On Slowly Varying Sequences

Valentina Timotić, Dragan Djurčić, Rale M. Nikolić

University of East Sarajevo, Faculty of Philosophy, Alekse Șantića 1, 71420 Pale, Bosnia and Herzegovina
University of Kragujevac, Faculty of Technical Sciences, Svetog Save 65, 32000 Čačak, Serbia
Belgrade Metropolitan University, Tadeuša Kočuška 63, 11000 Belgrade, Serbia

Abstract. In this paper we investigate the connection between the class SV of slowly varying sequences (in the sense of Karamata) and the slow equivalence, strong asymptotic equivalence, selection principles and game theory.

1. Introduction and results

Real functions $f, g : [a, +\infty) \rightarrow \mathbb{R}, (a > 0)$, are mutually inversely asymptotic, in denotation $f(x) \sim g(x)$, as $x \rightarrow +\infty$ (see e.g. [1, 5, 7]), if for each $\lambda > 1$, there is an $x_0 = x_0(\lambda) \geq a$ such that the inequality

$$ f\left(\frac{x}{\lambda}\right) \leq g(x) \leq f(\lambda x), \quad (1) $$

is satisfied for each $x \geq x_0$.

In particular, real functions $f, g : [a, +\infty) \rightarrow (0, +\infty), (a > 0)$, are mutually slowly equivalent (see e.g. [8]), in denotation $f(x) \sim g(x)$, as $x \rightarrow +\infty$, if

$$ \lim_{x \rightarrow +\infty} \frac{f(\lambda x)}{g(x)} = 1 \quad (2) $$

and

$$ \lim_{x \rightarrow +\infty} \frac{g(\lambda x)}{f(x)} = 1 \quad (3) $$

hold for each $\lambda > 1$.

Sequences of positive real numbers $(c_n)_{n\in\mathbb{N}}$ and $(d_n)_{n\in\mathbb{N}}$ are mutually slowly equivalent, in denotation $c_n \sim d_n$, as $n \rightarrow +\infty$, if

$$ \lim_{n \rightarrow +\infty} \frac{c_{[\lambda n]}}{d_n} = 1 \quad (4) $$

2010 Mathematics Subject Classification. Primary 26A12; Secondary 40A05, 91A05.

Keywords. Slowly varying sequences; mutually slowly equivalent sequences; selection principles; game theory.

Received: 2 November 2014; Accepted: 26 November 2014

Communicated by Dragan S. Djordjević

This paper is supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 174032

Email addresses: valentina.ko@hotmail.com (Valentina Timotić), dragandj@tfc.kg.ac.rs (Dragan Djurčić), ralevb@open.telekom.rs (Rale M. Nikolić)
Remark 1.5. \(\leq \)

A measurable real function \(f : [a, +\infty) \mapsto (0, +\infty) \), \((a > 0) \) is slowly varying in sense of Karamata (see e.g. [9]) if

\[
\lim_{x \to +\infty} \frac{f(\lambda x)}{f(x)} = 1,
\]

holds for each \(\lambda > 0 \). The set of all these functions is denoted by \(SV_f \). The class \(SV_f \) is very important in asymptotic analysis (see [12]).

A sequence of positive real numbers \(c = (c_n)_{n \in \mathbb{N}} \) is slowly varying in sense of Karamata (see e.g. [1]) if

\[
\lim_{n \to +\infty} \frac{c_{[\lambda n]}}{c_n} = 1,
\]

holds for each \(\lambda > 0 \). The set of all these sequences important in asymptotic analysis is denoted by \(SV_s \) (see [1]).

In this paper the set of all positive real sequences will be denoted with \(S \) (see e.g. [2]).

Proposition 1.1. Let sequences \(c = (c_n)_{n \in \mathbb{N}} \) and \(d = (d_n)_{n \in \mathbb{N}} \) be elements from \(S \). If \(c_n \leq d_n \) as \(n \to +\infty \), then \(c \in SV_s \) and \(d \in SV_s \).

