New Type of Generalized Difference Sequence Space of Non-Absolute Type and Some Matrix Transformations

M. Mursaleena, Ab. Hamid Ganieb, Neyaz Ahmad Sheikhb

aDepartment of Mathematics, Aligarh Muslim University, Aligarh 202002, India
bDepartment of Mathematics, National Institute of Technology Srinagar, 190006, India

Abstract. In the present paper, we introduce a new difference sequence space $r^p_B(u, p)$ by using the Riesz mean and the B-difference matrix. We show $r^p_B(u, p)$ is a complete linear metric space and is linearly isomorphic to the space $l(p)$. We have also computed its α-, β- and γ-duals. Furthermore, we have constructed the basis of $r^p_B(u, p)$ and characterize a matrix class $(r^p_B(u, p), l_\infty)$.

1. Introduction, Background and Notation

We denote the set of all sequences (real or complex) by ω. Any subspace of ω is called the sequence space. Let \mathbb{N}, \mathbb{R} and \mathbb{C} denote the set of non-negative integers, of real numbers and of complex numbers, respectively. Let l_∞, c and c_0 denote the space of all bounded, convergent and null sequences, respectively. Also, by c_0, l_1 and $l(p)$ we denote the spaces of all convergent, absolutely and p-absolutely convergent series, respectively.

Let X be a real or complex linear space, h be a function from X to the set \mathbb{R} of real numbers. Then, the pair (X, h) is called a paranormed space and h is a paranorm for X, if the following axioms are satisfied:

\begin{itemize}
 \item[(pn.1)] $h(\theta) = 0$,
 \item[(pn.2)] $h(-x) = h(x)$, \quad (\text{linearity})
 \item[(pn.3)] $h(x + y) \leq h(x) + h(y)$, \quad (\text{subadditivity})
 \item[(pn.4)] scalar multiplication is continuous, that is, $|\alpha_n - \alpha| \to 0$ and $h(x_n - x) \to 0$ imply $h(\alpha_n x_n - \alpha x) \to 0$ for all α's in \mathbb{R} and x's in X, \quad (\text{continuity})
\end{itemize}

Assume here and after that (p_k) be a bounded sequence of strictly positive real numbers with $\sup_k p_k = H$ and $M = \max\{1, H\}$. Then, the linear space $l(p)$ was defined by Maddox [10] as follows

$$l(p) = \{x = (x_k) : \sum_k |x_k|^{p_k} < \infty\}$$

which is complete space paranormed by

\textbf{2010 Mathematics Subject Classification}. Primary 40C05; Secondary 46A45, 46H05

\textbf{Keywords}. Sequence space of non-absolute type; β-duals; matrix transformations.

Received: 21 June 2013; Accepted: 04 February 2014

Communicated by Dragan S. Djordjević

\textit{Email addresses:} mursaleenm@gmail.com (M. Mursaleen), ashamidg@rediffmail.address (Ab. Hamid Ganie), neyaznit@yahoo.co.in (Neyaz Ahmad Sheikh)
Let X, Y be two sequence spaces and let $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk}, where $n, k \in \mathbb{N}$. Then, the matrix A defines the A-transformation from X into Y, if for every sequence $x = (x_k) \in X$ the sequence $Ax = (Ax_k) = \{(Ax)_k\}$, the A-transform of x exists and is in Y, where $(Ax)_k = \sum_n a_{nk}x_k$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. Let (q_k) be a sequence of positive numbers and let us write, $Q_n = \sum_{k=0}^{n} q_k$ for $n \in \mathbb{N}$. Then, the matrix $R^{q} = (r_{nk}^{q})$ of the Riesz mean (R, q_n) is given by

$$r_{nk}^{q} = \begin{cases} \frac{q_n}{Q_n}, & \text{if } 0 \leq k \leq n, \\ 0, & \text{if } k > n. \end{cases}$$

The Riesz mean (R, q_n) is regular if and only if $Q_n \to \infty$ as $n \to \infty$ [17].

