(ψ, ϕ) -weak Contraction on Ordered Uniform Spaces

Duran Turkoglua,b, Vildan Ozturkc

aDepartment Of Mathematics, Faculty Of Science, Gazi University, Teknikokullar, 06500, Ankara, Turkey
bFaculty Of Science and Arts, Amasya University, Amasya, Turkey
cDepartment Of Mathematics, Faculty Of Science and Art, Artvin Coruh University, 08000, Artvin, Turkey

Abstract. In this paper, we prove a fixed point theorem for (ψ, ϕ) –contractive mappings on ordered uniform space.

1. Introduction

We call a pair (X, δ) to be a uniform space which consists of a non-empty set X together with an uniformity δ of wherein the latter begins with a special kind of filter on X × X whose all elements contain the diagonal Δ = {(x, x) : x ∈ X}. If V ∈ δ and (x, y) ∈ V, (y, x) ∈ V then x and y are said to be V –close. Also a sequence {xₙ} in X, is said to be a Cauchy sequence with regard to uniformity δ if for any V ∈ δ, there exists N ≥ 1 such that xₙ and xₘ are V –close for m, n ≥ N. An uniformity δ defines a unique topology τ (δ) on X for which the neighborhoods of x ∈ X are the sets V(x) = {y ∈ X : (x, y) ∈ V} when V runs over δ.

A uniform space (X, δ) is said to be Hausdorff if and only if the intersection of all the V ∈ δ reduces to diagonal Δ of X i.e. (x, y) ∈ V for all V ∈ δ implies x = y. Notice that Hausdorffness of the topology induced by the uniformity guarantees the uniqueness of limit of a sequence in uniform space. An element V of uniformity δ is said to be symmetrical if V = V⁻¹ = {(y, x) : (x, y) ∈ V}. Since each V ∈ δ contains a symmetrical W ∈ δ and if (x, y) ∈ W then x and y are both W and V –close and then one may assume that each V ∈ δ is symmetrical. When topological concepts are mentioned in the context of a uniform space (X, δ), they are naturally interpreted with respect to the topological space (X, τ (δ)).

Aamri and El Moutawakil [2] proved some common fixed point theorems for some new contractive or expansive maps in uniform spaces by introducing the notions of an E –distance. Some other authors proved fixed point theorems using this concept ([4],[8],[10],[11],[16],[17]). In [5],[6] and [19] authors used the order relation on uniform space.

Existence of fixed points in partially ordered metric spaces was first investigated in 2004 by Ran and Reurings [18] and then by Nieto and Lopez [15]. Further results in this direction under weak contraction conditions were proved, e.g. ([3],[7],[9],[12],[14]).

In this paper, we establish a fixed point theorem satisfying (ψ, ϕ) –contractive condition on ordered uniform space. We also give an example.

2010 Mathematics Subject Classification. Primary 54H25; Secondary 54E15
Keywords. fixed point, uniform space, S-complete space, (ψ, ϕ) –contraction
Received: 06 June 2013; Accepted: 25 June 2014
Communicated by Ljubomir Cirić
Email addresses: dturkoglu@gazi.edu.tr (Duran Turkoglu), vildan_ozturk@hotmail.com (Vildan Ozturk)
2. Preliminaries

Definition 2.1. ([2]) Let \((X, \mathcal{S})\) be a uniform space. A function \(p : X \times X \to \mathbb{R}^+\) is said to be an \(A\)-distance if for any \(V \in \mathcal{S}\), there exists \(\delta > 0\), such that \(p(z, x) \leq \delta\) and \(p(z, y) \leq \delta\) for some \(z \in X\) imply \((x, y) \in V\).

Definition 2.2. ([2]) Let \((X, \mathcal{S})\) be a uniform space. A function \(p : X \times X \to \mathbb{R}^+\) is said to be an \(E\)-distance if

1. \((p_1)\) \(p\) is an \(A\)-distance,
2. \((p_2)\) \(p(x, y) \leq p(x, z) + p(z, y)\) for all \(x, y, z \in X\).

Example 2.3. ([2]) Let \(X = [0, +\infty)\) and \(p(x, y) = \max\{x, y\}\). The function \(p\) is an \(A\)-distance. Also, \(p\) is an \(E\)-distance.

The following lemma embodies some useful properties of \(E\)-distance.

Lemma 2.4. ([1],[2]) Let \((X, \mathcal{S})\) be a Hausdorff uniform space and \(p\) be an \(E\)-distance on \(X\). Let \(\{x_n\}\) and \(\{y_n\}\) be arbitrary sequences in \(X\) and \(\{x_n\}, \{y_n\}\) be sequences in \(\mathbb{R}^+\) converging to 0. Then, for \(x, y, z \in X\), the following holds

1. \((a)\) If \(p(x_n, y) \leq \alpha_n\) and \(p(x_n, z) \leq \beta_n\) for all \(n \in \mathbb{N}\), then \(y = z\). In particular, if \(p(x, y) = 0\) and \(p(x, z) = 0\), then \(y = z\).
2. \((b)\) If \(p(x_n, y_n) \leq \alpha_n\) and \(p(x_n, z) \leq \beta_n\) for all \(n \in \mathbb{N}\), then \(\{y_n\}\) converges to \(z\).
3. \((c)\) If \(p(x_n, x_m) \leq \alpha_n\) for all \(m > n\), then \(\{x_n\}\) is a Cauchy sequence in \((X, \mathcal{S})\).