Proposition 1.2. Relation \(\leq \) is a relation of equivalence in \(SV_s \).

The next definition is well-known definition of \(\alpha_i \)-selection principles (see e.g. [11]).

Definition 1.3. Let \(\mathcal{A} \) and \(\mathcal{B} \) be nonempty subfamilies of the set \(S \). The symbol \(\alpha_i(\mathcal{A}, \mathcal{B}), i \in \{2, 3, 4\} \), denotes the following selection hypotheses: for each sequence \((A_n)_{n \in \mathbb{N}} \) of elements from \(\mathcal{A} \) there is an element \(B \in \mathcal{B} \) such that:

1. \(\alpha_2(\mathcal{A}, \mathcal{B}) \): the set \(\text{Im}(A_n) \cap \text{Im}(B) \) is infinite for each \(n \in \mathbb{N} \);
2. \(\alpha_3(\mathcal{A}, \mathcal{B}) \): the set \(\text{Im}(A_n) \cap \text{Im}(B) \) is infinite for infinitely many \(n \in \mathbb{N} \);
3. \(\alpha_4(\mathcal{A}, \mathcal{B}) \): the set \(\text{Im}(A_n) \cap \text{Im}(B) \) is nonempty for infinitely many \(n \in \mathbb{N} \),

where \(\text{Im} \) denotes the image of the corresponding set.

We need also the definition of an interesting game related to the \(\alpha_2 \) selection principle (see e.g. [11]; see also [4]).

Definition 1.4. Let \(\mathcal{A} \) and \(\mathcal{B} \) be nonempty subfamilies of the set \(S \). The symbol \(\mathcal{G}_{\alpha_2}(\mathcal{A}, \mathcal{B}) \) denotes the following infinitely long game for two players who play a round for each natural number \(n \). In the first round the first player plays an arbitrary element \(A_1 = (A_{1, j})_{j \in \mathbb{N}} \) from \(\mathcal{A} \), and the second one chooses an elements from the subsequence \(y_{r_1} = (A_{1, r_1(j)})_{j \in \mathbb{N}} \) of the sequence \(A_1 \). At the \(k \)th round, \(k \geq 2 \), the first player plays an arbitrary element \(A_k = (A_{k, j})_{j \in \mathbb{N}} \) from \(\mathcal{A} \) and the second one chooses an elements from the subsequence \(y_{r_k} = (A_{k, r_k(j)})_{j \in \mathbb{N}} \) of the sequence \(A_k \), such that \(\text{Im}(r_1(j)) \cap \text{Im}(r_k(j)) = \emptyset \) is satisfied, for each \(p \leq k-1 \). We will say that the second player wins a play \(A_1, y_{r_1}; \ldots; A_k, y_{r_k}; \ldots \) if and only if all elements from the \(Y = \bigcup_{k \in \mathbb{N}} \bigcup_{j \in \mathbb{N}} A_{k, r_k(j)} \), with respect to second index, form a subsequence of the sequence \(y = (y_m)_{m \in \mathbb{N}} \in \mathcal{B} \).

Remark 1.5. Let sequence \(c = (c_n)_{n \in \mathbb{N}} \in SV_s \). We will introduce the next set

\[
[c]_\leq = \{ d = (d_n)_{n \in \mathbb{N}} \in SV_s \mid c_n \leq d_n, \text{as } n \to +\infty \}.
\]
Proposition 1.6. The second player has a winning strategy in the game $G_{α_2}(\lfloor c \rfloor, \lfloor c \rfloor)$ for each fixed sequence $c \in SV_\lambda$.

Corollary 1.7. The selection principle $α_2(\lfloor c \rfloor, \lfloor c \rfloor)$ is satisfied, where the sequence $c \in SV_\lambda$ is given and fixed.

Remark 1.8. (1) From Corollary 1.7 and [2] it follows that the selection principles $α_i(\lfloor c \rfloor, \lfloor c \rfloor)$ are satisfied for $i \in \{3, 4\}$, where the sequence $c \in SV_\lambda$ is arbitrary pre-selected and fixed.

