Some KKM Theorems in Modular Function Spaces

Nasrin Karamikabira, Abdolrahman Razanib

aDepartment of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
bDepartment of Mathematics, Faculty of Science, Imam Khomeini International University, P. O. Box 34149-16818, Qazvin, Iran

Abstract. In this paper, a coincidence theorem is obtained which is generalization of Ky Fan’s fixed point theorem in modular function spaces. A modular version of Fan’s minimax inequality is proved. Moreover, some best approximation theorems are presented for multi-valued mappings.

1. Introduction

Modular function spaces are natural generalization of spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Calderon-Lozanovskii and many others. The theory of mappings defined on convex subsets of modular function spaces generalized by Khamsi et al. (see e.g. [3–5]). There is a large set of modular space applications in various parts of analysis, probability and mathematical statistics (see e.g. [11–13]).

We need the following definitions in sequel, from [6, 7]:

Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of Ω. Let \mathcal{P} be a σ-ring of subsets of Ω, such that $E \cap A \in \mathcal{P}$ for any $E \in \mathcal{P}$ and $A \in \Sigma$. Assume that there exists an increasing sequence of sets $K_n \in \mathcal{P}$ such that $\Omega = \bigcup K_n$. By \mathcal{E}, we denote the linear space of all simple functions with supports in \mathcal{P}. By M_∞, we will denote the space of all extended measurable functions, i.e. all functions $f : \Omega \to [-\infty, +\infty]$ such that there exists a sequence $\{g_n\} \subset \mathcal{E}$, $|g_n| \leq |f|$ and $g_n(w) \to f(w)$ for all $w \in \Omega$. By 1_A, we denote the characteristic function of the set A.

Definition 1.1. Let $\rho : M_\infty \to [0, \infty]$ be a nontrivial, convex and even function. We say that ρ is a regular convex function pseudomodular if

(i) $\rho(0) = 0$;

(ii) ρ is monotone, i.e. $|f(w)| \leq |g(w)|$ for all $w \in \Omega$ implies $\rho(f) \leq \rho(g)$, where $f, g \in M_\infty$;

(iii) ρ is orthogonally subadditive, i.e. $\rho(f 1_{A \cup B}) \leq \rho(f 1_A) + \rho(f 1_B)$ for any $A, B \in \Sigma$ such that $A \cap B \neq \emptyset$, $f \in M_\infty$;

(iv) ρ has the Fatou property, i.e. $|f_n(w)| \uparrow |f(w)|$ for all $w \in \Omega$ implies $\rho(f_n) \uparrow \rho(f)$, where $f \in M_\infty$;

(v) ρ is order continuous in \mathcal{E}, i.e. $g_n \in \mathcal{E}$ and $|g_n(w)| \downarrow 0$ implies $\rho(g_n) \downarrow 0$.
We say that $A \in \Sigma$ is ρ-null if $\rho(gA) = 0$ for every $g \in E$. A property holds ρ-almost everywhere if the exceptional set is ρ-null, we define

$$M(\Omega, \Sigma; \mathcal{P}, \rho) = \{f \in M; |f(w)| < \infty \rho-a.e.\}.$$

We will write M instead of $M(\Omega, \Sigma; \mathcal{P}, \rho)$.

Definition 1.2. Let ρ be a regular convex function pseudomodular. We say that ρ is a regular convex function modular if $\rho(f) = 0$ implies $f = 0$ ρ-a.e.

The class of all nonzero regular convex function modulars defined on Ω will be denoted by \mathcal{R}.

Definition 1.3. Let ρ be a convex function modular. A modular function space is the vector space $L_\rho(\Omega, \Sigma)$, or briefly L_ρ, defined by

$$L_\rho = \{f \in M; \rho(\lambda f) \to 0 \text{ as } \lambda \to 0\}.$$

The the formula

$$\|f\|_\rho = \inf\{\alpha > 0; \rho(f/\alpha) \leq 1\}.$$

defines a norm in L_ρ which is frequently called the Luxemburg norm.