Recently, Neyaz and Hamid [18] introduced the sequence space $r^{q}(u, p)$ as

$$r^{q}(u, p) = \left\{ x = (x_k) \in \omega : \sum_k \left| \frac{1}{Q_k} \sum_{j=0}^{k} u_j q_j x_j \right|^p < \infty \right\}, \quad (0 < p_k \leq H < \infty).$$

Kizmaz [8] defined the difference sequence spaces $Z(\Delta)$ as follows

$$Z(\Delta) = \{ x = (x_k) \in \omega : (\Delta x_k) \in Z \},$$

where $Z \in \{l_\infty, c, c_0 \}$ and $\Delta x_k = x_k - x_{k-1}$.

Altay and Başar [2] defined the sequence space of p-bounded variation bv_{p}, which is defined as

$$bv_{p} = \left\{ x = (x_k) \in \omega : \sum_k |x_k - x_{k-1}|^p < \infty \right\}, \quad 1 \leq p < \infty.$$

With the notation of (1), the space bv_{p} can be re-defined as

$$bv_{p} = (l_{p})_{\Delta}, \quad 1 \leq p < \infty$$

where, Δ denotes the matrix $\Delta = (\Delta_{nk})$ and is defined as

$$\Delta_{nk} = \begin{cases} (-1)^{n-k}, & \text{if } n - 1 \leq k \leq n, \\ 0, & \text{if } k < n - 1 \text{ or } k > n. \end{cases}$$
Neyaz and Hamid [19] introduced the space $r^q(\triangle^p u)$ as:

$$r^q(\triangle^p u) = \left\{ x = (x_k) \in \ell : \sum_k \left| \frac{1}{Q_k} \sum_{j=0}^{k} u_k q_j \triangle x_j \right|^{p_k} < \infty \right\},$$

where $(0 < p_k \leq H < \infty)$.

In [3] the generalized difference matrix $B = (b_{nk})$ is defined as:

$$b_{nk} = \begin{cases} r, & \text{if } k = n, \\ s, & \text{if } k = n - 1, \\ 0, & \text{if } 0 \leq k < n - 1 \text{ or } k > n, \end{cases}$$

for all $n, k \in \mathbb{N}$, $r, s \in \mathbb{R} - \{0\}$. The matrix B can be reduced to difference matrix \triangle incase $r = 1$, $s = -1$.

The approach of constructing a new sequence space by means of matrix domain of a particular limitation method has been studied by several authors viz., [1, 4–7, 13, 16, 18, 19].

2. The Riesz Sequence Space $r^q_B(u, p)$ of Non-Absolute Type

In this section, we define the Riesz sequence space $r^q_B(u, p)$, and prove that the space $r^q_B(u, p)$ is a complete paranormed linear space and show it is linearly isomorphic to the space $l(p)$.

Define the sequence $y = (y_k)$, which will be frequently used, by the R^q_B-transform of a sequence $x = (x_k)$, i.e.,

$$y_k(q) = \frac{1}{Q_k} \left\{ \sum_{j=0}^{k-1} u_k(q_j r + q_j s) x_j + u_k q_k r x_k \right\}, \quad (k \in \mathbb{N}). \quad (2)$$

Following Başar and Altay [1], Mursaleen et al [14, 15], Neyaz and Hamid [18, 19], Başarir and Öztürk [4], we define the sequence space $r^q_B(u, p)$ as the set of all sequences such that R^q_B transform of it is in the space $l(p)$, that is,

$$r^q_B(u, p) = \{ x = (x_k) \in \ell : y_k(q) \in l(p) \}.$$

Note that if we take $r = 1$ and $s = -1$, the sequence spaces $r^q_B(u, p)$ reduces to $r^q(\triangle u)$, introduced by Neyaz and Hamid [19]. Also, if $(u_k) = c = (1, 1, ...)$, the sequence spaces $r^q_B(u, p)$ reduces to $r^q_B(p)$ Başarir [3].

