g exist. Then M^g exists iff $B^g AC^g = 0$. In this case,

\[
M^g = \begin{pmatrix} B^g & (B^g)^2 AC^g + B^g A(C^g)^2 - B^g A C^g \\ 0 & C^g \end{pmatrix}
\]

Example 3.15. Let $M = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, D = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Then $M = \begin{pmatrix} 0 & B \\ I & D \end{pmatrix}$ Taking $B^g = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Then $R = DB = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, W = E_R = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $DF_B - CB + E_W E_R (F_B + DB^g B) = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$ is invertible. Thus, by Theorem 3.10, we have M^g exists and $M^g = M^2$.

References