The $\|\|_\rho$-distance, from an f to a set $Y \subset L_\rho$, to be the quantity

$$\text{dist}_{\|\|_\rho}(f, Y) = \inf\{\|f - g\|_\rho : g \in Y\}.$$

From [7], $(L_\rho, \|\|_\rho)$ is a complete metric space and the norm $\|\|_\rho$ is monotone with respect to the natural order in M. Therefore we can define the $\|\|_\rho$-Hausdorff distance by

$$H_{\|\|_\rho}(X, Y) = \max\{\sup\{\text{dist}_{\|\|_\rho}(f, Y) : f \in X\}, \sup\{\text{dist}_{\|\|_\rho}(g, X) : g \in Y\}\},$$

for each $X, Y \subseteq L_\rho$.

Definition 1.4. Let $\rho \in \mathcal{R}$.

(i) We say (f_n) is ρ-convergent to f and write $f_n \to f$ (ρ) if and only if $\rho(f_n - f) \to 0$.

(ii) A subset $B \subset L_\rho$ is called ρ-closed if for any sequence of $f_n \in B$, the convergence $f_n \to f$ (ρ) implies that f belong to B.

(iii) A nonempty subset K of L_ρ is said to be ρ-compact if for any family $\{A_\alpha ; A_\alpha \in 2^\Gamma, \alpha \in \Gamma\}$ of ρ-closed subsets with $K \cap A_{\alpha_1} \cap \cdots \cap A_{\alpha_n} \neq \emptyset$, for any $\alpha_1, \cdots, \alpha_n \in \Gamma$, we have

$$K \cap \bigcap_{\alpha \in \Gamma} A_{\alpha} \neq \emptyset.$$

Let $\rho \in \mathcal{R}$. We have $\rho(f) \leq \lim \inf \rho(f_n)$, whenever $f_n \to f$ $\rho-a.e$. This property is equivalent to the Fatou property [6, Theorem 2.1].

The concept of KKM-mapping in modular function spaces, was introduced by Khamsi, Latif and Al-Sulami in 2011 [6]. They proved an analogue of Ky Fan’s fixed point theorem in these spaces:
Definition 1.5. Let $\rho \in \mathbb{R}$ and let $C \subseteq L_\rho$ be nonempty. A multi-valued mapping $G : C \rightrightarrows L_\rho$ is called a KKM mapping if

$$\text{conv}(\{f_1, \cdots, f_n\}) \subseteq \bigcup_{i \in \mathbb{N}} G(f_i)$$

for any $f_1, \cdots, f_n \in C$, where the notation conv(A) describes the convex hull of A.

Theorem 1.6. [6, Theorem 3.2] Let $\rho \in \mathbb{R}$ and $C \subseteq L_\rho$ be nonempty and $G : C \rightrightarrows L_\rho$ be a KKM mapping such that for any $f \in C$, $G(f)$ is nonempty and ρ-closed. Assume there exists $f_0 \in C$ such that $G(f_0)$ is ρ-compact. Then, we have

$$\bigcap_{f \in C} G(f) \neq \emptyset.$$

Definition 1.7. Let $\rho \in \mathbb{R}$ and let C be nonempty ρ-closed subset of L_ρ. Let $T : G \rightrightarrows L_\rho$ be a map. T is called ρ-continuous if $(T(f_n))$ ρ-converges to $T(f)$ whenever (f_n) ρ-converges to f. Also T will be called strongly ρ-continuous if T is ρ-continuous and

$$\liminf_{n \to \infty} \rho(g - T(f_n)) = \rho(g - T(f)),$$

for any sequence $(f_n) \subseteq C$ which ρ-converges to f and for any $g \in C$.

In Section 2, we generalized some results of Khamsi et al. in [6]. In the next section, we proved a minimax inequality. Section 4 is devoted to some best approximation theorems for multi-valued mappings.

2. KKM-mapping and Coincidence Theorem

Here, we generalize the Ky Fan’s fixed point theorem which established in [6].