With the notation of (1) that

$$r^q_B(u, p) = \{ l(p) \}^q_B.$$

Now, we prove the following theorem which is essential in the text.
Theorem 2.1. \(r^p_\mathcal{B}(u,p) \) is a complete linear metric space paranormed by \(h_B \), defined as

\[
h_B(x) = \left[\sum_k \left\{ \frac{1}{Q_k} \left(\sum_{j=0}^{k-1} u_k(q_jr + q_{j+1}s)x_j + q_kr x_k \right) \right\}^{p_k} \right]^{\frac{1}{p_k}},
\]

where \(\text{sup}_k p_k = H \) and \(M = \max\{1,H\} \).

Proof. The linearity of \(r^p_\mathcal{B}(u,p) \) with respect to the co-ordinatewise addition and scalar multiplication follows from the inequalities which are satisfied for \(z, x \in r^p_\mathcal{B}(u,p) \) [11]

\[
\left[\sum_k \left\{ \frac{1}{Q_k} \sum_{j=0}^{k-1} u_k(q_jr + q_{j+1}s)(x_j + z_j) + q_kr x_k + z_k \right\}^{p_k} \right]^{\frac{1}{p_k}}
\leq \sum_k \left\{ \frac{1}{Q_k} \sum_{j=0}^{k-1} u_k(q_jr + q_{j+1}s)x_j + q_kr x_k \right\}^{p_k} \frac{1}{p_k} + \sum_k \left\{ \frac{1}{Q_k} \sum_{j=0}^{k-1} u_k(q_jr + q_{j+1}s)z_j + q_kr z_k \right\}^{p_k} \frac{1}{p_k}
\]

(3)

and for any \(\alpha \in \mathbb{R} \) [12]

\[
|\alpha|^p \leq \max(1,|\alpha|^p).
\]

(4)

It is clear that, \(h_B(0) = 0 \) and \(h_B(x) = h_B(-x) \) for all \(x \in r^p_\mathcal{B}(u,p) \). Again the inequality (3) and (4), yield the subadditivity of \(h_B \) and

\[
h_B(\alpha x) \leq \max(1,|\alpha|)h_B(x).
\]

Let \(\{x^n\} \) be any sequence of points of the space \(r^p_\mathcal{B}(u,p) \) such that \(h_B(x^n - x) \to 0 \) and \((\alpha_n) \) is a sequence of scalars such that \(\alpha_n \to \alpha \). Then, since the inequality

\[
h_B(x^n) \leq h_B(x) + h_B(x^n - x)
\]

holds by subadditivity of \(h_B \), \(|h_B(x^n)| \) is bounded and we thus have

\[
h_B(\alpha_n x^n - \alpha x) = \left[\sum_k \left\{ \frac{1}{Q_k} \sum_{j=0}^{k-1} u_k(q_jr + q_{j+1}s)(\alpha_n x^n_j - \alpha x_j) + u_kq_kr(\alpha_n x^n_k - \alpha x_k) \right\}^{p_k} \right]^{\frac{1}{p_k}} \leq |\alpha_n - \alpha|^\frac{p_k}{p_k} h_B(x^n) + |\alpha|^\frac{1}{p_k} h_B(x^n - x)
\]

which tends to zero as \(n \to \infty \). That is to say, that the scalar multiplication is continuous. Hence, \(h_B \) is paranorm on the space \(r^p_\mathcal{B}(u,p) \).

It remains to prove the completeness of the space \(r^p_\mathcal{B}(u,p) \). Let \(\{x^i\} \) be any Cauchy sequence in the space \(r^p_\mathcal{B}(u,p) \), where \(x^i = \{x^i_0, x^i_1, \ldots\} \). Then, for a given \(\varepsilon > 0 \) there exists a positive integer \(n_0(\varepsilon) \) such that
\[h_B(x^i - x^j) < \epsilon \] (5)

for all \(i, j \geq n_0(\epsilon) \). Using definition of \(h_B \) and for each fixed \(k \in \mathbb{N} \) that