(2) From the proof of Proposition 1.6 we have that $c_n \sim d_{n+1}$, as $n \to +\infty$, whenever sequences $c = (c_n)_{n \in \mathbb{N}}$ and $d = (d_n)_{n \in \mathbb{N}}$ belong to the class SV_λ. (The symbol \sim denotes strong asymptotic equivalence (see e.g. [1]).)

(3) The assertion of Corollary 1.7 has already been given in [3], but in a different form. Actually, in [3] only the sketch of the proof of this corollary is given.

The following is the definition of one of classical selection principles (see e.g. [10]).

Definition 1.9. Let \mathcal{A} and \mathcal{B} be a nonempty subfamilies of the set \mathbb{N}. The symbol $S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the next selection hypothesis: for each sequence $(A_n)_{n \in \mathbb{N}}$ from \mathcal{A} there is a sequence $B \in \mathcal{B}$ which consists of some numbers from the double sequence $(A_n)_{n \in \mathbb{N}}$ such that sequences B and $(A_n)_{n \in \mathbb{N}}$ have finitely many common elements for each $n \in \mathbb{N}$.

In the following definition we define a new interesting two-person game.

Definition 1.10. Let \mathcal{A} and \mathcal{B} be a nonempty subfamilies of the set \mathbb{N}. By $G^*_{fin}(\mathcal{A}, \mathcal{B})$ we denote the following infinitely long game for two players: In the first round the first player plays elements $A_1 \in \mathcal{A}$, and the second player chooses k_1 ($k_1 \in \mathbb{N}$) elements from the sequence A_1, i.e. elements $b_{11}, b_{12}, \ldots, b_{1k_1}$. At s^{th} round, $s \geq 2$, the first player chooses an element $A_s \in \mathcal{A}$, and the second player responses by choosing k_s ($k_s \in \mathbb{N} \cup \{0\}$) elements from the sequence A_{s-1}, i.e. $b_{s-1k_1+1}, b_{s-1k_1+2}, \ldots, b_{s-1k_1+k_s-1}$, and k_s^{th} element from the sequence A_s, say b_{sk_s}. If we form the sequence $(b_i)_{i \in \mathbb{N}}$ from such chosen elements

$$b_{11}, b_{12}, \ldots, b_{1k_1}, \ldots, b_{s-1k_1+1}, b_{s-1k_1+2}, \ldots, b_{s-1k_1+k_s-1}, b_{sk_s}, \ldots$$

then we say that the second player wins a play

$$A_1, b_{11}, b_{12}, \ldots, b_{1k_1}, \ldots, A_s, b_{s-1k_1+1}, b_{s-1k_1+2}, \ldots, b_{s-1k_1+k_s-1}, b_{sk_s}, \ldots$$

if the sequence $(b_i)_{i \in \mathbb{N}}$ belongs to \mathcal{B}.

Proposition 1.11. The second player has a winning strategy in the game $G^*_{fin}(\lfloor c \rfloor, \lfloor c \rfloor)$ for each fixed $c \in SV_\lambda$.

An important game, denoted by $G^*_{fin}(\mathcal{A}, \mathcal{B})$, was considered in [6]. The game $G^*_{fin}(\mathcal{A}, \mathcal{B})$ introduced in the previous definition is a special case of the game $G^*_{fin}(\mathcal{A}, \mathcal{B})$.

Corollary 1.12. The second player has a winning strategy in the game $G^*_{fin}(\lfloor c \rfloor, \lfloor c \rfloor)$ for each fixed $c \in SV_\lambda$.

Remark 1.13. From the previously mentioned we have that the selection principle $S_{fin}(\lfloor c \rfloor, \lfloor c \rfloor)$ is satisfied for each fixed sequence $c \in SV_\lambda$.