Lemma 2.1. Let $\rho \in \mathbb{R}$. Let $K \subseteq L_\rho$ be nonempty convex and ρ-compact. Let $T : K \rightrightarrows L_\rho$ be strongly ρ-continuous and $F : K \rightrightarrows K$ be ρ-continuous. Then, there exists $f_0 \in K$ such that

$$\rho(F(f_0) - T(f_0)) = \inf_{f \in K} \rho(F(f) - T(f_0)).$$

Proof. Consider the map $G : K \rightrightarrows L_\rho$ defined by

$$G(g) = \{f \in K; \rho(F(f) - T(f)) \leq \rho(F(g) - T(f))\}.$$

Clearly, for each $g \in K$, $G(g) \neq \emptyset$. For any sequence $(f_n) \subseteq G(g)$ which ρ-converges to f, by Fatou property, we have

$$\rho(F(f) - T(f)) \leq \liminf_{n \to \infty} \rho(F(f_n) - T(f_n)),$$

but $(f_n) \subseteq G(g)$, so

$$\liminf_{n \to \infty} \rho(F(f_n) - T(f_n)) \leq \liminf_{n \to \infty} \rho(F(g) - T(f_n)).$$

Since T is strongly ρ-continuous and F is ρ-continuous

$$\liminf_{n \to \infty} \rho(F(f) - T(f_n)) = \rho(F(g) - T(f)).$$

Therefore

$$\rho(F(f) - T(f)) \leq \rho(F(g) - T(f)).$$
namely \(f \in G(g) \). Since for any sequence \(\{f_n\} \subset G(g) \) which \(\rho \)-converges to \(f \), we have \(f \in G(g) \), then \(G(g) \) is \(\rho \)-closed for any \(g \in K \). Now, we show that \(G \) is a KKM-mapping. If not, then there exists \(\{g_1, \ldots, g_n\} \subset K \) and \(f \in \text{conv}(\{g_i\}) \) such that \(f \notin \bigcup_{1 \leq i \leq n} G(g_i) \).

This implies
\[
\rho(F(g_i) - T(f)) \leq \rho(F(f) - T(f)), \quad \text{for } i = 1, \ldots, n
\]
Let \(\epsilon > 0 \) be such that \(\rho(F(g_i) - T(f)) \leq \rho(F(f) - T(f)) - \epsilon \), for \(i = 1, \ldots, n \). Since \(\rho \) is convex, for any \(g \in \text{conv}(\{g_i\}) \), we have
\[
\rho(F(g) - T(f)) \leq \rho(F(f) - T(f)) - \epsilon.
\]
On the other hand \(f \in \text{conv}(\{g_i\}) \), so we get
\[
\rho(F(f) - T(f)) \leq \rho(F(f) - T(f)) - \epsilon,
\]
which is a contradiction. Therefore, \(G \) is a KKM-mapping. By the \(\rho \)-compactness of \(K \), we deduce that \(G(g) \) is a compact for any \(g \in K \). Theorem 1.6 implies the existence of \(f_0 \in \bigcap_{g \in K} G(g) \). Hence, \(\rho(F(f_0) - T(f_0)) \leq \rho(F(g) - T(f_0)) \) for any \(g \in K \). So, we have \(\rho(F(f_0) - T(f_0)) = \inf_{g \in K} \rho(F(g) - T(f_0)) \). \(\square \)

Theorem 2.2. Let \(\rho \in \mathbb{R} \) and \(K \subset L_\rho \) be nonempty convex and \(\rho \)-compact. Let \(T : K \to L_\rho \) be strongly \(\rho \)-continuous, \(F : K \to K \) be \(\rho \)-continuous and \(F(K) \) is \(\rho \)-compact. Assume that for any \(f \in K \), with \(F(f) \neq T(f) \), there exists \(\alpha \in (0,1) \) such that
\[
F(K) \bigcap B_\rho(F(f), \alpha \rho(F(f) - T(f))) \bigcap B_\rho(T(f), (1 - \alpha)\rho(F(f) - T(f))) \neq \emptyset.
\]
Then, \(T(g) = F(g) \) for some \(g \in K \).

Proof. From the previous lemma, there exists \(f_0 \in K \) such that
\[
\rho(F(f_0) - T(f_0)) = \inf_{g \in K} \rho(F(g) - T(f_0)).
\]
We claim that \(T(f_0) = F(f_0) \). If \(T(f_0) \neq F(f_0) \), then by the \(\rho \)-compactness of \(F(K) \), there exists \(\alpha \in (0,1) \) such that
\[
K_0 = F(K) \bigcap B_\rho(F(f_0), \alpha \rho(F(f_0) - T(f_0))) \bigcap B_\rho(T(f_0), (1 - \alpha)\rho(F(f_0) - T(f_0))) \neq \emptyset.
\]
Let \(F(g) \in K_0 \). Then, \(\rho(F(g) - T(f_0)) \leq (1 - \alpha)\rho(F(f_0) - T(f_0)) \), which is a contradiction. \(\square \)

Corollary 2.3. Let \(\rho \in \mathbb{R} \) and \(K \subset L_\rho \) be nonempty convex and \(\rho \)-compact. Let \(F : K \to K \) be \(\rho \)-continuous and \(F(K) \) is \(\rho \)-compact. If \(T : K \to F(K) \) be strongly \(\rho \)-continuous, then \(T(g) = F(g) \) for some \(g \in K \).