\[\left| (R^m_b Bx^i)_k - (R^m_b Bx^j)_k \right| \leq \left[\sum_k \left| (R^m_b Bx^i)_k - (R^m_b Bx^j)_k \right|^p \right]^{\frac{1}{p}} < \epsilon \]

for \(i, j \geq n_0(\epsilon) \), which leads us to the fact that \(\{ (R^m_b Bx^0)_k, (R^m_b Bx^1)_k, \ldots \} \) is a Cauchy sequence of real numbers for every fixed \(k \in \mathbb{N} \). Since \(\mathbb{R} \) is complete, it converges, say, \((R^m_b Bx^i)_k \rightarrow ((R^m_b Bx)_k \text{ as } i \rightarrow \infty \). Using these infinitely many limits \((R^0_b Bx)_0, (R^0_b Bx)_1, \ldots \), we define the sequence \(\{ (R^m_b Bx)_0, (R^m_b Bx)_1, \ldots \} \). From (5) for each \(m \in \mathbb{N} \) and \(i, j \geq n_0(\epsilon) \),

\[\sum_{k=0}^{m} |(R^m_b Bx^i)_k - (R^m_b Bx^j)_k|^p \leq h_B(x^i - x^j)^m < \epsilon^m. \] (6)

Take any \(i, j \geq n_0(\epsilon) \). First, let \(j \rightarrow \infty \) in (6) and then \(m \rightarrow \infty \), we obtain

\[h_B(x^i - x) \leq \epsilon. \]

Finally, taking \(\epsilon = 1 \) in (6) and letting \(i \geq n_0(1) \), we have by Minkowski’s inequality for each \(m \in \mathbb{N} \) that

\[\left[\sum_{k=0}^{m} |(R^m_b Bx)_k|^p \right]^{\frac{1}{p}} \leq h_B(x^i - x) + h_B(x^j) \leq 1 + h_B(x^i) \]

which implies that \(x \in r^0_b(u, p) \). Since \(h_B(x - x^i) \leq \epsilon \) for all \(i \geq n_0(\epsilon) \), it follows that \(x^i \rightarrow x \) as \(i \rightarrow \infty \), hence we have shown that \(r^0_b(u, p) \) is complete, hence the proof.

If we take \(r = 1, s = -1 \) in the theorem 2.1, then we have the following result which was proved by Neyaz and Hamid [19].

Corollary 2.2. \(r^s(\Delta^1_p) \) is a complete linear metric space paranormed by \(h_{\Delta^1} \), defined as

\[h_{\Delta^1}(x) = \left[\sum_k \left| \frac{1}{Q_k} \sum_{j=0}^{k-1} u_k(q_j - q_{j+1})x_j + q_k u_k x_k \right|^p \right]^{\frac{1}{p}}, \]

where \(\sup_k p_k = \text{Hand} M = \max[1, H] \).

Note that one can easily see the absolute property does not hold on the spaces \(r^0_b(u, p) \), that is \(h_B(x) \neq h_B(|x|) \) for at least one sequence in the space \(r^0_b(u, p) \) and this says that \(r^0_b(u, p) \) is a sequence space of non-absolute type.

Theorem 2.3. The sequence space \(r^0_b(u, p) \) of non-absolute type is linearly isomorphic to the space \(l(p) \), where \(0 < p_k \leq H < \infty \).
Proof. To prove the theorem, we should show the existence of a linear bijection between the spaces $r_q^u(u,p)$ and $l(p)$, where $0 < p_k \leq H < \infty$. With the notation of (2), define the transformation T from $r_q^u(u,p)$ to $l(p)$ by $x \rightarrow y = T(x)$. The linearity of T is trivial. Further, it is obvious that $x = \theta$ whenever $Tx = \theta$ and hence T is injective.