2. Proofs of the results

Proof of Proposition 1.1. Firstly, we have

$$\lim_{n \to +\infty} \frac{c_{\lfloor \lambda \rfloor}}{c_n} = \lim_{n \to +\infty} \frac{c_{\lfloor \lambda \rfloor}}{d_{\lfloor \lambda \rfloor - 1} n} = \lim_{n \to +\infty} \frac{c_{\lfloor \lambda \rfloor} - 1}{d_{\lfloor \lambda \rfloor - 1} n} = 1 \cdot 1 = 1,$$

since $[\lambda] - 1 > 1$ and $\frac{1}{\lfloor \lambda \rfloor} > 1$, for $\lambda \geq 3$.

V. Timotić et. al. / Filomat 29:1 (2015), 7–12
Now, let us observe the function \(c_{[\lambda]} \), for \(x \geq 1 \), where \(x \) is real number. Let \(\varepsilon > 1 \). We will prove that there exists an interval \([A, B] \subseteq (3, 4)\), \((A < B)\), depending on \(\varepsilon \), such that the inequality \(\frac{1}{\varepsilon} < \frac{c_{[\lambda]}}{c_n} < \varepsilon \) holds uniformly for \(\lambda \in [A, B] \), for sufficiently large \(n \in \mathbb{N} \). Hence, we will define \(n_{\lambda} \), \((n_{\lambda} \in \mathbb{N})\) as follows

\[
N_{\lambda} = \begin{cases}
1, & \text{if } \frac{1}{\varepsilon} < \frac{c_{[\lambda]}}{c_n} < \varepsilon, \text{ for each } n \in \mathbb{N}; \\
1 + \max \left\{ n \in \mathbb{N} \mid \frac{c_{[\lambda]}}{c_n} \geq \varepsilon \text{ or } \frac{c_{[\lambda]}}{c_n} \leq \frac{1}{\varepsilon} \right\}, & \text{otherwise},
\end{cases}
\]

for each \(\lambda \in (3, 4) \). Note that \(1 \leq n_{\lambda} < +\infty \).

Also, we will define a sequence \((A_k)_{k \in \mathbb{N}} \) of sets \(A_k = \{ \lambda \in (3, 4) \mid n_{\lambda} > k \} \), \(k \in \mathbb{N} \). This is a non-increasing sequence which satisfies that \(\bigcap_{k=1}^{+\infty} A_k = \emptyset \). Not all sets from this sequence are dense in \((3, 4)\), i.e. there exists a set \(A_k \) for some \(k \in \mathbb{N} \) which is not dense in \((3, 4)\). To prove the previously mentioned we must, firstly, emphasize that at least one of the two following inequalities is true: \(\frac{1}{\varepsilon} \geq \frac{c_{[\lambda]}}{c_{n_{\lambda} - 1}} \geq \varepsilon \),

for each \(\lambda \in A_k \) and for fixed \(k \in \mathbb{N} \). Also, there exists \(\delta_{\lambda} > 0 \) for which at least one of the following inequalities is true: \(\frac{1}{\varepsilon} \geq \frac{c_{[\lambda]}}{c_{n_{\lambda} - 1}} \geq \varepsilon \), or \(\frac{c_{[\lambda]}}{c_{n_{\lambda} - 1}} \geq \varepsilon \), for each \(t \in [\lambda, \lambda + \delta_{\lambda}] \).

Since, from inequality \(n_t \geq (n_{\lambda} - 1) + 1 > k \) we obtain that \(t \in A_k \), for this \(k \). Moreover, from \(\lambda \in A_k \) we have that \((\lambda, \lambda + \delta_{\lambda}) \subseteq A_k \). Therefore, if the set \(A_k \) is dense in the interval \((3, 4)\), then the set \(\text{Int}A_k \) is also dense in the interval \((3, 4)\). If we assume that each set \(A_k \) is dense in \((3, 4)\) we obtain that \((\text{Int}A_k)_{k \in \mathbb{N}} \) is a sequence of dense and open sets in \((3, 4)\), also, and all of these sets are of the second category in \((3, 4)\).