3. A Minimax Inequality

In this section, a modular version of Fan’s minimax inequality [2] is obtained.

Definition 3.1. Let \(\rho \in \mathbb{R}, L_\rho \) be a modular function space and \(C \) be a convex subset of \(L_\rho \). A function \(f : C \to \mathbb{R} \) is said to be metrically quasi-concave (resp., metrically quasi-convex) if for each \(\lambda \in \mathbb{R} \), the set \(\{g \in C : f(g) > \lambda\} \) (resp., \(\{g \in C : f(g) < \lambda\} \) is convex.

Lemma 3.2. Let \(\rho \in \mathbb{R} \). Suppose \(C \) is a convex subset of a modular function space \(L_\rho \), and the function \(f : C \times C \to \mathbb{R} \) satisfies the following conditions:

...
1) for each \(g \in C \), the function \(f(., g) : C \to \mathbb{R} \) is metrically quasi-concave (resp., metrically quasi-convex) and
2) there exists \(\gamma \in \mathbb{R} \) such that \(f(g, g) \leq \gamma \) (resp., \(f(g, g) \geq \gamma \)) for each \(g \in C \).

Then, the mapping \(G : C \to L_\rho \), which is defined by

\[G(g) = \{ h \in C : f(g, h) \leq \gamma \} \text{ (resp., } G(g) = \{ h \in C : f(g, h) \geq \gamma \} \),

is a KKM-mapping.

Proof. The conclusion is proved for the concave case, the convex case is completely similar. Assume that \(G \) is not a KKM-mapping. Then there exists a finite subset \(A = \{ g_1, \cdots , g_n \} \) of \(C \) and a point \(g_0 \in conv(A) \) such that \(g_0 \notin G(g) \) for each \(i = 1, \cdots , n \). We set

\[\lambda = \min \{ f(g_i, g_0) : i = 1, \cdots , n \} > \gamma, \]

and \(B = \{ e \in C : f(e, g_0) > \lambda \} \), where \(\lambda > \lambda_0 > \gamma \). For each \(i \), we have \(g_i \in B \). By hypothesis 1), \(B \) is convex and hence \(conv(A) \subseteq B \). So, \(g_0 \in B \), and we have \(f(g_0, g_0) > \lambda_0 > \gamma \), which is a contradiction by assumption 2). Thus, \(G \) is a KKM-mapping.

Definition 3.3. Let \(\rho \in \mathbb{R} \). A real-valued function \(f : L_\rho \times L_\rho \to \mathbb{R} \) is said to be \(\rho \)-generally lower (resp., upper) semi continuous on \(L_\rho \) whenever, for each \(g \in L_\rho \), \(\{ h \in L_\rho : f(g, h) \leq \lambda \} \) (resp., \(\{ h \in L_\rho : f(g, h) \geq \lambda \} \)) is \(\rho \)-closed for each \(\lambda \in \mathbb{R} \).

The following is the analogue of Fan’s minimax inequality in modular function spaces.

Theorem 3.4. Let \(\rho \in \mathbb{R} \). Suppose \(C \) is a nonempty, \(\rho \)-compact and convex subset of a complete modular function space \(L_\rho \) and \(f : C \times C \to \mathbb{R} \) satisfies the following

1) \(f \) is a \(\rho \)-generally lower (resp., upper) semi continuous ;
2) for each \(h \in C \), the function \(f(., h) : C \to \mathbb{R} \) is metrically quasi-concave (resp., metrically quasi-convex) and
3) there exists \(\gamma \in \mathbb{R} \) such that \(f(g, g) \leq \gamma \) (resp., \(f(g, g) \geq \gamma \)) for each \(g \in C \).