Let $y \in l(p)$ and define the sequence $x = (x_k)$ by

$$x_k = \sum_{n=0}^{k-1} (-1)^{k-n} \left(\frac{s^{k-n}}{p^{k-n} q_{n+1}} + \frac{s^{k-n}}{p^{k-n} q_n} \right) Q_n u_k^{-1} y_n + \frac{Q_k u_k^{-1} y_k}{r_k d_k}.$$

Then,

$$h_B(x) = \left[\sum_k \left| \sum_{j=0}^{k-1} u_k(q,j,r+q_{j+1},s)x_j + u_k q_j r x_k \right|^{p_k} \right]^{\frac{1}{p_k}} = \left[\sum_k \sum_{j=0}^{k} \delta_{kj} y_j \right]^{\frac{1}{p_k}} = h_1(y) < \infty,$$

where,

$$\delta_{kj} = \begin{cases} 1, & \text{if } k = j, \\ 0, & \text{if } k \neq j. \end{cases}$$

Thus, we have $x \in r_q^u(u,p)$. Consequently, T is surjective and is paranorm preserving. Hence, T is a linear bijection and this says us that the spaces $r_q^u(u,p)$ and $l(p)$ are linearly isomorphic, hence the proof.

3. Duals and Basis of $r_q^u(u,p)$

In this section, we compute α-, β- and γ-duals of $r_q^u(u,p)$ and construct its basis.

Theorem 3.1. (i) Let $1 < p_k \leq H < \infty$ for every $k \in \mathbb{N}$. Define the sets $D_1(u,p)$ and $D_2(u,p)$ as follows

$$D_1(u,p) = \bigcup_{B \geq 1} \left\{ a = (a_k) \in \omega : \sup_{k \in \mathbb{N}} \left| \sum_{n \in \mathbb{N}} \left(\varphi_n(u,k) a_n Q_n + \frac{a_n}{r_k d_n} u_n^{-1} Q_n \right) B^{-1} \right|^{p_k} < \infty \right\}$$

and
Then, \[D_2(u, p) = \bigcup_{B > 1} \left\{ a = (a_k) \in \omega : \sum_k \left| \frac{a_k}{r_k u_{n+1}} + \nabla_a (n, k) \sum_{i=1}^n a_i Q_k \right| B^{-1} \right|^{p_k'} < \infty \} \]

where \[\nabla_a(n, k) = (-1)^k - \frac{s_1^{k-n-1} + s_2^{k-n}}{r_k q_{n+1}} u_{n-1}^k. \]

Then,
\[
\left[r_B^a(u, p) \right]^a = D_1(u, p), \quad \left[r_B^a(u, p) \right]^b = D_2(u, p) \cap cs, \quad \text{and} \quad \left[r_B^a(u, p) \right]^c = D_2(u, p).
\]

(ii) Let \(0 < p_k \leq 1 \) for every \(k \in \mathbb{N} \). Define the sets \(D_3(u, p) \) and \(D_4(u, p) \) as follows
\[
D_3(u, p) = \left\{ a = (a_k) \in \omega : \sup_{k \in \mathbb{N}} \left\| \sum_k \nabla_a (n, k) a_n Q_k + \frac{a_n}{r_k q_{n+1}} u_{n-1}^k Q_{n+1} \right\| B^{-1} \right|^{p_k} < \infty \}
\]
and
\[
D_4(u, p) = \left\{ a = (a_k) \in \omega : \sup_k \left\| \frac{a_k}{r_k u_{k+1}} + \nabla_a (n, k) \sum_{i=1}^n a_i Q_k \right\| B^{-1} \right|^{p_k} < \infty \}.
\]

Then,
\[
\left[r_B^a(u, p) \right]^a = D_3(u, p), \quad \left[r_B^a(u, p) \right]^b = D_4(u, p) \cap cs, \quad \text{and} \quad \left[r_B^a(u, p) \right]^c = D_4(u, p).
\]

For the proof of the Theorem 3.1, we need following lemmas.