Let \((X, \mathcal{S})\) be a uniform space equipped with \(E\)-distance \(p\). A sequence in \(X\) is \(p\)-Cauchy if it satisfies the usual metric condition. There are several concepts of completeness in this setting.

Definition 2.5. ([1],[2]) Let \((X, \mathcal{S})\) be a uniform space and \(p\) be an \(E\)-distance on \(X\). Then

1. \((i)\) \(X\) is said to be \(S\)-complete if for every \(p\)-Cauchy sequence \(\{x_n\}\) there exists \(x \in X\) with \(\lim_{n \to \infty} p(x_n, x) = 0\),
2. \((ii)\) \(X\) is said to be \(p\)-Cauchy complete if for every \(p\)-Cauchy sequence \(\{x_n\}\) there exists \(x \in X\) with \(\lim_{n \to \infty} x_n = x\) with respect to \(\mathcal{S}\),
3. \((iii)\) \(f : X \to X\) is \(p\)-continuous if \(\lim_{n \to \infty} p(x_n, x) = 0\) implies \(\lim_{n \to \infty} p(f x_n, f x) = 0\),
4. \((iv)\) \(f : X \to X\) is \(\mathcal{S}\)-continuous if \(\lim_{n \to \infty} x_n = x\) with respect to \(\mathcal{S}\) implies \(\lim_{n \to \infty} f x_n = f x\) with respect to \(\mathcal{S}\).

Remark 2.6. ([2]) Let \((X, \mathcal{S})\) be a Hausdorff uniform space and let \(\{x_n\}\) be a \(p\)-Cauchy sequence. Suppose that \(X\) is \(S\)-complete, then there exists \(x \in X\) such that \(\lim_{n \to \infty} p(x_n, x) = 0\). Lemma 2.4 \((b)\) then gives \(\lim_{n \to \infty} x_n = x\) with respect to the topology \(\mathcal{S}\). Therefore \(S\)-completeness implies \(p\)-Cauchy completeness.

We shall also state the following definition of altering distance function which is required in the sequel to establish a fixed point theorem in uniform space.

Definition 2.7. ([6]) A function \(\psi : [0, \infty) \to [0, \infty)\) is called an altering distance function if the following properties are satisfied:

1. \((i)\) \(\psi(0) = 0\),
2. \((ii)\) \(\psi\) is continuous and monotonically nondecreasing.

3. Fixed Point Result

Theorem 3.1. Let \((X, \mathcal{S})\) be a Hausdorff uniform space, \(\leq\) be a partial order on \(X\). Suppose \(p\) be an \(E\)-distance on \(S\)-complete space \(X\). Let \(T : X \to X\) be a \(p\)-continuous or \(\mathcal{S}\)-continuous nondecreasing mapping such that for all comparable \(x, y \in X\) with

\[
\psi(p(Tx, Ty)) \leq \psi(p(x, y)) - \varphi(p(x, y)),
\]

where \(\psi, \varphi : [0, \infty) \to [0, \infty)\) are altering distance functions.

If there exists \(x_0 \in X\) with \(x_0 \leq T(x_0)\) then \(T\) has a fixed point.
Proof. If \(T(x_0) = x_0 \) then the proof is finished. Suppose that \(T(x_0) \neq x_0 \). Since \(x_0 \leq T(x_0) \) and \(T \) is nondecreasing, we obtain by induction that

\[
x_0 \leq T(x_0) \leq T^2(x_0) \leq T^3(x_0) \leq \cdots \leq T^n(x_0) \leq T^{n+1}(x_0) \leq \cdots .
\]

Put \(x_{n+1} = T x_n \), for all \(n \geq 1 \). If there exists a positive integer \(N \) such that \(x_N = x_{N+1} \), then \(x_N \) is a fixed point of \(T \). Now, we may assume that \(x_n \neq x_{n+1} \), for all \(n \geq 0 \).