Then, there exists an \(h_0 \in C \) such that

\[
\sup_{g \in C} f(g, h_0) \leq \sup_{g \in C} f(g, g),
\]

\[(\text{resp., } \inf_{g \in C} f(g, h_0) \geq \inf_{g \in C} f(g, g)). \]

for each \(g \in C \).

Proof. By hypothesis 3), \(\lambda = \sup_{g \in C} f(g, g) < \infty \). For each \(g \in C \), we define the mapping \(G : C \to C \) by

\[G(g) = \{ h \in C : f(g, h) \leq \lambda \}, \]

which is \(\rho \)-closed by assumption 1). By Lemma 3.2, \(G \) is a KKM-mapping. So by using Theorem 1.6, we have

\[\bigcap_{g \in C} G(g) \neq \emptyset. \]

Therefore, there exists an \(h_0 \in \bigcap_{g \in C} G(g) \). Thus, \(f(g, h_0) \leq \lambda \) for every \(g \in C \). Hence,

\[\sup_{g \in C} f(g, h_0) \leq \sup_{g \in C} f(g, g). \]

This completes the proof.
4. Some Best Approximation Theorems

In this section, we prove some best approximation theorems for multi-valued mappings in modular function spaces.

Definition 4.1. Let $X, Y \subseteq L_p$.

(i) A map $F : X \to Y$ is said to be ρ-upper semi continuous if for each ρ-closed set $B \subseteq Y$, $F^{-1}(B)$ is ρ-closed in X.

(ii) A map $G : D \subseteq X \to X$ is called quasi-convex if the set $G^{-1}(C)$ is convex for each convex subset C of X.

First, note that the $\|\|_\rho$-Hausdorff distance can be rewritten as follows

$$H_{\|\|_\rho}(X, Y) = \inf\{e > 0 : X \subseteq O_e(Y) \text{ and } Y \subseteq O_e(X)\},$$

where, for each $A \subseteq L_p$, $O_e(A) = \{f \in L_p : \text{dist}_{\|\|_\rho}(f, A) < e\}$.

Also, by definitions of ρ-closed and ρ-compact sets in modular function spaces with $\|\|_\rho$-Hausdorff distance and by [8, Proposition 14.11] we conclude that, if $F(f)$ is ρ-compact for each $f \in X$, then F is ρ-upper semi continuous if and only if for each $f \in X$ and $\epsilon > 0$, there exist $\delta > 0$ such that for each $f' \in B(f, \delta)$, we have $F(f') \subseteq B(f, \epsilon)$.

Theorem 4.2. Let $\rho \in \mathfrak{R}$. Suppose X is a ρ-compact subset of L_p and $F, G : X \to L_p$ are ρ-upper semi continuous maps with nonempty ρ-compact convex values and G is quasi-convex. Then, there exists $f_0 \in X$ such that

$$H_{\|\|_\rho}(G(f_0), F(f_0)) = \inf_{f \in X} H_{\|\|_\rho}(G(f), F(f_0)).$$

Proof. Let $S : X \to X$ be defined by

$$S(g) = \{f \in X : H_{\|\|_\rho}(G(f), F(f)) \leq H_{\|\|_\rho}(G(g), F(f))\}.$$

For each $g \in X$, $S(g) \neq \emptyset$. We show that $S(g)$ is ρ-closed for each $g \in X$. Suppose that $\{g_n\}$ be a sequence in $S(g)$ such that $g_n \to g'(\rho)$. We claim that $g' \in S(g)$. Let $\epsilon > 0$ be arbitrary. Since F is ρ-upper semi continuous with ρ-compact values, so there exists N_1 such that for each $n \geq N_1$, we have

$$F(g_n) \subseteq B(F(g'), \epsilon).$$

Similarly, there exists N_2 such that for each $n \geq N_2$, we have

$$G(g_n) \subseteq B(G(g'), \epsilon).$$

Let $N = \max\{N_1, N_2\}$. Then, we have

$$H_{\|\|_\rho}(G(g'), F(g')) \leq H_{\|\|_\rho}(G(g'), G(g_n)) + H_{\|\|_\rho}(G(g_n), F(g_n))$$