Lemma 3.2. \([7](i) \) Let \(1 < p_k \leq H < \infty \). Then \(A \in (l(p) : l_1) \) if and only if there exists an integer \(B > 1 \) such that
\[
\sup_{k \in \mathbb{N}} \sum_{n \in \mathbb{N}} \left| a_{nk} B^{-1} \right|^{p_k} < \infty.
\]

(ii) Let \(0 < p_k \leq 1 \). Then \(A \in (l(p) : l_1) \) if and only if
\[
\sup_{k \in \mathbb{N}} \sup_{n \in \mathbb{N}} \left| a_{nk} B^{-1} \right|^{p_k} < \infty.
\]

Lemma 3.3. \([9](i) \) Let \(1 < p_k \leq H < \infty \). Then, \(A \in (l(p) : l_\infty) \) if and only if there exists an integer \(B > 1 \) such that
\[
\sup_n \sum_k |a_{nk}B^{-1}|p_k' < \infty. \quad (7)
\]

(ii) Let \(0 < p_k \leq 1\) for every \(k \in \mathbb{N}\). Then \(A \in (l(p) : l_\infty)\) if and only if
\[
\sup_{n,k \in \mathbb{N}} |a_{nk}|p_k < \infty. \quad (8)
\]

Lemma 3.4. [9] Let \(0 < p_k \leq H < \infty\) for every \(k \in \mathbb{N}\). Then \(A \in (l_p) : c)\) if and only if (7) and (8) hold along with
\[
\lim_n a_{nk} = \beta_k \text{ for } k \in \mathbb{N}. \quad (9)
\]

Proof of Theorem 3.1. We consider the case \(1 < p_k \leq H < \infty\) for every \(k \in \mathbb{N}\). Let us take any \(a = (a_n) \in \omega\). From (2) we can easily see that
\[
a_n x_n = \sum_{k=0}^{n-1} \nabla u(n,k)a_n Q_k y_k + \frac{a_n Q_n y_n}{r_d n} u_k^{-1} = \sum_{k=0}^{n} c_{nk} y_k = (Cy)_n, \quad (10)
\]

where \(n \in \mathbb{N}\) and \(C = (c_{nk})\) is defined by
\[
c_{nk} = \begin{cases}
\nabla u(n,k)a_n Q_k, & \text{if } 0 \leq k \leq n-1, \\
\frac{a_n Q_n}{r_d n} u_k^{-1}, & \text{if } k = n, \\
0, & \text{if } k > n,
\end{cases}
\]

where \(k, n \in \mathbb{N}\). Thus, we deduce from (10) with Lemma 3.2 that \(ax = (a_n x_n) \in l_1\) whenever \(x = (x_n) \in r_B^h(u,p)\) if and only if \(Cy \in l_1\) whenever \(y \in l(p)\). This shows that \([r_B^h(u,p)]^\prime = D_1(u,p)\).

Further, consider the equation
\[
\sum_{k=0}^{n} a_n x_n = \sum_{k=0}^{n} \left(\frac{a_k}{r_d k} u_k^{-1} + \nabla u(n,k) \sum_{i=k+1}^{n} a_i \right) Q_k y_k = (Dy)_n, \quad (11)
\]

where \(n \in \mathbb{N}\) and \(D = (d_{nk})\) is defined by
\[
d_{nk} = \begin{cases}
\left(\frac{a_k}{r_d k} u_k^{-1} + \nabla u(n,k) \sum_{i=k+1}^{n} a_i \right) Q_k, & \text{if } 0 \leq k \leq n, \\
0, & \text{if } k > n,
\end{cases}
\]
for all \(k, n \in \mathbb{N} \). Thus we deduce from (11) with Lemma 3.3 that \(ax = (a_n x_n) \in cs \) whenever \(x = (x_n) \in r^q_B(u, p) \) if and only if \(Dy \in c \) whenever \(y \in l(p) \). Therefore, we derive from (11) that

\[
\sum_k \left\| \left(\frac{a_k}{r_{d/k}} u_k^{-1} + \nabla_a(n, k) \sum_{i=k+1}^n a_i u_i^{-1} Q_i \right) B^{-1} \right\|_{p_k} < \infty,
\]

and \(\lim_{n \to \infty} d_{nk} \) exists and hence shows that \([r^q_B(u, p)]^\beta_2 = D^2(u, p) \cap cs \).