From (1), we have for all \(n \geq 0 \),

\[
\psi(p(x_{n+2}, x_n)) \leq |\psi(p(x_{n+1}, x_n))| \leq \psi(p(x_{n+1}, x_n) - \psi(p(x_{n+1}, x_n)) \leq \psi(p(x_{n+1}, x_n)).
\]

Together with that \(\psi \) is nondecreasing implies that the sequence \(\{p(x_{n+1}, x_n)\} \) is monotone decreasing and hence there exists an \(r \geq 0 \) such that

\[
\lim_{n \to \infty} p(x_{n+1}, x_n) = r .
\]

Letting \(n \to \infty \) in (2) and using the continuity of \(\psi \) and \(\phi \), we obtain

\[
\psi(r) \leq \psi(r) - \phi(r)
\]

which is a contradiction unless \(r = 0 \). Hence,

\[
\lim_{n \to \infty} p(x_{n+1}, x_n) = 0.
\]

Similarly, we can show \(\lim_{n \to \infty} p(x_n, x_{n+1}) = 0 \).

Next we show that \(\{x_n\} \) is a \(p \)-Cauchy sequence. Assume \(\{x_n\} \) is not \(p \)-Cauchy. Then there exists an \(\varepsilon > 0 \) for which we can find subsequences \(\{x_{m(k)}\} \) and \(\{x_{n(k)}\} \) of \(\{x_n\} \) with \(m(k) > n(k) > k \) such that

\[
p(x_{m(k)}, x_{m(k)}) \geq \varepsilon.
\]

Further, corresponding to \(n(k) \), we can choose \(m(k) \) in such a way that it is the smallest integer with \(m(k) > n(k) \) and satisfying (3). Hence,

\[
p(x_{n(k)}, x_{m(k)}) < \varepsilon.
\]

Then we have

\[
\varepsilon \leq p(x_{m(k)}, x_{m(k)}) \leq p(x_{n(k)}, x_{m(k)}) + p(x_{m(k)}, x_{m(k)}) ,
\]

that is

\[
\varepsilon \leq p(x_{n(k)}, x_{m(k)}) < \varepsilon + p(x_{n(k)}, x_{m(k)}) .
\]

Taking the limit as \(k \to \infty \), we have

\[
\lim_{k \to \infty} p(x_{n(k)}, x_{m(k)}) = \varepsilon.
\]

From (2),

\[
p(x_{n(k)}, x_{m(k)}) \leq p(x_{n(k)}, x_{n(k)} + 1) + p(x_{n(k)} + 1, x_{m(k)}) + p(x_{m(k)}, x_{m(k)})
\]

and

\[
p(x_{n(k)} + 1, x_{m(k)} + 1) \leq p(x_{n(k)} + 1, x_{n(k)}) + p(x_{n(k)}, x_{m(k)}) + p(x_{m(k)} + 1, x_{m(k)} + 1).
\]
Taking the limit as $k \to \infty$ we have

$$\lim_{k \to \infty} p\left(x_n(k+1), x_m(k+1)\right) = \epsilon. \quad (5)$$

From (1),

$$\psi\left(p\left(x_n(k+1), x_m(k+1)\right)\right) \leq \psi\left(p\left(x_n(k), x_m(k)\right)\right) - \phi\left(p\left(x_n(k), x_m(k)\right)\right).$$

Letting $k \to \infty$ in the above inequality, using (4), (5) and the continuities of ψ and ϕ, we have

$$\psi(\epsilon) \leq \psi(\epsilon) - \phi(\epsilon),$$

which is a contradiction by virtue of a property of ϕ.

Hence $\{x_n\}$ is a p-Cauchy sequence. Since S–completeness of X, there exists a $z \in X$ such that

$$\lim_{n \to \infty} p(x_n, z) = 0$$

Moreover, the p–continuity of T implies that $\lim_{n \to \infty} p(Tx_n, Tz) = 0$. So, by Lemma 2.4 (a), $z = Tz$. Using Remark 2.6, the proof is similar when T is $\tau(\delta)$–continuous.

Example 3.2. Let $X = [0, 1]$ equipped with usual metric $d(x, y) = |x - y|$ and a partial order be defined as $x \leq y$ whenever $y \leq x$ and suppose

$$\delta = \{V \subset X \times X : \Delta \subset V\}.$$

Define the function p as $p(x, y) = y$ for all x, y in X and $T : X \to X$ defined by $T(t) = \frac{t^2}{1+t}$. Consider the functions ϕ and ψ defined as follows

$$\phi(t) = \frac{t}{1+t} \quad \text{and} \quad \psi(t) = t.$$

Definition of δ, $\cap_{V \in \delta} V = \Delta$ and this show that the uniform space (X, δ) is Hausdorff uniform space. And also X is S–complete. On the other hand, ρ is an E–distance. T is p–continuous and ϕ and ψ are continuous, monotone nondecreasing. For $x = 0.5$ and $y = 0.3$, using usual metric, (1) does not hold. However, we have that for all $x, y \in X$

$$\psi\left(p\left(Tx, Ty\right)\right) \leq \psi\left(p\left(x, y\right)\right) - \psi\left(p\left(x, y\right)\right).$$

And 0 is the fixed point of T.

References

[7] S.C. Binayak, A. Kundu, (ψ, α, β) –