Consequently, \(\bigcap_{k=1}^{+\infty} \text{Int}A_k \) is a dense set in \((3, 4)\), so it is nonempty. That is a contradiction. Hence, there is a set \(A_{n_0} \) for some \(n_0 \in \mathbb{N} \) which is not dense in \((3, 4)\) and there is an interval \([A, B] \subseteq (3, 4)\) such that \([A, B] \subseteq (3, 4) \setminus A_{n_0} = \{ \lambda \in (3, 4) \mid n_{\lambda} \leq n_0 \} \). Now, we have that \(n_{\lambda} < n_0 \), for each \(\lambda \in [A, B] \), and from that it follows \(\frac{1}{\varepsilon} < \frac{c_{[\lambda]}}{c_{n_{\lambda}}} < \varepsilon \), for each \(n \geq n_0 \geq n_{\lambda} \) and \(\lambda \in [A, B] \).

Finally, we obtain that inequalities \(\lim_{x \to +\infty} \frac{c_{[\lambda]}}{c_{[\lambda]}} \geq \frac{1}{\varepsilon} \cdot 1 = \frac{1}{\varepsilon} \) and \(\lim_{x \to +\infty} \frac{c_{[\lambda]}}{c_{[\lambda]}} \leq \varepsilon \cdot 1 = \varepsilon \) are true, for each \(\lambda \geq 12 \), where \(\varepsilon > 1 \) is arbitrary and pre-selected. Therefore, we have that \(\lim_{x \to +\infty} \frac{c_{[\lambda]}}{c_{[\lambda]}} = 1 \) is satisfied, for each \(\lambda \geq 12 \), and the function \(c_{[\lambda]}, x \geq 1 \) is the element of the class \(SV_f \) (see e.g. [1]). The sequence \((c_n)_{n \in \mathbb{N}}\) is the restriction of this function to \(\mathbb{N} \), so it is an element of the class \(SV_f \).

Proof of Proposition 1.2.

1. (Reflexivity) The asymptotic relation \(\lim_{n \to +\infty} \frac{c_{[\lambda]}}{c_n} = 1 \) is satisfied, for each sequence \(c = (c_n)_{n \in \mathbb{N}} \in SV_f \) and \(\lambda > 1 \). Hence, \(c_{[\lambda]} \overset{\sim}{\sim} c_{[\lambda]} \), as \(n \to +\infty \).

2. (Symmetry) Relation \(\overset{\sim}{\sim} \) is symmetric in \(S \), therefore it is symmetric in \(SV_f \subseteq S \), also.

3. (Transitivity) Let us assume that \(c_{[\lambda]} \overset{\sim}{\sim} d_n \), as \(n \to +\infty \), and \(d_n \overset{\sim}{\sim} c_n \), as \(n \to +\infty \) are satisfied, for given sequences \(c = (c_n)_{n \in \mathbb{N}} \), \(d = (d_n)_{n \in \mathbb{N}} \) and \(c = (c_n)_{n \in \mathbb{N}} \) from the class \(SV_f \). Therefore, we obtain that \(\lim_{n \to +\infty} \frac{c_{[\lambda]}}{c_{n_{\lambda}}} = \lim_{n \to +\infty} \frac{c_{[\lambda]}}{c_{n_{\lambda}}} \cdot \lim_{n \to +\infty} \frac{d_{[\gamma_{\lambda}]}(n_{\lambda})}{d_{[\gamma_{\lambda}]}(n_{\lambda})} \cdot \lim_{n \to +\infty} \frac{d_{[\gamma_{\lambda}]}(n_{\lambda})}{d_{[\gamma_{\lambda}]}(n_{\lambda})} \cdot \lim_{n \to +\infty} \frac{c_{[\lambda]}}{c_{n_{\lambda}}} = 1 \cdot 1 \cdot 1 = 1 \), for each \(\lambda > 1 \), since \(d_{[\gamma_{\lambda}]} \sim c_{[\gamma_{\lambda}]} \), as \(n \to +\infty \), and \(\lim_{n \to +\infty} \frac{c_{[\lambda]}}{c_{n_{\lambda}}} = 1 \) is uniform limit, for each \(t \in [a, b] \subseteq (0, +\infty) \), \((a < b)\), (see e.g. [1]) and consequently for each \(t \in \left[\frac{\sqrt{\lambda} - 1}{2}, \sqrt{\lambda} \right] \), and for some \(\lambda > 1 \), which is arbitrary pre-selected and fixed. In an analogous way it can be proved that \(\lim_{n \to +\infty} \frac{e_{[\lambda]}}{e_n} = 1 \), for each \(\lambda > 1 \). Hence, we obtain
that $c_n \sim c_n$, as $n \to +\infty$. Finally, we will prove that $d_{\sqrt{\eta n}} \sim c_{\sqrt{\eta n}}$ is satisfied, as $n \to +\infty$, for $\lambda > 1$.