As proved above, from Lemma 3.4 together with (12) that \(ax = (a_k x_k) \in bs \) whenever \(x = (x_n) \in r^q_B(u, p) \) if and only if \(Dy \in l_\infty \) whenever \(y = (y_k) \in l(p) \). Therefore, we again obtain the condition (12) which means that \([r^q_B(u, p)]^\gamma = D^2(u, p) \) and this completes the proof.

Theorem 3.5. Define the sequence \(b^{(k)}(q) = \{ b^{(k)}(q) \} \) of the elements of the space \(r^q_B(u, p) \) for every fixed \(k \in \mathbb{N} \) by

\[
b^{(k)}_n(q) = \begin{cases}
\frac{Q_k}{r_{q/k}} u_k^{-1} + \nabla_a(n, k) Q_k, & \text{if } 0 \leq n \leq k, \\
0, & \text{if } n > k.
\end{cases}
\]

Then, the sequence \(\{b^{(k)}(q)\} \) is a basis for the space \(r^q_B(u, p) \) and for any \(x \in r^q_B(u, p) \) has a unique representation of the form

\[
x = \sum_k \lambda_k(q) b^{(k)}(q)
\]

where, \(\lambda_k(q) = (R^q_B x)_k \) for all \(k \in \mathbb{N} \) and \(0 < p_k \leq H < \infty \).

Proof. It is clear that \(\{b^{(k)}(q)\} \subset r^q_B(u, p) \), since

\[
R^q_B b^{(k)}(q) = e^{(k)} \in l(p) \text{ for } k \in \mathbb{N}
\]

and \(0 < p_k \leq H < \infty \), where \(e^{(k)} \) is the sequence whose only non-zero term is 1 in \(k^{th} \) place for each \(k \in \mathbb{N} \).

Let \(x \in r^q_B(u, p) \) be given. For every non-negative integer \(m \), we put

\[
x^{[m]} = \sum_{k=0}^m \lambda_k(q) b^{(k)}(q).
\]

Then, by applying \(R^q_B \) to (15) and using (14), we obtain
\[R^0_B (x^{[m]}) = \sum_{k=0}^{m} \lambda_k(q) R^0_B [t^k(q)] = \sum_{k=0}^{m} (R^0_B x)_k e^k \]

and

\[
(R^0_B (x^{[m]}))_i = \begin{cases}
0, & \text{if } 0 \leq i \leq m \\
(R^0_B x)_i, & \text{if } i > m
\end{cases}
\]

where \(i, m \in \mathbb{N} \). Given \(\varepsilon > 0 \), there exists an integer \(m_0 \) such that

\[
\left(\sum_{i=m}^{\infty} |(R^0_B x)_i|^p \right)^{1/p} < \frac{\varepsilon}{2},
\]

for all \(m \geq m_0 \). Hence,

\[
l_B (x^{[m]}) = \left(\sum_{i=m}^{\infty} |(R^0_B x)_i|^p \right)^{1/p} \leq \left(\sum_{i=m_0}^{\infty} |(R^0_B x)_i|^p \right)^{1/p} < \frac{\varepsilon}{2} < \varepsilon
\]

for all \(m \geq m_0 \), which proves that \(x \in r^0_B (u, p) \) is represented as (14).

Let us show the uniqueness of the representation for \(x \in r^0_B (u, p) \) given by (13). Suppose, on the contrary; that there exists a representation \(x = \sum_k \mu_k(q) b^k(q) \). Since the linear transformation \(T \) from \(r^0_B (u, p) \) to \(l^\infty(p) \) used in the Theorem 3 is continuous we have

\[
(R^0_B x)_n = \sum_k \mu_k(q) (R^0_B t^k(q))_n = \sum_k \mu_k(q) e^k_n = \mu_n(q)
\]

for \(n \in \mathbb{N} \), which contradicts the fact that \((R^0_B)_n = \lambda_n(q) \) for all \(n \in \mathbb{N} \). Hence, the representation (13) is unique. This completes the proof.