$$+ H_{\|\|_\rho}(F(g_n), F(g'))$$

$$\leq 2\epsilon + H_{\|\|_\rho}(G(g_n), F(g_n))$$

$$\leq 2\epsilon + H_{\|\|_\rho}(G(g), F(g_n))$$

$$\leq 2\epsilon + H_{\|\|_\rho}(G(g), F(g')) + H_{\|\|_\rho}(G(g'), F(g_n))$$

$$\leq 3\epsilon + H_{\|\|_\rho}(G(g), F(g')).$$

Since ϵ was arbitrary, so

$$H_{\|\|_\rho}(G(g'), F(g')) \leq H_{\|\|_\rho}(G(g), F(g')).$$
so \(g' \in S(g) \). Now, we show that for each \(\{f_1, \cdots, f_n\} \subset X, \text{co}(\{f_1, \cdots, f_n\}) \subset S(\{f_1, \cdots, f_n\}) \). Assume to the contrary that, if there exists \(h \in \text{co}(\{f_1, \cdots, f_n\}) \) such that \(h \notin S(f) \) for each \(f \in \{f_1, \cdots, f_n\} \), then \(H_{\|.\|} (G(f), F(h)) \subset H_{\|.\|} (G(h), F(h)) \), for some \(f \in \{f_1, \cdots, f_n\} \). Moreover

\[
G(f) \cap \bigg(\bigcup_{h' \in F(h)} B(h', \max_{f' \in \{f_1, \cdots, f_n\}} H_{\|.\|} (G(f'), F(h))) \bigg) \neq \emptyset,
\]

for each \(f \in \{f_1, \cdots, f_n\} \). Since \(F(h) \) is convex, so

\[
\bigcup_{h' \in F(h)} B(h', \max_{f' \in \{f_1, \cdots, f_n\}} H_{\|.\|} (G(f'), F(h)))
\]

is convex. Since \(G \) is quasi-convex, then

\[
G(h) \cap \bigg(\bigcup_{h' \in F(h)} B(h', \max_{f' \in \{f_1, \cdots, f_n\}} H_{\|.\|} (G(f'), F(h))) \bigg) \neq \emptyset,
\]

and so \(H_{\|.\|} (G(h), F(h)) \leq \max_{f' \in \{f_1, \cdots, f_n\}} H_{\|.\|} (G(f'), F(h)) < H_{\|.\|} (G(h), F(h)) \). This is a contradiction. Now, by Theorem 1.6, there exists \(f_0 \in X \) such that \(f_0 \in \bigcap_{f \in X} S(f) \). Hence, \(H_{\|.\|} (G(f_0), F(f_0)) = \inf_{f \in X} H_{\|.\|} (G(f), F(f_0)) \).

Corollary 4.3. Let \(\rho \in \mathfrak{R} \). Suppose \(X \) is a \(\rho \)-compact subset of \(L_\rho \) and \(G : X \to X \) is an onto, quasi-convex and \(\rho \)-upper semi continuous map with nonempty \(\rho \)-compact convex values and \(S : X \to X \) is a continuous single valued map. Then, there exists \(f_0 \in X \) such that \(S(f_0) \in G(f_0) \).

Corollary 4.4. Let \(\rho \in \mathfrak{R} \). Suppose \(X \) is a \(\rho \)-compact subset of \(L_\rho \) and \(G : X \to X \) is a quasi-convex and \(\rho \)-upper semi continuous map with nonempty \(\rho \)-compact convex values. Then, there exists \(f_0 \in X \) such that

\[
H_{\|.\|} (G(f_0), f_0) = \inf_{f \in X} H_{\|.\|} (G(f), f_0).
\]

Corollary 4.5. Let \(\rho \in \mathfrak{R} \). Suppose \(X \) is a \(\rho \)-compact subset of \(L_\rho \) and \(G : X \to X \) is a \(\rho \)-upper semi continuous map with nonempty \(\rho \)-compact convex values. If \(G(f) \cap X = \emptyset \) for all \(f \in \partial X \), then \(G \) has a fixed point.

Proof. If \(G \) does not have a fixed point then by Theorem 4.2, there exists \(f_0 \in \partial X \) such that

\[
0 < H_{\|.\|} (f_0, G(f_0)) \leq H_{\|.\|} (f, G(f_0)),
\]

for all \(f \in X \). Since \(f_0 \in \partial X \), we have \(G(f_0) \cap X \neq \emptyset \), which is a contradiction. \(\square \)

References