Namely, it holds that $\lim_{n \to +\infty} \frac{d_{\sqrt{\eta n}}}{c_{\sqrt{\eta n}}} = \lim_{n \to +\infty} \frac{d_n}{c_n} = 1$, for $\lambda > 1$. This completes the proof. □

Proof of Proposition 1.11. Let $c = (c_n)_{n \in \mathbb{N}}$ be an arbitrary and fixed sequence from SV_σ and let $[c] = \{d = (d_n)_{n \in \mathbb{N}} \in SV_\sigma : d_n \sim c_n, as n \to +\infty\}$.

(1st step) Let $c = (c_n)_{n \in \mathbb{N}} \in SV_\sigma$ and $d = (d_n)_{n \in \mathbb{N}} \in SV_\sigma$, and $c_n \sim d_n$, as $n \to +\infty$. Hence, we obtain

$\lim_{n \to +\infty} \frac{c_n}{d_n} = \lim_{n \to +\infty} \frac{c_n}{d_n} \cdot \frac{1}{\frac{1}{c_n} - \frac{1}{d_n}} = 1 \cdot 1 = 1$ for each $\lambda > 1$ i.e. $c_n \sim d_n$, as $n \to +\infty$. Inversely, let $c = (c_n)_{n \in \mathbb{N}} \in SV_\sigma$ and $d = (d_n)_{n \in \mathbb{N}}$ and $c_n \sim d_n$, as $n \to +\infty$. We have that $\lim_{n \to +\infty} \frac{c_n}{d_n} = \lim_{n \to +\infty} \frac{c_n}{d_n} \cdot \lim_{n \to +\infty} \frac{d_n}{d_n} = 1 \cdot 1 = 1$ is satisfied, for $\lambda > 1$. In the similar way, we can prove that $\lim_{n \to +\infty} \frac{d_n}{c_n} = 1$ holds, for $\lambda > 1$, so we obtain $c_n \sim d_n$ as $n \to +\infty$.

(2nd step) Let sequence $c = (c_n)_{n \in \mathbb{N}} \in SV_\sigma$ and the class $[c]$, be given. Also, let σ be the strategy of the second player. First player chooses the sequence $x_1 = (x_{1,i})_{i \in \mathbb{N}}$ in $[c]$, arbitrary. Then the second player chooses the subsequence $\sigma(x_1) = (x_{1,j(i)})_{i \in \mathbb{N}}$ of the sequence x_1 where $Im(k_i)$ is the set of natural numbers which are divisible with 2 and not divisible with 2^i. The first player chooses the sequence $x_i = (x_{i,j(i)})_{i \in \mathbb{N}} \in [c]$, arbitrary. Then the second player chooses the subsequence $\sigma(x_i) = (x_{i,j(i)})_{i \in \mathbb{N}}$ of the sequence x_i, so that $Im(k_i)$ is the set of natural numbers greater or equal to j_i, so that they are divisible with 2^i, and not divisible with 2^{i+1}, and j_i exists in \mathbb{N} (because of the 1st step of this proof) and it is given by: $1 - \frac{1}{2^i} \leq \frac{x_{i,j}}{x_i,j} \leq 1 + \frac{1}{2^i}$, for each $i \geq j_i$. Now, we will observe the set $Y = \bigcup_{i \in \mathbb{N}} \bigcup_{j \in \mathbb{N}} X_{i,j}(i)$ of positive real numbers indexed by two indexes. Elements of the set Y we can consider as the subsequence of the sequence $y = (y_{n,m})_{n \in \mathbb{N}}$ given by:

$y_m = \begin{cases} 1 & \text{if } m = k_i(j) \text{ for some } i, j \in \mathbb{N}; \\ x_{1,m} & \text{otherwise.} \end{cases}$

By the construction of the sequence y we have that $y \in \mathcal{S}$. Also, the intersection between y and $x_{i,j} (i \in \mathbb{N})$ is an infinite set of common elements. Let us prove that $y_m \sim x_{1,m}$ as $m \to +\infty$.

Let $\varepsilon \in (0, 1)$. Let us choose the smallest natural number i satisfying $\frac{1}{2^i} \varepsilon < \varepsilon$. For each $k \in \{1, 2, \ldots, i-1\}$ there is $j_k \in \mathbb{N}$ so that inequality $1 - \varepsilon \leq \frac{x_{i,j}}{x_i,j} \leq 1 + \varepsilon$ is satisfied, for each $j \geq j_k$. Let $j^* = \max\{j_1, j_2, \ldots, j_{i-1}\}$. Therefore, the inequality $1 - \varepsilon \leq \frac{x_{1,m}}{y_m} \leq 1 + \varepsilon$ is satisfied, for each $m \geq j^*$. Then, from $x_{1,m} \sim y_m$, as $m \to +\infty$ we obtain $y_m \sim c_m$, as $m \to +\infty$, since $\varepsilon \in (0, 1)$ is arbitrary. From the 1st step of this proof we obtain that $y_m \sim c_m$, as $m \to +\infty$, i.e. $y \in [c]$. This completes the proof. □

Proof of Proposition 1.11. Let σ be the strategy of the second player.

(1st round) Let the first player choose an arbitrary sequence $x_1 = (x_{1,i})_{i \in \mathbb{N}}$ from the class $[c]$. Then the second player plays $\sigma(x_1) = x_{1,1}, x_{1,2}, \ldots, x_{1,k_1}$, where $1 - \frac{1}{2} \leq \frac{x_{1,k}}{x_{1,k}} \leq 1 + \frac{1}{2}$ holds, for each $k \geq k_1$. This is possible according to the 1st step of the proof of Proposition 1.6.

(2nd round, $i \geq 2$) Let the first player choose an arbitrary sequence $x_i = (x_{i,j})_{j \in \mathbb{N}}$ from the class $[c]$. Then the second player plays $\sigma(x_i) = x_{i-1,k_i+1}, x_{i-1,k_i+2}, \ldots, x_{i-1,k_i+\epsilon_i}, x_{i,k_i}$, where $1 - \frac{1}{2} \leq \frac{x_{i,k}}{x_{i,k}} \leq 1 + \frac{1}{2}$ holds,
for $k \geq k_i$ and $k_i = 1 + k_{i-1} + k^*_{i-1}$. Thus, the second player forms the sequence $y = (y_m)_{m \in \mathbb{N}}$ given by $x_{1,1}, \ldots, x_{1,k_1}, \ldots, x_{2,k_2}, \ldots, x_{i,k_i}, \ldots$ which belongs to S and has a finite number of elements in common with each of the sequences $x_i, i \in \mathbb{N}$. Let $\varepsilon \in (0,1)$. Then $\frac{1}{2\varepsilon} < \varepsilon$ holds, for some $i \in \mathbb{N}$. Therefore, the inequality $1 - \varepsilon \leq \frac{c_m}{y_m} \leq 1 + \varepsilon$ holds, for each $m \geq 1 + k_1 + k^*_1 + \cdots + k^*_{i-1}$, and we have that $c_m \sim y_m$, as $m \to +\infty$ is true. From the 1st step of the proof of Proposition 1.6, we obtain $y \in [c]_\varepsilon$. This means that the second player wins using the strategy σ. This completes the proof. □

References