4. Matrix Mappings on the Space \(r^0_B (u, p) \)

In this section, we characterize the matrix mappings from the space \(r^0_B (u, p) \) to the space \(l^\infty \).

Theorem 4.1. (i) Let \(1 < p_k \leq H < \infty \) for every \(k \in \mathbb{N} \). Then \(A \in \left(r^0_B (u, p) : l^\infty \right) \) if and only if there exists an integer \(B > 1 \) such that
Now, by combining (19) and the following inequality which holds for any fixed \(n \in \mathbb{N} \):

\[
C(B) = \sup_{n} \sum_{k} \left\| \left(\frac{a_{nk}}{r, t \mathcal{U}_k} + \mathcal{V}_u(n, k) \sum_{i=k+1}^{n} a_{ni} \right) Q_k \right\|_{p_k} < \infty \tag{16}
\]

and \(|a_{nk}| \in \mathbb{C} \) for each \(n \in \mathbb{N} \).

(ii) Let \(0 < p_k \leq 1 \) for every \(k \in \mathbb{N} \). Then \(A \in \left(r^\beta_B (u, p) : l_\infty \right) \) if and only if

\[
\sup_{k} \left\| \left(\frac{a_{nk}}{r, t \mathcal{U}_k} + \mathcal{V}_u(n, k) \sum_{i=k+1}^{n} a_{ni} \right) Q_k \right\|_{p_k} < \infty \tag{17}
\]

and \(|a_{nk}| \in \mathbb{C} \) for each \(n \in \mathbb{N} \).

Proof. We will prove (i) and (ii) can be proved in a similar fashion. So, let \(A \in \left(r^\beta_B (u, p) : l_\infty \right) \) and \(1 < p_k \leq H < \infty \) for every \(k \in \mathbb{N} \). Then \(Ax \) exists for \(x \in r^\beta_B (u, p) \) and implies that \(|a_{nk}| \in \left(r^\beta_B (u, p) \right)^\beta \) for each \(n \in \mathbb{N} \). Hence necessity of (16) holds.

Conversely, suppose that the necessities (16) hold and \(x \in r^\beta_B (u, p) \), since \(|a_{nk}| \in \left(r^\beta_B (u, p) \right)^\beta \) for every fixed \(n \in \mathbb{N} \), so the \(A \)-transform of \(x \) exists. Consider the following equality obtained by using the relation (11) that

\[
\sum_{k=0}^{m} a_{nk} x_k = \sum_{k} \left(\left(\frac{a_{nk}}{r, t \mathcal{U}_k} + \mathcal{V}_u(n, k) \sum_{i=k+1}^{n} a_{ni} \right) Q_k \right) y_k. \tag{18}
\]

Taking into account the assumptions we derive from (18) as \(m \to \infty \) that

\[
\sum_{k} a_{nk} x_k = \sum_{k} \left(\left(\frac{a_{nk}}{r, t \mathcal{U}_k} + \mathcal{V}_u(n, k) \sum_{i=k+1}^{n} a_{ni} \right) Q_k \right) y_k \tag{19}
\]

Now, by combining (19) and the following inequality which holds for any \(B > 0 \) and any complex numbers \(a, b \)

\[
|ab| \leq B \left(|aB^{-1}|^p + |b|^p \right)
\]

with \(p^{-1} + p'^{-1} = 1 \) [10, 16], one can easily see that

\[
\sup_{n \in \mathbb{N}} \sum_{k} a_{nk} x_k \leq \sup_{n \in \mathbb{N}} \sum_{k} \left\| \left(\frac{a_{nk}}{r, t \mathcal{U}_k} + \mathcal{V}_u(n, k) \sum_{i=k+1}^{n} a_{ni} \right) Q_k \right\|_{y_k} |y_k| \leq B \left(C(B) + \| h^\beta_B (y) \| \right) < \infty.
\]

This shows that \(Ax \in l_\infty \) whenever \(x \in r^\beta_B (u, p) \).

This completes the proof.
References

